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Abstract—Based on a newly proposed nested array, we con-
sider the problem of direction of arrival estimation for wide-
band sources. This array provides O(N2) degrees of freedom
with O(N) sensors, enabling us to estimate K sources with
N<K sensors. To employ the nested array for wideband source
estimation, we propose a novel strategy to apply nested-array
processing to each frequency component, and combine all the
spectral information of various frequencies to conduct estimation.
Similar to the narrowband case, the nested array achieves great
performance for wideband scenarios. Numerical simulations
demonstrate the advantage of our strategy.

Index Terms—Direction of arrival estimation, nested array,
wideband source

I. INTRODUCTION

Direction of arrival (DOA) estimation is a major applica-

tion of the antenna array. Theories are well established for

narrowband sources, and a large body of literature exists [1].

Owing to the narrowband property, the array model can be

greatly simplified [2]. Subspace based methods and the maxi-

mum likelihood approach are two main topics. For wideband

sources, however, the literature is somewhat scanty. Wax et al.
is among the earlier researchers in this field [3], decomposing

the incoherent wideband signal into many narrowband signals

using discrete Fourier transform (DFT) along the temporal

domain. Wang and Kaveh [4] considered the case of coherent

wideband sources.

However, the DOA estimation is mostly confined to the case

of ULAs [5]. A ULA with N sensors can resolve at most

N − 1 sources using conventional subspace-based methods

such as multiple signal classification (MUSIC) [6]. A system-

atic approach to achieve O(N2) degrees of freedom (DOF)

using O(N) sensors based on a nested array was recently

proposed in [7], where DOA estimation and beamforming

were studied. The nested arrays are obtained by combining

two or more ULAs with increasing spacing. Owing to the

property of nonuniformity, the resulting difference co-array

has significantly more DOF than the original sparse array,

which makes it possible for the nested array to detect more

sources than the number of sensors [8], [9].
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ONR Grant N000141310050.

Fig. 1: A 2-level nested array with N1 sensors in the inner ULA,

and N2 sensors in the outer ULA, with intersensor spacings dI and

dO respectively.

In this paper, we consider the incoherent case. We propose

a novel strategy to employ nested array for wideband source

estimation [10]. Similar to the technique in [3], we decompose

the wideband signal into different narrowband components and

apply nested array to each of those frequencies. A combined

MUSIC spectrum is proposed to exploit all the spectral in-

formation from different frequency analysis. Simulations are

provided to demonstrate the advantage of our strategy. More

precisely, a 2-level nested array is a linear array with sensor

locations given by the union of the sets SI = {mdI, m =
1, . . . , N1} and SO = {n(N1 + 1)dI, n = 1, . . . , N2}, as

shown in Fig. 1.

II. SIGNAL MODEL

We assume there is a linear nested array with N sensors,

including two concatenated uniform linear arrays (ULA).

Suppose the inner ULA has N1 sensors with spacing dI and

the outer ULA has N2 sensors with spacing dO = (N1+1)dI.
We assume K wideband sources are in the surveillance

region, impinging on this linear array from directions {θk, k =
1, . . . ,K}. Assume that the incident wideband signals have a

common bandwidth B with center frequency fc. Let sk(t)
denote the kth baseband signal. Then the observed bandpass

signal x̄k(t) at a reference point can be written as

x̄k(t) = sk(t)e
j2πfct. (1)

If we observe the signal over the time interval [t1, t2], then

the baseband signal can be written as [11]

sk(t) =
I∑

i=1

Sk(fi)e
j2πfit, t1 ≤ t ≤ t2, (2)
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where Sk(fi) are the Fourier coefficients

Sk(fi) =
1

t2 − t1

∫ t2

t1

sk(t)e
−j2πfitdt, (3)

with fi = fl + (i − 1)B/(I − 1), i = 1, . . . , I . fl denotes

the lowest frequency included in the bandwidth B, and I is

the number of frequency components. We choose fl and I so

that the frequencies are symmetric about 0 Hz. By considering

the propagation delay τk,n of the kth signal at the nth sensor,

the modulated bandpass signal at the reference point can be

presented as

x̄k(t+ τk,n) =

I∑
i=1

Sk(fi)e
j2π(fc+fi)(t+τk,n), (4)

where τk,n = ndIsin(θk)/c, k = 1, . . . ,K, and n = 1, . . . , N ,

with c being the propagation speed.
The demodulated signal can be expressed as

xk(t, τk,n) = x̄k(t+ τk,n)e
−j2πfct (5)

Stacking {xk(t, τk,n)}Nn=1 according to sensor number, we

get the N × 1 vector xk(t). Let a(θk, fc + fi) denote the

N × 1 steering vector of the kth source and the ith frequency

component:

a(θk, fi) = [ej2π(fc+fi)τk,1 , . . . , ej2π(fc+fi)τk,N ]T . (6)

Then the received data vector has the form

x(t) =
K∑

k=1

xk(t) =
I∑

i=1

[A(θ, fi)S(fi) +E(fi)]e
j2πfit, (7)

where A(θ, fi) = [a(θ1, fi), . . . ,a(θK , fi)], S(fi) =
[S1(fi), . . . , SK(fi)]

T is the K×1 signal vector, and E(fi) =
[E1(fi), . . . , EK(fi)]

T is the N × 1 noise Fourier coefficient

vector. Define

y(i) � A(θ, fi)S(fi) +E(fi), i = 1, . . . , I. (8)

Then {y(i)} are by definition the N × 1 Fourier coefficient

vectors of x(t).
We assume the source signals follow Gaussian distributions,

Sk(fi) ∼ N (0, σ2
k,i), and that they are all independent of

each other. The noise E(fi) is assumed to be white Gaussian

and uncorrelated with the sources. Based on our assumption,

the source autocorrelation matrix Rsi is diagonal: Rsi =
diag(σ2

1,i, σ
2
2,i, . . . , σ

2
K,i). We use Ai to represent A(θ, fi)

for brevity. Then the autocorrelation matrix of {y(i)} is

Ryi = AiRsiA
H
i + σ2

EI,

where σ2
E is the noise power, and I is the identity matrix.

Vectorizing Ryi , we get

vi = (A∗
i ⊗Ai)pi + σ2

E1e, (9)

where pi = [σ2
1,i, . . . , σ

2
K,i]

T , and 1e = [eT1 , e
T
2 , . . . , e

T
N ]T ,

with ei being a vector of all zeros except a 1 at the ith position.

We can view vector vi in (9) as some new longer received

signals with the new manifold matrix A∗
i ⊗Ai, and the new

source signals pi. The symbol ∗ denotes conjugation without

transpose, and ⊗ denotes the Khatri-Rao product.

III. DIRECTION OF ARRIVAL ESTIMATION

We will use the nested array mentioned above to conduct

direction of arrival estimation, where the source number is

greater than the sensor number. First, we will briefly introduce

spatial smoothing [7], which is used to exploit the increased

degrees of freedom. Then, we will propose a novel strategy

for wideband source estimation using MUSIC.

A. Spatial Smoothing

To exploit the increased degrees of freedom provided by the

co-array, we need to apply spatial smoothing. We remove the

repeated rows from A∗
i ⊗Ai and also sort them so that the jth

row corresponds to the sensor location (−N2/4−N/2+ j)dI
in the difference co-array of the 2-level nested array, giving a

new vector:

v̄i = Āipi + σ2
E ē,

where ē ∈ R((N2−2)/2+N)×1 is a vector of all zeros except a

1 at the center position.

The difference co-array of this 2-level nested array has

sensors located at

(−N2/4−N/2+1)dI , . . . ,−dI , 0, dI , . . . , (N
2/4+N/2−1)dI .

We now divide these N2/2+N −1 sensors into N2/4+N/2
overlapping subarrays, each with N2/4+N/2 elements, where

the lth subarray has sensors located at {(−l+ 1+ n)dI , n =

0, 1, . . . , N2

4 + N
2 − 1}. The lth subarray corresponds to the

(N2/4+N/2− l+1)th to (N2+N− l)th rows of v̄i, denoted

as

v̄l
i = Āl

ipi + σ2
Eel.

We can check that

v̄l
i = Ā1

iΦ
l−1pi + σ2

Eel,

where Φ = diag(e−j(2π/λ)dsinθ1 , e−j(2π/λ)dsinθ2 , . . . ,
e−j(2π/λ)dsinθK ). Viewing v̄l

i as a newly received vector, we

can get the equivalent covariance matrix Rl
i = v̄l

iv̄
lT
i . Taking

the average of Rl
i, we get

Rave
i =

1

(N
2

4 + N
2 )

N2/4+N/2∑
l=1

Rl
i. (10)

The spatially smoothed matrix Rave
i enables us to perform

detection of O(N2) sources with N sensors.

B. Direction of Arrival Estimation

As mentioned in the introduction, we consider a narrow-

band decomposition for wideband DOA estimation. For each

frequency component, we use the narrowband signal subspace

method MUSIC to estimate.

Considering the spatial smoothing matrix Rave
i for ith

frequency fi, we do eigenvalue decomposition:

EVD(Rave
i ) = UiΛiU

T
i ,

where Λi = diag(λ1
i , λ

2
i , . . . , λ

N2/4+N/2
i ) are the eigenvalues

and Ui = [u1
i ,u

2
i , . . . ,u

N2/4+N/2
i ] is the corresponding
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eigenvector matrix. Suppose the eigenvalues are sorted de-

creasingly:

λ1
i ≥ λ2

i ≥ . . . ≥ λK
i > λK+1

i = . . . = λ
N2/4+N/2
i .

Then we can get the noise subspace UE
i = [uK+1

i ,uK+2
i , . . . ,

u
N2/4+N/2
i ], which consists of the last N2/4 + N/2 − K

eigenvectors corresponding to the smallest N2/4 + N/2 −
K eigenvalues. The estimated DOA can be found through an

exhaustive search over all the direction space for the MUSIC

spectrum:

Mi(θ) =
1

(aθ
i )

TUE
i (UE

i )Taθ
i

,

where aθ
i = [1, aθi , . . . , (a

θ
i )

N2/4+N/2−1], with aθi =
e−j2π(fc+fi)dIsin(θ)/c. Combining the resulting measurements

for all the different frequencies, we construct the new com-

bined MUSIC spectrum:

M(θ) =
1

1
I

∑I
i=1(a

θ
i )

TUE
i (UE

i )Taθ
i

. (11)

Then the estimated DOAs are corresponding to the K largest

values of the spectrum M(θ).

C. Wideband DOA Estimation Algorithm Based on MUSIC

According to section II, our observed data is x(t) in (7),

and our problem of interest is to estimate the DOAs from

the Fourier coefficients y(i), i = 1, . . . , I in (8). The main

difference with respect to the narrowband problem is that now

the steering matrix Ai depends on the frequency component

index i.
Suppose our total observation time is T0, and we divide it

into Q segments, with each segment t0 = t2 − t1. We assume

that there are I samples within each segment. Therefore, we

have I ·Q samples

X̂ = [x̂(1), x̂(2), . . . , x̂(I ·Q)]N×(I·Q)

. For each segment q, we employ DFT to get the N × I
corresponding frequency coefficient matrix:

Ŷq = [ŷq(1), . . . , ŷq(i), . . . , ŷq(I)], q = 1, . . . , Q. (12)

Considering all the segments, we can get the N×Q coefficient

matrix for each frequency index i:

Ŷ i = [ŷ1(i), . . . , ŷq(i), . . . , ŷQ(i)], i = 1, . . . , I. (13)

The resulting sample covariance matrix for frequency index i
can be written as

R̂yi =
1

Q
Ŷ i(Ŷ i)T . (14)

Following the spatial smoothing technique in subsection A,

we can get the sample spatial smoothing matrix R̂ave
i . Ac-

cordingly, we can get the corresponding sample noise subspace

ÛE
i , and the combined MUSIC spectrum M̂(θ). The algorithm

is shown in Table I

TABLE I: Wideband DOA Estimation Algorithm

begin
Obtain Q,I ,X̂

Obtain Ŷq, q = 1, . . . , Q from X̂ via DFT
i=1; %frequency index
do

Obtain Ŷ i;

Obtain the covariance R̂yi ;

Obtain the spatial smoothing matrix R̂ave
i ;

Obtain the noise subspace ÛE
i ;

i := i+ 1;
until i = I;

Calculate the combined MUSIC spectrum M̂(θ) in (11);

Estimate the DOAs as the K largest values of M̂(θ).
end

IV. NUMERICAL EXAMPLES

In this section, we use numerical examples to show the

superior performance of our proposed strategy in terms of

wideband source DOA estimation with a linear nested array.

In the examples, we consider a 2-level nested array with

N = 6 sensors, with both the inner and outer ULAs having

three sensors. The interspacing dI is chosen as half of the

shortest wavelength of the wideband signals, which ensures

that there is no spatial aliasing. dO is equal to 4dI . Suppose

there are K = 7 wideband sources impinging from directions

θ = [−600,−350,−150, 50, 300, 450, 600]. It is impossible for

us to use a 6-ULA to detect seven sources. However the spatial

smoothing matrix R̂ave
i in (10) helps a nested array obtain

this goal. Suppose the wideband sources have the same center

frequency fc = 100 Hz and the same bandwidth B = 40
Hz. Besides, the sources follow zero mean Gaussian random

processes with equal power, independent of each other. The

noises are white Gaussian, and uncorrelated with the sources.

The demodulated data is sampled at a frequency of 300 Hz.

A. MUSIC Spectra

The array output is decomposed into I = 41 narrowband

components via DFT. The selection of proper value of I will be

explained next. We choose the segment number to be Q = 100.

Therefore we use a total of I × Q = 4100 samples. Fig.

2 shows the representative MUSIC spectra using the spatial

smoothing technique, with respect to various angles at a SNR

of 0 dB. We take the SNR as

SNR = 10log10
E[S(f)2]

E[E(f)2]
.

We can see that the proposed method can resolve the 7 sources

sufficiently well.

B. MSE versus SNR

We consider the performance of our proposed method by

studying the MSE of the angle estimates as a function of

the SNR. Since the 2-level nested array has 6 sensors and

12 degrees of freedom, we also consider the corresponding
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Fig. 2: MUSIC spectrum using the spatial smoothing tech-

nique, as a function of the DOA, N = 6, K = 7, I = 41,

Q = 100, SNR = 0 dB.
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Fig. 3: MSE versus the SNR for the source at 300, using

2-level nested array, traditional ULA with 6 sensors and 12

sensors, I = 41,Q = 100.

MSE for conventional MUSIC applied to 6-element and 12-

element ULAs. We plot the MSE for the source at 300. The

performance is similar for the other sources. Fig. 3 shows the

MSE of the three methods as a function of SNR, averaged over

500 Monte Carlo simulations, using I ×Q = 4100 samples.

We can see that the performance of all three methods

improve with SNR. In addition, the nested array method

performs reasonably better than the corresponding ULA with

same number of sensors, and performs close to the much

longer ULA with 12 sensors.

TABLE II: MSE versus different numbers of I

I 2 4 8 10 20
MSE 1.253 0.198 0.1 0.099 0.087
I 40 50 100 160 200

MSE 0.093 0.097 0.12 0.129 0.147

C. Impact of the choice of I

To investigate the impact on the estimation performance of

the choice of I , we fixed the sample number at 4000. For

different numbers of I , Table II shows the MSE results for

estimation of a wideband source with θ = 300. We can see

that a moderate I guarantees good performance. When I is

too small, it will lose information on most frequencies. On

the other hand, when I is too large, the fusion process will

perform badly.

V. CONCLUSION

In this paper, we proposed a novel approach for wideband

source DOA estimation with the nested array. This approach

can estimate more wideband sources than sensors, and ob-

tain good estimation and resolution performance. Numerical

examples demonstrate the effectiveness of our strategy. For

future work, we will investigate the estimation performance

for coherent wideband sources, and analyze source number

detection using nested arrays.
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