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Abstract—In this paper, we propose a new model of demand
response management for the future smart grid that integrates
plug-in electric vehicles. A price scheme considering fluctuation
cost is developed. We consider a market where users have the
flexibility to sell back the energy generated from their distributed
generators or the energy stored in their plug-in electric vehicles.
A distributed optimization algorithm based on the alternating
direction method of multipliers is developed to solve the optimiza-
tion problem, in which consumers need to report their aggregated
load only to the utility company, thus ensuring their privacy.
Consumers can update their load scheduling simultaneously and
locally to speed up the optimization computing. Using numerical
examples, we show the demand curve is flattened after the
optimization, thus reducing the cost paid by the utility company.
The distributed algorithm is also shown to reduce the users’ daily
bills.

I. INTRODUCTION

In the electricity market, demand response [1] is a mech-
anism to manage users’ consumption behavior under specific
supply conditions. The goal of demand response is to benefit
both consumers and utilities via a more intelligent resources
scheduling method. Whereas the classical rule for operating
the power system is to supply all the demand whenever it
occurs, the new philosophy focuses on the concept that the
system will be more efficient when the fluctuations in demand
are kept as small as possible [2]. The goal of demand response
is to flatten the demand curve by shifting the peak hour load to
off-peak hours. Traditionally this is achieved by setting a time
of use (TOU) price scheme [3],[4], which normally assigns
high prices to the peak hours and low prices to the off-peak
hours.

With the incorporation of the plug-in electric vehicles
(PEV) into the power grid [5],[6], users have more flexibility
to schedule their load and tend to charge them when the
electrical price is low. Therefore the effect of the TOU price
scheme is simply to move the peak demand from previous
peak hours into previous off-peak hours. Even so, the cost
arising from load variation still remains high in this situation.
With the introduction of advanced metering infrastructures
(AMI) [7] and energy-management controllers (EMC) [8],
[9], more effective and distributed smart demand response
algorithms can be proposed to solve the peak shifting and
electric vehicle charging problems [9],[10]. In [9], the authors
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proposed a distributed game-theoretical approach for users.
But their distributed algorithm can be applied only sequentially
among the users, and the communication time and cost will
reduce the effectiveness of the method.

In this paper we consider a smart grid with a certain pene-
tration level of PEVs and also with some on-site renewable
distributed generators [11]. The price model in this paper
considers the base price, and also takes the fluctuation cost into
account. We consider the case where users can sell back the
energy they generate to the grid. The PEVs can also be used
as batteries to store electricity, which can be either consumed
or sold back to the grid, whichever is more advantageous. We
use the alternating direction method of multipliers (ADMM)
to solve the optimization [12]. Unlike in [9], our algorithm is
computed in parallel and thus save the computing time of the
algorithm.

In Section II, we build a model for different kinds of loads
and set the pricing policy for the utility company. In Section
III, using the alternating direction method of multipliers, we
reformulate the optimization problem into a distributed opti-
mization problem. In Section IV, we show numerical examples
to demonstrate the performance of the proposed methods. In
Section V, we conclude the paper.

II. SYSTEM MODEL

We consider a smart grid model with certain number of
residences provided with electricity from the same utility
company. Each consumer has an energy-management con-
troller (EMC) that controls and communicates with different
appliances within the household and also has an advanced
metering infrastructure (AMI) to perform two-way communi-
cation with the utility company. We also assume that there
are a certain number of user-owned distributed generators
and plug-in electric vehicles in the grid. Users can sell back
the energy generated from their own distributed generators or
stored in the batteries of their PEVs.

A. Electricity Usage Model for Users

We divide a day into T time periods. We assume there are
four kinds of loads in our model: the base load, schedulable
load, plug-in electric vehicle load, and the distributed genera-
tion.

Let lBk (t) denote the base load of the k-th user at time t. It
supplies users’ basic needs, such as lighting, air conditioning
and refrigerators, which can not be scheduled.
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We use lSk(t) to represent the schedulable load of user k
at time t. It can be scheduled during a day, but it must
satisfy the following sum constraint to meet the satisfaction of
consumers. It should also meet the maximum physical usage
rate constraints. The constraints for schedule load are stated
as follows:

T∑
t=1

lSk(t) = sSk, and 0 ≤ lSk(t) ≤ lmax
k (t),∀k. (1)

Define lPk (t) to be the electric vehicle load of user k at time
t. It can be decomposed into two parts, namely the charging
energy and discharging energy. The equation can be written
as

lPk (t) =
l̃P+
k (t)

µc
+ µd l̃

P−
k (t), (2)

where µc and µd denote the charging efficiency and dis-
charging efficiency of the electric vehicle in this paper. l̃Pk (t)
represents the energy change in the battery of the electric
vehicles. We have

l̃P+
k (t) =

{
l̃Pk (t) if l̃Pk (t) ≥ 0,
0, otherwise.

(3)

l̃P−k (t) =

{
l̃Pk (t) if l̃Pk (t) ≤ 0,
0, otherwise.

(4)

The term l̃Pk (t) must also satisfy the sum constraint. For
simplicity, we assume that consumers always want to fully
charge their PEV batteries before they leave for work. In
addition, the user can use the electric vehicle as a battery to
store energy when the electricity price is low and sell it back
when the price is high. The charging and discharging rate also
have upper bounds to meet physical constraints. The energy
remaining in a battery at every time slot should also be larger
than zero and less than the battery size. Let Ek denote the
battery size of user k, and rmaxk and rmink denote the maximum
charging rate and discharging rate. Let sPk denote the energy
left in the battery when the user k’s PEV arrives home. Then
these constraints can be stated as follows:

tdep−1∑
t=tar

l̃Pk (t) = Ek − sPk , and rmink ≤ l̃Pk (t) ≤ rmaxk , (5)

0 ≤ sPk +
t0∑

t=tar

l̃Pk (t) ≤ Ek, t0 = tar, tar+1, . . . , tdep−1, (6)

where tar indicates the time of arrival and tdep indicates the
time of departure.

Let lDk (t) denote the distributed generation of user k. It has
a negative value since it is obtained from an external clean
energy source and can be sold back to the grid when the user
has a surplus. Then the load of user k at time point t can be
expressed as the sum of these four kinds of loads:

lk(t) = lBk (t) + lSk(t) + lPk (t) + lDk (t). (7)

These equations are satisfied for all t and k.

B. Electricity Pricing Policy

Let ct denote the marginal generation cost for electricity
from thermal plants at time t. In an electrical power system,
demand fluctuation can result in ancillary cost to the utility
company since larger fluctuation will also lead to inefficient
usage of the plants and the need for secondary thermal plants
during the peak hours. We model this fluctuation cost as a
function of the variance of the electricity load [13]. The total
generation cost model for the utility company is described as

Cost =

T∑
t=1

ct
∑
k

lk(t) + µ

T∑
t=1

(
∑
k

lk(t)−m)2, (8)

where m is the mean usage during a day defined by
1
T

∑T
t=1

∑
k lk(t).

According to the cost function, the price function contains
two parts, namely the base price and the fee arising from the
demand fluctuation.

The base price pB(t) is determined by the sum of the base
loads of all individual users at time t. We assume the base
price pB(t) is proportional to the sum of base loads at time t:

pB(t) = C1(
∑
k

lBk (t)), (9)

where C1 is chosen so that ct ≤ pB(t) for all time points
t. If only the base price is used, consumers have limited
motivation to reschedule their demand response to lower the
fluctuation in the demand curve. In order to align the incentives
of consumers to lower the fluctuation cost in (8), an extra fee
based on how much each consumer contributes to this demand
curve fluctuation needs to be introduced. In our price model,
the total fluctuation contribution fee f0 collected from all the
users is:

f0 = C2

T∑
t=1

(
∑
k

lk(t)−m)2. (10)

C2 is chosen to be larger than µ in the cost function (8).
This total fluctuation fee will be distributed to the users in
time periods when the total load of all users is larger than the
mean usage m. Let T0 denote the set containing these time
points. Then the fee for user k can be written as

fk(t) =


f0

∑
k′ lk′ (t)−m∑

t′∈T0
(
∑

k′ lk′ (t′)−m)
lk(t)∑
k′ lk′ (t)

if t ∈ T0,
0, otherwise.

(11)

With the introduction of the fluctuation contribution fee, con-
sumers will cooperate with each other to reduce the variance
of the overall load curve, and therefore lower the generation
cost to the utility company and their own bills.

III. DISTRIBUTED OPTIMIZATION ALGORITHM

A. Centralized Optimization of Loads

The goal of the users is to minimize their bills. The utility
company or retailer also has the incentive to minimize this total
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bill since minimizing the total bills of all the users will lead to
a more flattened load curve and thus lower the fluctuation cost
for the utility company. Therefore the centralized optimization
problem can be formulated as

min
{lk}

∑
k p

T
Blk + f0(

∑
k lk), (12)

subject to lk ∈ Fk,∀k, (13)

where pB = [pB(1), pB(2), . . . , pB(T )]
T and lk =

[lk(1), lk(2), . . . , lk(T )]
T. Fk denotes the feasible set for load

lk, i.e., Fk = {lk : lksatisfies conditions (1)-(7)}.

B. Distributed Optimization of Loads

Solving the optimization problem (12) in a centralized way
is inefficient due to the huge dimensionality and thousands
of constraints. In addition consumers need to report their
specific load usage to the utility company, which will lead to
privacy issues. The objective function in problem (12) can be
decentralized into parallel programming using the alternating
direction method of multipliers [12]. In order to formulate the
problem into ADMM framework, the optimization problem
(12) is reformulated by introducing auxiliary variables {zk}
as follows:

min
{lk},{zk}

∑
k p

T
Blk + f0(

∑
k zk) (14)

subject to lk = zk, lk ∈ Fk,∀k. (15)

Due to the constraint above, it is the same optimization as
(12). By Introducing auxiliary l2 norm penalty terms in the
objective function, we will have an equivalent optimization
problem as

min
{lk},{zk}

∑
k p

T
Blk +

ρ
2‖lk − zk‖22 (16)

+f0(
∑
k zk) (17)

subject to lk = zk, lk ∈ Fk,∀k. (18)

Introducing the Lagrange multipliers vk ∈ RT for each lk =
zk constraint in the above optimization, we can obtain the
augmented Lagrangian function as

L({lk}, {zk}, {vk}) =
∑
k

(pT
Blk+

vT
k (lk − zk) +

ρ

2
‖lk − zk‖22) + f0(

∑
k

zk),
(19)

where ρ is a pre-defined constant. The original optimal
problem can be solved using a Gauss-Seidel algorithm on
the augmented Lagrangian function L({lk}, {zk}, {vk}) [12].
Basically, the ADMM cycles through the following steps until
some kind of convergence is reached:

li+1
k = argmin

lk

pT
Blk + viTk (lk − zik)

+
ρ

2
‖lk − zik‖22), lk ∈ Fk,∀k,

(20)

{zi+1
k } = argmin

zk

∑
k

(viTk (li+1
k − zk)

+
ρ

2
‖li+1
k − zk‖22) + f0(

∑
k

zk),
(21)

vi+1
k = vik + ρ(li+1

k − zi+1
k ),∀k. (22)

The optimization problems (20) and (22) can be solved locally
and also in parallel. Each user needs to report his/her total
usage during each time slot only to the utility company, which
then solves the optimization problem (21).

Since in real-world application, the charging and discharg-
ing efficiencies are less than one, we can set µc and µd to
be one in the ADMM iterations to ensure convexity of the
problem. After convergence of the ADMM algorithm, we post-
process the load of the electric vehicles using equation (2),
(3) and (4) to get a suboptimal solution of the distributed
optimization algorithm.

IV. NUMERICAL EXAMPLES

In the examples we consider the case where there is only one
electricity supplier and 120 households in the smart grid. There
are 30 households with both wind distributed generators and
plug-in electric vehicles, 20 households with only distributed
generators, 30 households with only plug-in electric vehicles,
and 40 households with none of these. The sum of the base
load demand and schedulable demand from each household
is generated randomly according to the MISO daily report by
the U.S Federal Regulatory Commission (FERC) [14]. The
distributed wind generation values are taken from the Ontario
Power Authority [15]. We set the battery size of the plug-in
electric vehicle as either 10kW or 20kW , to reflect different
kinds of vehicles. The maximum charging rate is assumed to
be 3.3kW/h, and the maximum discharging rate is 1.5kW/h.
We also assume the charging and discharging rates can change
continuously between the maximum discharging rate and
maximum charging rate. The statistical mean of arrival time
and departure are 18:00 and 8:00, respectively. The specific
time slot is generated according to Gaussian distributions. Both
charging efficiency and discharging efficiency are set to be 0.8.

A. Valley filling properies of the ADMM scheduling method

In the first part of the results, we show three different types
of distributed scheduling algorithms. The first one uses no
optimization, in which users randomly select time slots to
put their schedulable loads and charge their PEVs as soon
as their vehicles are in the garages. The second algorithm is a
greedy algorithm, in which everyone tries to lower their total
electricity bill according to the pre-determined base price. We
compare them with the ADMM scheduling method proposed
earlier. we present the experiment when 20% of the load
(except PEV and load supplied by distributed generators) of
an individual user is schedulable. Thus the ratio of the base
load and schedulable load is 4 : 1. ρ in the ADMM iteration
is chosen to be 0.006. We show the valley filling results
of the ADMM scheduling algorithm in Figure 1. We can
see that the load without optimization creates a peak when
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Fig. 1: Total load of four scheduling methods.

Fig. 2: Money saved with changing proportion of schedulable
load.

most PEVs arrive home. The greedy algorithm simply moves
the peak to another time period, which has the lowest base
electricity price. The ADMM-based distributed optimization
model proposed in this paper can fill the valley of the original
base load and thus lead to a lower fluctuation of the load
curve. The unoptimized method has a total bill as high as
$689, and the greedy method has a bill amount as $592. While
the ADMM scheduling method leads to a total bill as low as
$521.

B. Results with different proportions of schedulable energy

In Figure 2, we show the daily bill reduction achieved
by using the proposed distributed ADMM optimization algo-
rithm, compared with the greedy algorithm. The percentage of
schedulable load of each individual user changes from 10%
to 50%. ρ in ADMM equals 0.006 in the algorithm. Every
user will gain under the proposed distributed algorithm, and
thus everyone has the incentive to be cooperative. In Figure 2
we observe that when percentage of schedulable load is 20%
and 30%, the difference between ADMM scheduling method
and greedy method is less than other cases. This is due to the
fact that with this percentage of schedulable energy, the valley
in the base load can be filled without creating a new peak at

the same time therefore greedy method in both cases is more
efficient than greedy algorithm in other cases.

V. CONCLUSION

In this paper, we first built an electricity usage model
for four kinds of loads. A price scheme considering both
base price and demand fluctuation in the demand response
was proposed. By applying the alternating direction method
of multipliers, we decomposed the centralized optimization
problem into distributed and parallel optimization problems.
Using numerical examples, we demonstrated that by using
the ADMM based distributed scheduling method the demand
response was flattened and the electrical bill was reduced for
each individual user. In our future work, we will employ
a more detailed cost function for the utility company. We
will also develop more advanced machine learning models to
predict the users’ future electricity usage behavior.
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