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Abstract—In this paper, we propose a sampling architecture for
the efficient acquisition of multiple signals lying in a subspace.
We show that without the knowledge of the signal subspace,
the proposed sampling architecture acquires the signals at a
sub-Nyquist rate. Prior to sampling at a sub-Nyquist rate, the
analog signals are diversified using analog preprocessing. The
preprocessing step is carried out using implementable compo-
nents that inject “structured” randomness into the signals. We
recast the signal reconstruction from fewer samples as a low-rank
matrix recovery problem from generalized linear measurements.
Our results also include a sampling theorem that provides the
sufficient sampling rate for the exact reconstruction of the signals.
We also discuss an application of this sampling architecture in
the estimation of the covariance matrix, required for parameter
estimation in several important array processing applications,
from much fewer samples.

I. INTRODUCTION

In this paper, we present a sampling scheme for the efficient
acquisition of multiple signals lying in a subspace. In addition,
we compliment the sampling architecture with a sampling
theorem, which dictates the sampling rate required for the
reconstruction of the signal ensemble. Multiple signals lying
in a subspace often arise from the outputs of a sensor array
in various signal processing applications, some of which are
outlined in Section III. In such application, often the task
is to estimate the signal parameters from their covariance
matrix, e.g., the MUSIC algorithm in array processing use the
covariance matrix to estimate signal parametrs, such as angle
of arrival, and frequency offsets. In several wideband signal
processing applications the sampling rate required to acquire
the covariance matrix may be prohibitive; especially, in view
of the increasing trend of using high frequency spectrum in
some applications in array processing. We will show that our
proposed sampling architecture can estimate the covariance
matrix of the input signal ensemble with a much smaller
sampling rate; hence, relieving the burden on the analog-to-
digital converters (ADCs).

An ensemble of M signals, each of which is bandlimited to
W/2 radians/sec can be captured completely at MW samples
per second. This can be achieved using M ADCs, one for each
signal and each taking samples at rate W . We will show that
if the signals lie in a small subspace of dimension R � M ,
meaning that all the signals in the ensemble can be written
as (or closely approximated by) distinct linear combinations
of R � M underlying signals, then the net sampling rate
can be reduced considerably by using analog diversification
[1], [2]. The signals will be diversified using implementable
analog devices and the resultant signals will then be sampled
at a smaller rate. In Section II-A, we will show that these

samples can be expressed as linear measurements of a low-
rank matrix. Over the course of one second, we want to acquire
an M × W matrix comprised of samples of the ensemble
taken at the Nyquist rate. The proposed sampling architecture
produces a series of linear combinations of entries of this
matrix. The conditions (on the signals and the acquisition
system) under which this type of recovery is effective have
undergone intensive study in the recent literature; see, for
example, [3], [4]

The main contributions of this paper are as follows: first, the
design of a practical measurement system constructed from
components that can be implemented in hardware; second, the
statement of Theorem 1, which proves the sub-Nyquist rate
acquisition is possible without knowing the signal subspace
in advance. We also discuss an application of this sampling
scheme in the compressive estimation of the covariance ma-
trices of the signals lying in a subspace.

A. Signal model

We will use notation Xc(t) to denote a signal ensemble of
interest and x1(t), . . . , xM (t) to denote the individual signals
within that ensemble. Conceptually, we may think of Xc(t)
as a “matrix” with finite M number of rows, but each row
contains a bandlimited signal. Our underlying assumption
is that the signals in the ensemble lie in a subspace S of
dimension R; that is, we can write

Xc(t) ≈ ASc(t), (1)

where Sc(t) is a smaller signal ensemble with R signals
that lie in subspace S and A is a M × R matrix with
entries A[m, r]. We will use the convention that fixed matrices
operating to the left of the signal ensembles simply “mix” the
signals point-by-point, and so (1) is equivalent to

xm(t) ≈
R∑
r=1

A[m, r]sr(t).

The only structure we will impose on individual signals
is that they are real-valued, bandlimited, and periodic. Thus,
signals live in a finite-dimensional linear subspace and provide
a natural way of discretizing the problem; that is, what exists in
Xc(t) for t ∈ [0, 1] is all there is to know, and each signal can
be captured exactly with W equally-spaced samples, which,
for the most part, reduces the clutter in mathematics. In a
detailed manuscript under preparation, we discuss how to
adapt our results to more realistic signal models in which the
(non-periodic) signal is windowed in time and overlapping

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

978-1-4673-3146-3/13/$31.00 ©2013IEEE 192



sections are reconstructed jointly. Each bandlimited, periodic
signal in the ensemble can be written as

xm(t) =

B∑
f=−B

αm[f ] ej2πft,

where αm[f ] are complex but have symmetry αm[−f ] =
αm[f ]∗ to ensure that xm(t) is real. We can capture xm(t)
perfectly by taking W = 2B + 1 equally spaced samples per
row. We will call this the M × W matrix of samples X;
of course, knowing every entry in this matrix is the same as
knowing the entire signal ensemble. We can write

X = CF , (2)

where F is a W × W normalized discrete Fourier matrix
and C is a M × W matrix whose rows contain Fourier
series coefficients for the signals in Xc(t). Matrix F is
orthonormal, while C inherits the correlation structure of the
original ensemble. An estimate of the covariance matrix of
the ensemble X from a reasonably large number of samples
is defined as

RXX =
1

W
XX∗.

We will be concerned with estimating RXX from much fewer
samples than dictated by Shannon-Nyquist framework.

II. THE RANDOM DEMODULATOR FOR MULTIPLE
SIGNALS LYING IN A SUBSPACE

To efficiently acquire the signal ensemble living in a sub-
space, our proposed sampling architecture, shown in Fig. 1,
follows a two-step approach. In the first step, each of the M
signals undergo analog preprocessing, which involves mod-
ulation, and low-pass filtering. The modulator takes an input
signal xm(t) and multiplies it by a fixed and known dm(t). We
will take dm(t) to be a binary ±1 waveform that is constant
over an interval of length 1/W . Intuitively, the modulation
results in the diversification of the signal information over the
frequency band of width W . The diversified analog signals
are then processed by an analog-low-pass filter; implemented
using an integrator, see [5] for details. The low-pass filter
only selects a frequency sub-band (or a subspace) of width
roughly equal to Ω, and as will be shown in Theorem 1, this
partial information is enough for the signal reconstruction. The
partial information suffices as the signals are scrambled using
modulators before low-pass filtering. Note that the low-pass
filter in each channel in Fig. 1 can be replaced; in general, by
a band-pass filter, i.e., the location of the band does not matter
only its width does. This also explains why we don’t need to
know the subspace in which signals live in advance.

In the second step, the filtered signal is sampled by an ADC
in each channel at a lower rate Ω. The result in Theorem 1
asserts that Ω is roughly of a factor of R/M smaller than the
Nyquist rate W .

Compressive sampling architectures based on the random
modulator have been analyzed previously in the literature [5],
[6]. The principal finding is that if the input signal is spectrally

sparse (meaning the total size of the support of its Fourier
transform is a small percentage of the entire band), then the
modulator can be followed by a low-pass filter and an ADC
that takes samples at a rate comparable to the size of the active
band. This architecture has been implemented in hardware in
multiple applications [7], [8].
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Fig. 1. The random demodulator for multiple signals lying in a subspace:
M signals lying in a subspace are preprocessed in analog using a bank of
independent modulators, and low-pass filters. The resultant signal is then
sampled uniformly by an ADC in each channel operating at rate Ω samples
per second. The net sampling rate is ∆ = ΩM samples per second.

A. System in Matrix Form

Each of the M input signals xm(t), 1 ≤ m ≤ M is multi-
plied by an independently generated random binary waveform
dm(t), 1 ≤ m ≤M alternating at rate W . That is, the output
after the modulation in the mth channel is

ym(t) = xm(t) · dm(t), m = 1, · · · ,M, and t ∈ [0, 1)

The ym(t) are then low-pass filtered using an integrator, which
integrates ym(t) over an interval of width 1/Ω and the result
is then sampled at rate Ω using an ADC. The samples taken
by the ADC in the mth channel are

ym[n] =

∫ n/Ω

(n−1)/Ω

ym(t)dt, n = 1, · · · ,Ω.

The integration operation commutes with the modulation
process; hence, we can equivalently integrate the signals
xm(t), 1 ≤ m ≤ M over the interval of width 1/W , and
treat them as samples X0 ∈ RM×W of the ensemble Xc(t).
The entries X0[m,n] of the matrix X0 are

X0[m,n] =

∫ n/W

(n−1)/W

xm(t)dt,

=
∑

|ω|≤W/2

C[m,ω]

[
eι2πω/W − 1

ι2πω

]
e−ι2πωn/W ,

where the bracketed term representing the low-pass filter

L̃[ω] =

[
eι2πω/W − 1

ι2πω

]
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is evaluated in the window ω = 0,±1, · · · ,±(W/2−1),W/2.
We will use an equivalent evaluation L[ω] of L̃[ω] in the
window ω = 1, · · · ,W . The Fourier coefficients of C[m,ω]
of X defined in (2) are related to the Fourier coefficients
C0[m,ω] of X0

C0[m,ω] = C[m,ω]L[ω] ω = 1, · · · ,W, (3)

and in time domain

X0 = C0LF , (4)

where L is a W ×W diagonal matrix containing L[ω] as its
diagonal entries, F is the W × W DFT matrix, and C0 is
the coefficients matrix with entries defined in (3). Since C0

inherits its low-rank structure from C; therefore, X0 is also
a low-rank matrix of rank R. In the rest of this write up, we
will consider recovering the rank R matrix X0. Since L is
well-conditioned, the recovery of X0 implies the recovery of
X in (2).

1) Action of the Modulator: As explained before, the
modulator in the mth channel takes input signal xm(t) and
returns dm(t)xm(t). If we take W equally-spaced samples of
dm(t)xm(t) in a time window t ∈ [0, 1), then we can write the
vector of samples ym as Dmxm, where xm is the W -vector
containing the W uniformly-spaced samples of xm(t), and
Dm is a W ×W diagonal matrix whose entries are samples
dm ∈ RW of dm(t). We will choose a binary sequence that
randomly generates dm(t), which amounts to Dm being a
random matrix of the following form:

Dm =


dm[1]

dm[2]
. . .

dm[W ]

 , (5)

where dm[n] = ±1 with probability 1/2,

and the dm[n] are independent. Conceptually, the modulator
disperses the information in the entire band of xm(t) — this
allows us to acquire the information at a smaller rate by
filtering a sub-band.

2) Action of the Low-pass Filter: The samples ym ∈ RΩ

taken by the ADC in the mth branch can be written in matrix
form as

ym = PDmxm,

where xm ∈ RW are the rows of X0 defined in (4); Dm

is the W ×W random diagonal matrix defined in (5), which
corresponds to the modulator in the kth branch; and P : Ω×W
is the matrix for the integrator (used as low-pass filter; for
more details, see [5]) that contains ones in locations (α, β) ∈
(j,Bj), for j = 1, · · · ,Ω, where

Bj = {(j − 1)W/Ω + 1 : jW/Ω} 1 ≤ j ≤ Ω,

where we are assuming for simplicity that Ω is a factor of W .
Since the action of the integrator commutes with the action of
the modulator, the operation of the integrator can be simply
represented as a block-diagonal matrix P operating on the

modulated entries of the rows of X0, which contains the
samples of the integrated signals. Putting it all together, the
samples acquired by the ADCs can be written as a random
block diagonal matrix times the vector vec(X0), formed by
stacking the rows of low-rank X0 as

y =

 y1
...

yM

 =

PD1

. . .
PDM

 · vec(X0), (6)

where y ∈ RΩM is the vector containing the samples acquired
by all the ADCs. We will denote by ∆, the total number of
samples per second MΩ taken by all the ADCs.

B. Sampling Theorem: Exact Recovery
Clearly form the last section, we are observing the low-

rank matrix X0 through an underdetermined linear operator
A : RM×W → R∆, i.e., the observations y can be equivalently
expressed as

y = A(X0).

To solve for X0, we use the nuclear-norm minimization
program subject to affine constraints as below:

minimize ‖Z‖∗ (7)
subject to y = A(Z).

Let X0 = UΣV T be the reduced form svd of X0 with
U : M × R, V : W × R being the matrices of left and right
singular vectors, respectively, and Σ : R×R being a diagonal
matrix containing singular values of X0. The coherence of
X0 is defined as

µ2
1 =

M

R
max

1≤k≤M
‖UTek‖22, (8)

µ2
2 =

W

R
max

1≤k≤W
‖V Tek‖22, (9)

and
µ2

3 =
MΩ

R
max

1≤i≤M
1≤j≤Ω

∑
k∼Bj

〈UV T, eie
T
k 〉2. (10)

Note that 1 ≤ µ2
1 ≤ M/R, and 1 ≤ µ2

2 ≤ W/R. The
coherences take smallest values for equally dispersed singular
vectors and largest values for sparse singular vectors [4]

Theorem 1. Suppose ∆ = MΩ measurements of the ensemble
X0 are taken using (6). If

Ω ≥ Cβµ2
3Rmax((W/M)µ2

1, µ
2
2) log3(WM) (11)

for a constant Cβ (that depends on β > 1), the minimizer X̂
to the problem (7) is unique and equal to X0 with probability
at least 1−O(WM)−β .

The result indicates that each ADC operates at a rate Ω that
is smaller than the Nyquist rate W by a factor of R/M . The
net sampling rate ∆ scales with the number R of independent
signals rather than with the total number M of signals in
the ensemble. The coherence terms suggest that the sampling
architecture is more effective for sampling signals with energy
dispersed across channels and time.
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III. COMPRESSIVE PARAMETER ESTIMATION

In many signal processing applications, the goal is to
estimate from the measurements, the parameters of multiple
signals generated at an antenna array by incident wavefronts.
The parameters of interest include, for example, the angle of
arrival of wavefronts impinging on antenna arrays in several
applications, such as radars, sonars, seismic exploration, and
surveillance. Other examples are the estimation of frequency
offsets in OFDMA-based wireless communications, and the
estimation of frequency in myriad of applications.

As an illustration, we will discuss the angle-of-arrival es-
timation. Many practical applications are concerned with the
detection of the location of R point sources radiating energy. A
reasonable assumption is that the energy arrives at the sensors
as a sum of plane waves and the signals are narrow-band
centered around frequency ωc. The rth signal can be written
in the complex from as

sr(t) = g(t)e−jωct,

where the narrow-band assumption implies that the envelop
g(t) is slowly varying, i.e., for small time delays τ , we have
g(t− τ) ≈ g(t). For this reason, the time delay only induces
a phase shift on sr(t). This is to say,

sr(t− τ) ≈ sr(t)e−jωcτ .

As a result, the signal xm(t) at the mth antenna element is

xm(t) =

R∑
r=1

am(θr)sr(t− τm(θr)),

where τm(θr) is the propagation delay at the mth antenna
with respect to a reference point, and am(θr) is the mth array
element response to the plane wave incident at an angle θr.
By arranging the signals xm(t), 1 ≤ m ≤ M as the rows
of Xc(t), we can write the signal ensemble received at the
antenna array as

Xc(t) = A(θ)Sc(t), (12)

where A(θ) is an M ×R matrix containing as its rth column,
the array steering vector

a(θr) = [a1(θr)e
−jωcτ1(θr), · · · , aM (θr)e

−jωcτM (θr)],

and Sc(t) can be thought of as a matrix containing R
independent analog signals sr(t), 1 ≤ r ≤ R as its rows.
The model in (12) is more general and is applicable to
a wide variety of problems involving estimation of other
parameters like frequency, or the estimation of location in an
azimuth/elevation/range system, where the location of sources
is specified by three angles θ, φ, and γ. In general, the number
R of point sources is much smaller than the number M of
antenna arrays; that is, the signal lives in a smaller subspace.
Multiple signal classification algorithm such as MUSIC [9]
estimate the signal subspace based on the estimate of the
signal covariance matrix, and then find the intersection of this
subspace with the array manifold, which is a set composed
of all steering vectors a(θr) for the entire range of the

parameter θr [10]. This procedure reveals the estimates of
the unknown parameter, which in this case is the direction of
arrival. The central role in this computation is the estimation
of the covariance matrix RXX , which requires sampling the
signal ensemble Xc(t) to obtain the corresponding matrix of
samples X given as

X = A(θ)S, (13)

where X : M×W , and S : R×W are the matrix of samples.
The transformation from (12) to (13) involves sampling analog
signals xm(t) using ADCs. With an ever increasing trend of
radars operating at high frequencies in the range of 35-40
GHz, the sampling burden on the ADCs keeps escalating.
The advances in the sampling rate of the ADCs are not up
to pace with the advances in signal processing. Therefore, it
is important to design the systems in a way that reduces the
sampling burden on the ADCs. Since Xc(t) is by construction
an ensemble consisting of multiple signals lying in a subspace
with R � M , the random demodulator presented can be
used to acquire the ensemble Xc(t) efficiently at a lower
sampling rate. The benefits are two-fold: first, the covariance
matrix RXX := limW→∞ 1/WXX∗ of input signal ensem-
ble Xc(t) can be estimated accurately from fewer samples;
second, in some cases the effective frequency range at which
radar can operate can increase as the ADCs are sampling at
sub-Nyquist rate.

In summary, the random demodulator can be employed to
efficiently acquire multiple signals lying in a subspace, which
may be useful in compressively estimating several parameters
of interest in various signal processing applications. The reduc-
tion in sampling rate is achieved by combining the acquisition
and compression step together by making use of the fact that
the signals live in a (a priori unknown) subspace.

REFERENCES

[1] A. Ahmed and J. Romberg, “Compressive sampling of correlated sig-
nals,” in IEEE Conf. Signals, Syst. and Comput., 2011, pp. 1188–1192.

[2] ——, “Compressive multiplexing of correlated signals,” arXiv
preprint arXiv:1308.5146, 2013.

[3] M. Fazel, “Matrix rank minimization with applications,” Ph.D. disserta-
tion, Stanford University, March 2002.

[4] E. Candès and B. Recht, “Exact matrix completion via convex optimiza-
tion,” Foundations of Comput. Mathematics, vol. 9, no. 6, pp. 717–772,
2009.

[5] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Beyond
Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans.
Inf. Theory, vol. 56, no. 1, pp. 520–544, 2010.

[6] M. Mishali and Y. Eldar, “Blind multiband signal reconstruction: Com-
pressed sensing for analog signals,” IEEE Trans. Signal Process., vol. 57,
no. 3, pp. 993–1009, 2009.

[7] J. Yoo, S. Becker, M. Loh, M. Monge, and E. Candès, “A 100mhz-2ghz
12.5x sub-Nyquist rate receiver in 90nm CMOS,” in Submitted to Proc.
IEEE Radio Freq. Integrated Cir. Conf., 2012.

[8] J. Yoo, C. Turnes, E. Nakamura, C. Le, S. Becker, E. Sovero, M. Wakin,
M. Grant, J. Romberg, A. Emami-Neyestanak, and E. Candès, “A
compressed sensing parameter extraction platform for radar pulse signal
acquisition,” Submitted to IEEE J. Emerging Topics Cir. and Sys.,
February 2012.

[9] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas and Propag., vol. 34, no. 3, pp. 276–280, 1986.

[10] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, 1989.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

195


