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Abstract—In this paper, we introduce a novel direction of ar-
rival (DOA) estimation algorithm for an array presenting multiple
scales of invariance, based on a CANDECOMP/PARAFAC (CP)
model of the data. The proposed approach is a generalization
of the results given in [1] to an array presenting an arbitrary
number of spatial invariances. We show, on a particular array
geometry, that our method could out-perform the ESPRIT-based
approach introduced in [2].

I. INTRODUCTION

DOA estimation is a central problem in sensor array
processing, with applications in various fields such as radar,
sonar or mobile wireless communications. During the last
decades numerous methods for DOA estimation have been
proposed, ranging from conventional beamforming to high-
resolution techniques such as MUSIC [3] or ESPRIT [4]. In
[1], Sidiropoulos et al. proposed for the first time a direction-
finding (DF) approach based on a CP model of the data,
and highlighted the link between CP and ESPRIT. Over
the next years, several other authors proposed CP-based DF
algorithms for scalar-sensor or vector-sensor arrays (e.g. [5]–
[8]). The approach proposed in this paper generalizes and
extends the philosophy introduced in [1] to arrays presenting
multiple scales of invariance. The main idea is to use array
configurations decomposable in N -way tensor products, as
detailed in the next section. A somewhat similar idea, but in
a different context, was also used in [9]. However, the authors
of [9] utilize various tensor decompositions of a 2D grid array
with two levels of spatial invariances, to illustrate their effect
on coherent source estimation performance while, in this paper,
we propose an DF algorithm for 3D sensor arrays with an
arbitrary number of scales of invariance.

The remainder of this paper is organized as follows: section
II presents the proposed multi-scale array configuration and
the corresponding data model is derived in section III. In
section IV we briefly analyze the identifiability of the proposed
data model and an algorithm for DOA parameter estimation is
introduced in section V. In section VI, the proposed method
is compared in simulations to the ESPRIT-based approach in
[2] and some conclusions are drawn in section VII.

II. A MULTI-SCALE ARRAY CONFIGURATION

Consider an array composed of L1 isotropic identical
sensors indexed by l1 = 1, . . . , L1. Consider then, L2 identical
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replicas of this array, spatially translated to arbitrary, possibly
known locations. The L2 different copies of the array, indexed
by l2 = 1, . . . , L2, can now be seen as subarrays of a
larger (higher-level) array. The proposed array structure can
be further developed by considering an additional hierarchical
level, composed of L3 translated replicas of the previous array,
indexed by l3 = 1, . . . , L3. Let us generalize this scheme
to a total of N such hierarchical levels, the “highest” level
consisting of LN subarrays indexed by lN = 1, . . . , LN . It
is worth noting that two different subarrays at a given level
n are not necessarily disjoint, i.e. they may have in common
subarrays/sensors of the previous level (n−1). However, if all
subarrays at all levels are disjoint, then the entire array contains
a total number of L = L1L2 . . . LN identical sensors. Fig. 1
illustrates a three-level array with co-planar sensors.
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Fig. 1. A multi-scale planar array with three hierarchical levels

Consider also a Cartesian coordinate system OXY Z at-
tached to the considered array. An impinging source is char-
acterized in this coordinate system by its direction cosines
u, v, w : ⎡

⎣
u

v

w

⎤
⎦ =

⎡
⎣
sin θ cosφ

sin θ sinφ

cos θ

⎤
⎦ , (1)

where θ ∈ [0, π] denotes the source elevation angle measured
from the positive Z-axis and φ ∈ [0, 2π[ symbolizes the
azimuth angle.

Let us consider a single level-1 subarray of L1 subarrays. In
the coordinate system OXY Z , the position of the l1th sensor
of this subarray is given by the vector (x(1)

l1
, y

(1)
l1

, z
(1)
l1

). Con-
sider next L2 such subarrays. The position of the l1th sensor
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of the l2th subarray is given by (x
(1)
l1

+x
(2)
l2

, y
(1)
l1

+y
(2)
l2

, z
(1)
l1

+

z
(2)
l2

), where (x(2)
l2

, y
(2)
l2

, z
(2)
l2

) indicates the spatial displacement
of the l2th subarray compared to the first subarray. It can be
easily shown by induction that for a N -level array the position
of one sensor is given by (x

(1)
l1

+ · · · + x
(N)
lN

, y
(1)
l1

+ · · · +
y
(N)
lN

, z
(1)
l1

+ · · · + z
(N)
lN

), where (x
(N)
lN

, y
(N)
lN

, z
(N)
lN

) indicates
the spatial displacement of the lN th subarray compared to the
first subarray of the level N (indexed by lN = 1), etc.

III. DATA MODEL

Let us symbolize by al1,l2,...,lN the spatial phase factor
of an impinging source at sensor indexed by l1, l2, . . . , lN .
Further define k = [u v w]T and d

(n)
ln

= [x
(n)
ln

y
(n)
ln

z
(n)
ln

]T .
With the notations introduced above :

al1,l2,...,lN (k) = exp
{
j
2π

λ

N∑
n=1

kTd
(n)
ln

}

=

N∏
n=1

exp
{
j
2π

λ
kTd

(n)
ln

}
.

(2)

Thus, the array manifold for the entire sensor array is

a(k) = a1(k) ⊗ · · · ⊗ aN (k), (3)

with

an(k) =

⎡
⎢⎢⎢⎣

ej(2π/λ)k
Td

(n)
1

...

ej(2π/λ)k
Td

(n)

Ln

⎤
⎥⎥⎥⎦ (4)

an Ln × 1 vector, n = 1, . . . , N and “ ⊗ ” the Kronecker
product of two matrices.

Consider next, P narrow-band sources with the same
center-frequency. The sources are plane-waves, having trav-
eled through a nonconductive homogeneous isotropic medium,
impinging upon the array from directions kp = [up vp wp]

T ,
with p = 1, . . . , P . Denote by sp(t) the time signal emitted
by the pth narrow-band source1.

Then, the output at time t of the entire sensor array can be
expressed as an L× 1 vector

z(t) =

P∑
p=1

(a1(kp)⊗ · · · ⊗ aN (kp))sp(t) + n(t), (5)

where n(t) is a complex-valued zero-mean additive white
noise term. Let us assume that we have K temporal obser-
vations at time instants t1, t2, . . . , tK . Define the following
matrices :

A1 = [a1(k1), . . . , a1(kp)] (6)
...

AN = [aN (k1), . . . , aN (kp)] (7)

1The incident signals are narrow-band in that their bandwidths are very
small compared with the inverse of the wavefronts’ transit time across the
array.

and

S =

⎡
⎢⎢⎢⎢⎣

s1(t1) s2(t1) . . . sp(t1)

s1(t2) s2(t2) . . . sp(t2)

...
...

. . .
...

s1(tK) s2(tK) . . . sp(tK)

⎤
⎥⎥⎥⎥⎦
. (8)

The collection of K snapshots of the array can then be
organized into an L×K data matrix as

Z = [z(t1), . . . , z(tK)] = (A1 � · · · �AN )ST +N, (9)

where “�” denotes the Khatri-Rao (Kronecker column-wise)
product of two matrices and N (L×K) is a complex-valued
matrix modeling the sensor noise on the entire array for K
snapshots. Equation (9) expresses a N + 1 dimensional CP
structure of the collected data. In the case where only one
snapshot is available, i.e. matrix S is a 1× P vector, the data
model given by (9) becomes

z = (A1 � · · · �AN )s+ n, (10)

with z = z(t1), s = s(t1) = (S(1, :))
T and n = N(:, 1). In the

definitions above, we used the Matlab notations for columns
and rows selection operators. Equation (10) is a vectorized
representation of a N dimensional CP data model. It is worth
noting that if only one snapshot of the array is available, the
N + 1 CP model degenerates into a N dimensional model.

IV. MODEL IDENTIFIABILITY

The main advantage of the CP model compared to other
source separation approaches is its identifiability under mild
conditions. In [10], Kruskal derived a sufficient condition for
the identifiability the 3-way CP model. This condition is based
on a special notion of matrix rank, called the Kruskal-rank or
k-rank2 and has been generalized later to N -way arrays by
Sidiropoulos and Bro [11]. If applied to the data model given
by eq. (9), this condition states that the matrices A1, . . . ,AN

and S can be uniquely estimated from Z (up to some trivial
indeterminacies) if

N∑
n=1

kAn + kS ≥ 2P +N, (11)

where k(.) denotes the Kruskal-rank of a matrix. In the case
where the P sources have distinct DOAs and are not fully
correlated, the identifiability condition can be reformulated as

N∑
n=1

min(Ln, P ) + min(K,P ) ≥ 2P +N. (12)

In general K > P , which transforms (12) into∑N
n=1 min(Ln, P ) ≥ P + N . Furthermore, if Ln > P, n =

1, . . . , N, (this could be the case especially for small val-
ues of N ), than model identifiability is always achieved for
P,N ≥ 2. The brief analysis presented in this section shows
that identifiability of the CP model is easily achieved in
practical applications. Specific identifiability conditions for the
case of fully coherent sources and/or collocated sources can
also be derived based, e.g. on the partial identifiability results
presented in [12]. A more complete identifiability analysis of
the presented model will be provided in a future work.

2The Kruskal-rank of a matrix is the maximum number of independent
columns that can selected from that matrix in an arbitrary manner.
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V. PARAMETER ESTIMATION

The parameter estimation procedure proposed in the paper
can be split into two stages. The first stage consists of the
estimation of the N steering vectors an(kp) (n = 1, . . . , N)
for each of the P sources (p = 1, . . . , P ). For that, we exploit
the CP structure (9) of the collected data. In the general case
of a N + 1 order model, an ALS (Alternating Least Squares)
procedure can be used to simultaneously estimate the N levels
of steering vectors and the temporal sequence of the P sources.
In the case of third-order tensors more efficient algorithms than
the basic ALS can be used to fit the CP model (see [13]).

The second stage consists of the estimation of the source
direction cosines kp, p = 1, . . . , P from the steering vectors
obtained at the previous stage. Define the following cost
functions :

Jn(kp) = ‖â(p)n − an(kp)‖2, (13)

with n = 1, . . . , N , and â
(p)
n being the nth level estimated

steering vector for the pth source. Estimating the DOA pa-
rameters for the pth source comes down to minimizing the
following criterion:

IN (kp) =
N∑

n=1

Jn(kp). (14)

This function is non-convex and and highly non-linear; there-
fore a direct local optimization procedure would fail sys-
tematically. In this paper, we propose a sequential strategy
for minimizing IN (kp) based on an iterative refinement of
the direction cosines estimates. The method is based on the
fact that, in the noise-free case, the N cost-functions in (13)
have the same global minimum. We make the assumption that
the spatial displacements between sensors inside the level-1
subarrays is such that the maximum distance between adjacent
sensors is ≤ λ/2 inside any level-1 subarray, where lambda
represents the source wavelength. This assumption is essential
to obtaining a set of high-variance but unambiguous direction
cosine estimates. On the contrary, the spatial displacement be-
tween any two subarrays at the highest level could be � λ/2.
This will produce lower variance but cyclically ambiguous
estimates of the direction cosines. Under the first assumption,
the J1(kp) function is unimodal inside the definition domain
of the DOA parameters. Therefore, any local optimization
procedure should converge towards the global minimum of
the criterion. Thus, we obtain a set of high-variance, but
unambiguous estimates of the DOA parameters, denoted by
k∗
p,1 with p = 1, . . . , P . These values will then be used, in a

second step, as initial point for the minimization of

I2(kp) = J1(kp) + J2(kp). (15)

As no assumption is made on the distances between the second
level subarrays, I2(kp) may present more than one local
minima. This is why it is crucial to have a good initial point
for the optimization procedure. The estimates obtained by the
minimization of I2(kp), denoted by k∗

p,2 are then used for the
minimization of I3(kp) =

∑3
n=1 Jn(kp), and so on until the

final estimates are obtained by the minimization of IN (kp). It
is worth noting that as n increases, the number of local minima
of the cost function In also increases, and with that, the need
for a more and more accurate initial point. This justifies the
proposed sequential approach.

The main steps of the algorithm can be summarized as
follows:

1) Estimate A1, . . . ,AN by CP decomposition of the
data (see eq. (9) or (10)). The N-Way toolbox in [13]
could be used to this end.

2) For p = 1, . . . , P and
for n = 1, . . . , N compute

k∗
p,n = arg min

kp

In(kp).

The minimization of In can be obtained by
any local optimization procedure (e.g. the
Nelder-Mead simplex algorithm), using as
initial values the estimates of the previous
step k∗

p,n−1. Random values, within the pa-
rameters definition domain can be used as
initialization for the minimization of I1 = J1.

3) Output: the estimated parameters for the P sources:
k̂p = (ûp, v̂p, ŵp) = k∗

p,N
with p = 1, . . . , P .

VI. SIMULATIONS

In this section, we compare our approach with the one
proposed in [2]. A 2-level multi-scale array configuration is
considered for simulations. The array consists of a 2×2 square
grid at extended spacing and a 5-element half-wavelength
spaced cross-shaped subarray at each grid point (i.e. L1 = 5
and L2 = 4). In [2], the source’ DOAs are estimated using
an ESPRIT-based technique. Two types of estimates (coarse
but unambiguous, versus fine but cyclically ambiguous) are
computed independently for each of the x and y axes of the
considered spatial grid, using four matrix pencils altogether.
The coarse but unambiguous estimates are then used to dis-
ambiguate the fine but cyclically ambiguous DOA estimates.
This procedure is followed by a pairing step of the x-axis and
y-axis direction cosines of the sources.

The presently considered scenario involves two equal-
power narrowband uncorrelated source signals (P = 2)
impinging respectively from (θ1 = 61.21◦, φ1 = 73.43◦)
and (θ2 = 56.90◦, φ2 = 23.20◦). A number of K = 5
snapshots are simulated in Figure 2(a) and a signal-to-noise
ratio of 20 dB is used in Figure 2(b). For each data point,
a number of I = 500 independent experiments are per-
formed. The additive white noise is complex-value Gaussian
distributed. Figures 2(a)-2(b) plot the “composite root-mean-
square-error” (CRMSE) of the sources’ Cartesian direction-
cosine estimates, and their Cramér-Rao Bounds (CRB) ver-
sus SNR and versus the number of snapshots, respectively.
This “composite root-mean-square-error” (CRMSE) is defined

as 1
I

∑I
i=1

√
δ2u,p,i+δ2v,p,i

2 , where δu,p,i(δv,p,i) symbolizes the
error in estimating the pth source’s x-axis (y-axis) direction-
cosine during the ith Monte Carlo experiment.

The simulation results show that, for the simulated para-
meters, our method yields better results than ESPRIT (Fig.
2(a)) for SNR values between 15 dB and 30 dB. This behavior
can be explained by the fact that the numbers of parameters
estimated by CP equals (L1+L2+K)P while the number of
parameters for ESPRIT is L1L2P . For K = 5 snapshots, the
number of parameters estimated by CP is inferior to ESPRIT,
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which explains the better performance of our approach. As
expected, when the noise level is too high or too low, the per-
formances of the two methods are similar. The conclusions of
the brief performance analysis presented above are reinforced
by Fig. 2(b), where one can observe that CP systematically
outperforms ESPRIT for a number of snapshots smaller than
K = 12. Moreover, the CP method is applied directly on
the“raw” data, while ESPRIT requires the estimation of the
data covariance matrix for the eigenvalue decomposition. This
makes ESPRIT sensitive to the estimation errors of the second
order statistics of the data. For the given configuration, both
methods can estimate at most 7 sources (see [2] for ESPRIT
and section IV for CP). Nevertheless, when the number of
sensor increases, ESPRIT can handle more sources than CP,
which is the main drawback of our method compared to the
one in [2]. The computational burden of CP is also, in general,
more important for our method than for ESPRIT. However,
powerful algorithms [14], [15] have been developed in the last
years that significantly improves the convergence speed of CP
decomposition. Moreover, closed-form solutions exist for CP
decompositions of Vandermonde structured data [16] (which is
often the case in array processing) presenting a computational
complexity equivalent to ESPRIT.
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Fig. 2. The composite mean-square-error of the Cartesian direction-cosines
estimates.

VII. CONCLUSIONS

We introduced in this paper a generalized configuration
for a sensor array with multiple scale invariances and derived
the corresponding data model. A CP-based algorithm for
DOAs estimation with such an array was also proposed, along
with a model identifiability analysis. We showed in numerical
simulations that, for the particular array geometry given in [2],
the proposed method out-performs ESPRIT. The performance
of the proposed algorithm will be further evaluated, for various
scenarios, in a forthcoming work.
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