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Abstract—This paper addresses the problem of minimal
placement of actuators in large-scale linear time invariant (LTI)
systems, such as large-scale power systems, for dynamic controller
design. A novel sufficient and necessary condition to ensure
a strong structurally controllable (SSC) system is proposed.
Specifically, the paper addresses the problem of obtaining the
minimal number of dedicated inputs, i.e., inputs which actuate
only a single state variable, and the respective state variables
they should be assigned to, such that the LTI system is SSC.
In addition, an efficient and scalable algorithm, with polynomial
implementation complexity, to achieve such minimal placement
of dedicated inputs is proposed. An illustration of the proposed
design methodology is provided on the IEEE 5-bus test system,
thereby identifying the minimal number of physical state vari-
ables to be actuated for ensuring strong structural controllability.

I. INTRODUCTION

The last decade has witnessed the introduction of novel
generation technologies in large-scale power systems. Of par-
ticular interests are the unconventional renewable generation
resources, such as wind and solar farms, given their high
volatility and low degree of controllability. To compensate for
their low (or lack of) controllability, a fundamental challenge
for the power industry is to determine the optimal placement,
size and type of controllers. For example, large-scale batteries,
cluster of electric vehicles, an array of flywheels, pumped
hydro storage. Primarily deployed in large-scale power systems
for frequency regulation, these storage devices require high ini-
tial investment. The objective is to ensure high efficacy of the
controllers for frequency regulation. A formal mathematical
framework is therefore required for their selection as well as
placement. The classical approach towards modeling a large-
scale power system involves a set of differential and alge-
braic equations [1], where the loads are modeled as constant
impedances. However, to achieve real-time dynamic control, an
improved modeling approach is essential to preserve the struc-
tural properties of the system. For example in [2], a structure
preserving modeling approach is proposed where the aggregate
loads are modeled as dynamic components. Nevertheless, the
fundamental question regarding actuator placement in a large-
scale power system remains unresolved, i.e., where the storage
devices be placed to ensure system controllability. In general,
finding such minimal placement to ensure controllability or
to achieve pre-specified control performance is an NP-hard
problem, see [3]. Alternative approaches that lead to efficient
and scalable algorithms, i.e., with polynomial time complex-
ity, have been proposed in [4]. The proposed approaches
are based on structural systems reformulation (see [5]) and
provide optimal placement of actuators to ensure structural
controllability of the system. It involves analyzing only the
sparsity (zero/non-zero pattern) of the dynamical interaction
placement configurations and controllability is ensured in a
structural sense. Specifically, such structural system theory
based methods ensure structural controllability, i.e., provide
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actuator placement configurations that ensures system control-
lability for almost all numerical realizations of the system
parameters. This approach is especially suitable for power
systems where the exact values of the system parameters are
not available in general due to, either, numerical inaccuracy
resulting from the linearization or the unknown numerical
parameters of the system components. However, the claim
that controllability is ensured for almost all realizations of the
system parameters, does not rule out the possibility of those
realizations for which the system is uncontrollable. Moreover,
such uncontrollable realizations are likely to occur while
modeling large-scale power systems. It is due to the similar
modeling of the system components, such as generators and
loads, as well as the coupling induced by energy conservation
laws (the algebraic network constraints). Consequently a set
of numerically similar parameters may be observed, thereby
resulting in an uncontrollable realization, even though the
system may be structurally controllable. This motivates the
requirement for stronger notions of controllability, namely
that of strong structural controllability [6] (see also [7] for
survey), which seeks conditions under which all numerical
realizations of the system are controllable, see also [8] for
an application. Specifically, given the structural pattern of the
dynamical system, in this paper, we are interested in obtaining
minimal dedicated controller placement configurations that en-
sure such strong structural controllability. Note that the design
of the dedicated controllers (storage devices) supplements the
conventional governor control of the generators.

In this paper, we focus on a more fundamental problem:
given a dynamic system’s structure, find the minimal subset
of state variables that require dedicated inputs (i.e., inputs
that are assigned only to a single state variable) to ensure a
strong structurally controllable system. Formally, we consider
the following problem.

Problem Statement

Let a linear time-invariant system be modeled as

ẋ = Ax, (1)

where x ∈ Rn denotes the system state and A the system
matrix governing the autonomous dynamics. Let Ā denote the
structural matrix encoding the sparsity pattern of A, i.e., the
entries of Ā are either X’s or 0’s according to whether the cor-
responding entries of A are non-zeroes or zeroes. The objective
is to design the input structural matrix B̄ ∈ {0,×}n×p with
the minimal number of columns p and where each column of
B̄ has exactly one non-zero entry ×, such that the pair (Ā, B̄)
is strong structurally controllable12. �

1Note that by restricting B̄ to contain exactly one non-zero entry per
column, we are considering the dedicated input design problem, i.e., in which
each control input may only control a single state variable. Further, the design
objective is to obtain the B̄ with the minimal number of columns p, i.e., in
other words, we are interested in the minimal placement of dedicated inputs
such that the pair (Ā, B̄) is SSC.

2We say that the structural pair (Ā, B̄), where Ā ∈ {0,×}n×n and
B̄ ∈ {0,×}n×p, is strong structurally controllable, if and only if the linear
dynamical system ẋ = Ax + Bu

is controllable for all numerical realizations (A,B) with the same structural
pattern as (Ā, B̄).

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

978-1-4673-3146-3/13/$31.00 ©2013IEEE 416



Most recently, in [9], the problem of the minimum number
of inputs selection (non necessarily dedicated) that ensure
strong structural controllability has been shown to be NP-
complete if an initial set of possible inputs is provided. This
is so, because the problem reduces to the analysis of a
constrained maximum matching, that incurs in the existence
of an order3 between the edges in some maximum matching.

The main contribution of this paper is twofold: first, we
derive a simplified necessary and sufficient condition for
strong structural controllability. Second, based on this new
characterization we propose an efficient algorithm (with cubic
complexity in the number of state variables). The rest of this
paper is organized as follows. In Section II we introduce
standard terminology in structural systems theory, followed
by the main results in Section III. Finally, we provide an
illustration on th IEEE 5-bus test system, where we identify
the minimal placement of dedicated inputs to achieve strong
structural controllability and discuss the physical implications
of such design.

II. PRELIMINARIES AND TERMINOLOGY

In this section we introduce some terminology and recall
some basic results from linear algebra. Given a matrix M
of dimension m1 × m2, we refer to m1 and m2 as the
height and length of the matrix, respectively. A permutation
matrix is a square matrix that is obtained by permuting some
rows/columns of the identity matrix. Recall that for a given
matrix, multiplication on the left by a permutation matrix
permutes its rows, whereas the multiplication on the right, per-
mutes the columns. Also, recall that the rank and determinant
of a matrix are invariant to row-column permutations; these
properties will be used throughout the paper, often without
explicit mention. A lower (upper) triangular matrix is a matrix
that has only zeros above (below) the diagonal, whereas, a
lower (upper) block-triangular matrix is one that has only
zeros above (bellow) the block-diagonal. We now introduce
the notion of stair matrix as follows, see [11].

Definition 1 (Stair matrix): Let M be a m1 ×m2 matrix
with entries that are either 0 (zero), × (non-zero) or ⊗ (an
arbitrary value, including zero). The matrix M is said to be a
stair matrix if it is of the form

where 0 denotes the zero matrix of appropriate dimensions
and each ni1 × ni2 matrix Si

ni1×ni2
denotes the i-th step (i =

1, · · · , k) such that ni2 < ni+1
2 for i = 1, · · · , k−1. In addition,

when designating the submatrices Si
ni1×ni2

of a stair matrix M ,
we assume that M is in the maximal stair form, i.e., there
exist no permutation matrices PM1 , PM2 such that PM1 MPM2
has more steps or zero matrices with larger length in any given
step than M . �

Remark, that the steps in a stair matrix M are ordered by
length, from the smallest S1

n1
1×n1

2
to the largest Sk

nk1×nk2
. Now,

given a stair matrix we introduce the notion of step difference.

Definition 2 (Step difference): Let M be a stair matrix
with k steps. A step difference, denoted by ∆i

i+1, between

3The need to select an order is a well know cause of NP-completeness, see
for instance [10].

two adjacent steps Sini×ni , S
i+1
ni+1×ni+1

, for i = 1, · · · , k − 1,
is the submatrix of Si+1

ni+1×ni+1
comprising the same rows of

Si+1
ni+1×ni+1

and only the columns from ni2 + 1 to ni+1
2 , i.e.,

and by definition ∆0
1 = S1

n1×n1
. �

Additionally, consider the following characterization of
step differences.

Definition 3 (Pivot in a step difference): Given a stair ma-
trix, a pivot is a non-zero entry in the left-top most entry of
a step difference. A step difference ∆i

i+1 of a stair matrix M
has a pivot if there exist two permutation matrices P∆

1 , P
∆
2

such that ∆P = P∆
1 ∆i

i+1P
∆
2 has × as its left-top most entry,

i.e., the entry in the first column and row of ∆P is non-zero.
�

Moreover, since there exists at most one pivot in each step
difference, we can order (and name) the pivots by the induced
order of the steps. Specifically, we say that two pivots k1,
k2 are consecutive if there exists no other pivot k′ such that
k1 < k′ < k2.

Definition 3 motivates the normalization of step differences
as presented next.

Definition 4 (Normalized forms): We say that a step dif-
ference is in its normal form if it has a non-zero in its left-top
most entry. Moreover, we say that a stair matrix is in its normal
form if all step differences with pivots are in their normalized
form. �

Finally, we introduce the notion of a ramp matrix.

Definition 5: A ramp matrix M ∈ {0,×,⊗}m1×m2 is a
stair matrix with m1 steps where each step difference has a
pivot. �

Remark 1: First note that, by definition, each step of a
ramp matrix M is a row vector. Definition 5 also implies that,
for a ramp matrix M , there exists a lower-triangular sub-matrix
with non-zero entries in its diagonal, given by the columns of
M that have the pivots of the normalized step differences.

III. MAIN RESULTS

In this section we state the main results of this paper.
First, we introduce a (new) simplified necessary and sufficient
condition for strong structural controllability, that, in particular,
relies on the satisfability of a single criterion, instead of two
as in [7], [9]. Second, we present an algorithm to obtain
an input matrix that corresponds to the minimum dedicated
input assignment ensuring strong structural controllability. In
addition, from the existence of possible pivots to the step
differences, follows that several solutions to our problem are
possible (see Section IV for further discussion).

Theorem 1 (SSC Theorem): The structural pair (Ā, B̄) is
strong structurally controllable if and only if for each λ ∈ C
the matrix [Āλ B] with Āλ = Ā − λI and I denoting the
identity matrix of appropriate dimensions, can be transformed
into a ramp matrix. �

Theorem 1 motivates our design approach, Algorithm 1,
where given the system structure Ā, the design of the optimal
input structural matrix B̄ is essentially achieved, by introduc-
ing the minimum number of columns (in B̄) with only a single
non-zero entry such that [Āλ B̄], for all λ ∈ C, is transformable
to a ramp matrix. The correctness and complexity of Algorithm
1 is analyzed as follows:
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ALGORITHM 1: Compute a minimal placement of ded-
icated inputs that achieve strong structural controllability

Input: Dynamic matrix structure Ā
Output: Input matrix B̄ representing the minimal placement

of dedicated inputs that achieve strong structural
controllability

1) Find permutation matrices P1 and P2 such that
M = P1Ā

λP2 (for all λ ∈ C) is a stair matrix with k steps,
in its normalized form. In addition, let p1, · · · , pk′ correspond
to the k′ pivots of the step differences, and the row and
column entry of the α-th pivot in M , be denoted by prα and
pcα, respectively.

2) Let
B̄P1 = IJn×n,

where J = {1, · · · , n}\
⋃k′

α=1 p
r
α corresponds to the set of

indices of rows without pivot for the step differences, In×n is
the diagonal matrix with non-zeros entries and IJn×n is the
matrix resulting from only keeping the columns of In×n with
nonzero entry in the rows indexed by J .

3) Set B̄ = P−1
1 B̄P1 .

Theorem 2 (Correctness of Algorithm 1): Algorithm 1 is
correct, i.e., the output of Algorithm 1 is a structural input
matrix B̄ corresponding to the minimum number of dedicated
inputs such that the pair (Ā, B̄) is SSC. �

Theorem 3 (Complexity of Algorithm 1): Algorithm 1 has
computational complexity O(n3), where n denotes the dimen-
sion of the state-space, i.e., the number of state variables. �

IV. ILLUSTRATION: A 5-BUS POWER SYSTEM

The power system in Fig. 1 consists of five dynamical com-
ponents interconnected through transmission lines. These are
two coal-based generators C1, C2, one gas based combustion
turbine G3 and the aggregate loads D4, D5.

Fig. 1. IEEE 5-bus test system (1,2,3,4,5 represents the bus number)

The generators C1, C2 and G3 are modeled as linearized
governor control, see Appendix-A of [12] for details. The
aggregate loads D4,D5, modeled as dynamic components, are
represented by swing equations [2], [13]. Subsequently, the
generators and the loads are electrically coupled through the
differentiated linearized real-power flow equations4. The 5-bus
power system is represented as a 16th order LTI system (1),
where, for each λ ∈ C, the structural matrix Āλ5bus is of the

4The coupling constraints are the linearized power flow equations. For the
purpose of real-power balancing, decoupling between real and reactive power
flow is assumed, see [1].

form:

Āλ5bus =



⊗ × × 0 0 0 0 0 0 0 0 × 0 0 0 0
0 ⊗ × 0 0 0 0 0 0 0 0 0 0 0 0 0
× 0 ⊗ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ⊗ × × 0 0 0 0 0 0 × 0 0 0
0 0 0 0 ⊗ × 0 0 0 0 0 0 0 0 0 0
0 0 0 × 0 ⊗ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ⊗ × 0 0 0 0 0 × 0 0
0 0 0 0 0 0 0 ⊗ × 0 0 0 0 0 0 0
0 0 0 0 0 0 × 0 ⊗ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ⊗ 0 0 0 0 × 0
0 0 0 0 0 0 0 0 0 0 ⊗ 0 0 0 0 ×
× 0 0 × 0 0 0 0 0 × 0 ⊗ 0 0 0 0
× 0 0 × 0 0 × 0 0 × 0 0 ⊗ 0 0 0
0 0 0 × 0 0 × 0 0 0 × 0 0 ⊗ 0 0
× 0 0 × 0 0 0 0 0 × × 0 0 0 ⊗ 0
0 0 0 0 0 0 × 0 0 × × 0 0 0 0 ⊗


The state variables are described in Table I.

TABLE I. 5-BUS POWER SYSTEM’S STATE VARIABLES

States Description
x1 C1’s prime mover frequency
x2 C1’s turbine mechanical power output
x3 C1’s governor valve position
x4 C2’s prime mover frequency
x5 C2’s turbine mechanical power output
x6 C2’s governor valve position
x7 G3’s turbine fuel flow
x8 G3’s prime mover frequency
x9 G3’s governor valve position
x10 frequency at bus-4
x11 frequency at bus-5
x12 power injection by C1
x13 power injection by C2
x14 power injection by G3
x15 power consumption by D4
x16 power consumption by D5

Next, Algorithm 1 is implemented to obtain the minimal
dedicated actuation configuration that ensures strong structural
controllability for the 5-bus power system. The normalized
stair matrix M5bus (see Algorithm 1 for notation) is given as:

!
!

! ! !
!

!
! ! !

!
!

! ! !
! ! ! !

! !
!

! ! !
! ! ! !

!
! ! !

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

with permutation matrices
P1=[ e2 e3 e1 e5 e6 e4 e8 e9 e12 e13 e7 e10 e14 e15 e11 e16 ],
P2=[ e3 e2 e1 e12 e6 e5 e4 e13 e9 e8 e7 e10 e14 e15 e11 e16 ],

written in terms of vectors ei ∈ {0,×,⊗}15 with non-zero ith
entry and zero elsewhere.

The rectangles and squares in M5bus denote the step
differences. Each has a pivot corresponding to a non-zero
entry in the top-left most entry. For the blue rectangles, only
one normalized step difference is possible. It must be noted
that there exist no pivot in lines 10, 14, 16. This implies that
we need to keep the corresponding columns in P1 to obtain
B̄ = [e13 e15 e16].

We now demonstrate that the minimal solution is not
unique and specifically, alternative minimal placements may
be obtained by considering different permutation matrices that
transform Āλ5bus to ramp forms. As an example, consider the
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squared step difference highlighted with red in M5bus. A new
normalized stair matrix is obtained with the permutation of
rows corresponding to red-marked rectangles. This results in an
alternative input matrix that ensures SSC for the 5-bus power
system. In more detail, considering

P ′1=[ e2 e3 e1 e5 e6 e4 e8 e9 e12 e13 e7 e10 e14 e15 e11 e16 ],

where the bold face canonical vectors highlight P ′1’s dissim-
ilarity to P1, an alternative input matrix that ensures strong
structural controllability is given by B̄′ = [e13 e14 e16] associ-
ated with the permutation pair (P ′1, P2). In the same fashion we
could also obtain B̄′′ = [e12 e15 e16] and B̄′′′ = [e12 e14 e16]
as other candidates for the minimal placement design.

Discussion of results: As per the four alternative in-
put matrices achieving the minimal design, the state vari-
ables to be actuated are subsets of the nodal power injec-
tions/consumptions. The states x16 always require a dedicated
input, i.e., the power consumption by the aggregate load D5.
The second actuator can be placed at bus-4 (x15), or, at bus-3
(x14). The third actuator can be placed at bus-4 (x15), or, at
bus-3 (x14). All possible input matrices are physically feasible.
However, based on performance objective, for example cost of
actuators, some of the input matrices to achieve the condition
of strong structural controllability for the 5-bus power system
may be more suitable.

V. CONCLUSIONS

In this paper we have provided a systematic method with
polynomial implementation complexity, in terms of number of
state variables, to obtain the minimal placement of dedicated
inputs ensuring strong structural controllability of a given LTI
system. We have shown that our method yields the globally
optimal dedicated input placement. By duality, the results
extend to the corresponding strong structural observability
output design under similar constraints. Additionally, we have
illustrated our design approach by providing the optimal place-
ment of actuators in an IEEE 5-bus test system.

APPENDIX

Proof of Theorem 1: [⇐] Let (A,B) be a pair (with complex
entries) such that (A,B) is a numerical realization of (Ā, B̄).
Consider for each λ ∈ C, the matrix [Aλ B] which, by hypothesis,
can be transformed into a ramp matrix. By Remark 1, it then follows
that the resulting ramp matrix contains a lower triangular submatrix
with non-zero diagonal entries, and, hence,

rank[Aλ, B] = n, ∀λ ∈ C.

Thus, by the Popov-Belevitch-Hautus (PBH) test for controllability
[14] it follows that (A,B) is controllable; since, the above holds for
all numerical realizations of (Ā, B̄) we conclude that (Ā, B̄) is SSC.

[⇒] On the contrary, suppose that the matrix [Āλ B̄] cannot be
transformed into a ramp matrix for all choices of λ ∈ C. Hence,
any matrix composed of n columns of [Āλ B̄], can be rearranged
as a stair matrix where there is at least one step difference, with
size at least 2 × 2. Such a stair matrix is clearly block lower
triangular. Now considering the diagonal block which contains the
step difference of size at least 2 × 2, it follows that there exists
a numerical parametrization (realization) of the entries that makes
the determinant of that block equal to zero. In other words, there
exists a numerical realization (A,B) and λ ∈ C such that any matrix
composed of n columns of [Aλ B] is rank deficient, which implies
that rank([Aλ B]) < n. Thus, by the PBH test for controllability
[14] it follows that the realization (A,B) is not controllable. This
contradicts with the hypothesis that (Ā, B̄) is SSC and the assertion
follows. �

Proof of Theorem 2: Let Cpcα denote the column in M
containing the α-th pivot. First, remark that B̄ is a feasible solution,
since the matrix [Ā − λI B̄] can be transformed in a ramp matrix,
where the matrix

[Cpc1 I
J (pc1,p

c
2) Cpc2 · · · Cpck′−1

IJ (pc
k′−1

,pc
k′ ) Cpc

k′
]

where J (pci , p
c
i+1) = {j ∈ N : pci < j < pci+1}}, is a lower-

triangular matrix. Second, the minimality is obtained by noticing that
a step matrix leads to the maximum number of steps, and the subset
of columns associated with the pivots corresponds to the maximum
number of linear independent columns with respect to all possible
parameterizations (which follows by similar reasoning used in the
proof of Theorem 1). Finally, remark that there are as many columns
in B̄ as necessary to complete the rank n, in addition, these columns
are linearly independent since they correspond to a single non-zero
entry ( in different positions) columns. �

Proof of Theorem 3: Step 1 can be implemented in O(n3),
see for instance [15] for a discussion on obtaining two permutation
matrices, such that: first, the maximum number of zeros are shifted
to the top-right to ensure a lower-block triangular matrix structure,
and second to move the maximum number of zeros in each diagonal
block to the top-right, which leads to a stair matrix. Step 2 can be
implemented with linear complexity, as well as Step 3, since P−1

1 =
PT1 . �
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