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Abstract—We consider opportunistic routing in wireless ad-
hoc networks under an unknown probabilistic local broadcast
model. The objective is to design online learning algorithms that
govern the sequential selection of relaying nodes based on the
realizations of the probabilistic wireless links. The performance
measure of interest is regret, defined as the expected additional
cost accumulated over time when compared with the optimal
centralized opportunistic routing policy under a known model of
the wireless links. We propose both centralized and distributed
online learning algorithms that achieve the optimal logarithmic
regret order.

Index Terms—Opportunistic routing, multi-armed bandit, re-
gret, distributed algorithms, cognitive radio.

I. INTRODUCTION

Classic routing protocols aim to find a fixed path (under
a specific link metric). It fails to take advantages of the
broadcast nature and the opportunities provided by the wireless
medium, thus resulting in unnecessary packet retransmissions.
The opportunistic routing decisions, in contrast, are made
in an online manner by choosing the next relay based on
the actual transmission outcomes. This mitigates the impact
of poor wireless links by exploiting the broadcast nature of
wireless transmissions and the path diversity.

The authors in [1] provided a Markov decision theoretic
formulation for opportunistic routing. In particular, it is shown
that the optimal routing decision at any epoch is to select
the next relay node based on an index, i.e. a distance-vector
summarizing the expected-cost-to-forward from the neighbors
to the destination. This “index” is shown to be computable
in a distributed manner and with low complexity using the
probabilistic description of wireless links. This index induces
a rank ordering of all the nodes in the network, and at each
time, the optimal action is to let the node with the highest
rank among all nodes that have received the packet to relay.
The study in [1] provided a unifying framework for existing
opportunistic routing schemes such as [2], Geographic Routing
and Forwarding (GeRaF) [3] and EXOR [4].

The opportunistic algorithms proposed in [1]–[4] depend
on a precise probabilistic model of the wireless links in the
network. In practice, however, it is not realistic to assume that
the full knowledge of the wireless medium is available a priori.
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Authors in [5] considered this problem under the unknown
probabilistic model and proposed an adaptive opportunistic
routing (AdaptOR) scheme which is shown to minimize the ex-
pected long-run average routing cost per packet. In particular,
over a horizon sufficiently long, AdaptOR is shown to achieve
the same per packet expected average routing cost of the
opportunistic routing algorithms proposed in [1], despite zero
or erroneous knowledge about the underlying probabilistic
model and/or local topology of the network.

The metric of long-run average cost per packet, however,
does not reveal the convergence rate of the performance
under an unknown model to that of a known model. A finer
performance measure is the so-called regret, defined as the
total expected additional cost accumulated over a horizon of
T packets when compared to the optimal routing algorithm
under a known model as given in [1]. All learning algorithms
with a regret growing at a sublinear order with T achieve the
same optimal long-run average performance. The difference in
their total expected routing cost, however, can be arbitrarily
large as the horizon length T increases. Regret thus not only
indicates whether the optimal average performance under a
known model is achieved, but also measures the convergence
rate of the average performance of the learning algorithm, or
the effectiveness of learning. The minimization of the regret
growth rate is of great interest, and is the focus of this paper.

A centralized version of the above problem can be directly
cast as a classic multi-armed bandit (MAB) problem. In the
classic MAB [6], there are N independent arms. At each time,
a player needs to decide which arm to play. An arm, when
played, incurs i.i.d. random cost drawn from an unknown
distribution. The performance of a sequential arm selection
policy is measured by regret, defined as the total additional
cost over a time horizon of length T when compared to an
omniscient player who knows the cost model and always plays
the best arm. It has been shown by Lai and Robbins that
the minimum regret growth rate is logarithmic with time [6].
Since arms are assumed independent under the classic model,
observations from one arm do not provide information about
other arms. The optimal regret thus grows linearly with the
number of arms.

It is not difficult to see that the optimal opportunistic routing
policy developed in [1] can be considered as a classic multi-
armed bandit (MAB) problem by treating each rank ordering
of the nodes as an arm. Consequently, any MAB policy can
be applied to achieve centralized learning of the optimal node
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ordering with the optimal logarithmic regret growth rate. Such
an approach, however, leads to poor regret order with respect
to the size of the network measured by the number N of nodes.
Since there are N ! possible rank ordering of nodes, regret thus
grows at the order of N ! ∼ O(NN ) with the network size,
which is higher than exponential. When the wireless links in
the network are independent, the total number of unknowns,
however, is only in the order of N 2 (i.e, the number of links).
This sharp contrast demonstrates the inefficiency of the direct
approach of treating each rank ordering of nodes as an arm.
This direct mapping to MAB also does not allow distributed
implementation. In particular, all classic MAB policies rely
on the number of times that each arm has been played to
balance the tradeoff between exploration and exploitation. In a
distributed setting where each node only interacts and observes
its neighbors, an individual node does not have the global
information on how many times a specific rank ordering of all
the nodes in the network has been tried.

In this paper, we propose both centralized and distributed
learning algorithms for opportunistic routing under an un-
known wireless broadcast model. Rather than focusing on
each global rank ordering of the network as in the direct
mapping approach discussed above, the proposed learning
algorithms focus on local learning at each node to allow better
regret scaling with the network size as well as distributed
implementation. The proposed learning algorithms achieves
a polynomial regret order with respect to the number of
unknowns while maintaining the optimal logarithmic regret
order with time.

The same problem was also considered in [7], where it
was shown that the optimal logarithmic regret order can be
achieved by letting each node send probing packets to its
neighbors for learning the wireless links. This approach is fun-
damentally different from the learning algorithms developed
in this paper that allow transmissions of only information-
bareing packets. Other related work includes [8], [9], which
considers centralized learning of the shortest path routing
(i.e., the conventional fixed-path routing approach), thus differs
from this paper in the problem scope as well as the specific
proposed learning schemes.

II. PROBLEM STATEMENT

We consider the problem of routing packets from a source
node to a destination node in a wireless ad-hoc network of N
nodes denoted by Ω = {1, 2, . . . , N} with node 1 being the
source node and N the destination node. Time is slotted and
indexed by n ≥ 0 (this assumption is not technically critical
and is only assumed for ease of exposition). A packet indexed
by t ≥ 1 is generated at the source node 0 at time σt according
to an arbitrary distribution with rate λ > 0.

We adopt a general probabilistic local broadcast model.
Specifically, the wireless links at node i are characterized by
a probability distribution Pi

∆
={P (S|i)}S⊆N (i), where N (i)

denotes the neighbor set of i including i itself and P (S|i)
the probability that all nodes in S and only nodes in S
receive the transmission from i. Note that for all S 6= S ′,

successful reception at S and S ′ are mutually exclusive and
∑

S⊆N (i) P (S|i) = 1. Furthermore, node i is always a
recipient of its own transmission, thus P (S|i) = 0 if i /∈ S.
It is easy to see that this general model allows dependencies
across the wireless links rooted at i.

We assume a fixed transmission cost ci > 0 is incurred
upon a transmission from node i. Transmission cost ci can
be considered to model the amount of energy used for trans-
mission, the expected time to transmit a given packet, or the
hop count when the cost is set to unity. We consider an
opportunistic routing setting with no duplicate copies of the
packets. In other words, at a given time only one node is
responsible for routing any given packet. Given a successful
packet transmission from node i to the set of neighbor nodes
S, the next (possibly randomized) routing decision includes
1) retransmission by node i, 2) relaying the packet by a node
j ∈ S, or 3) dropping the packet altogether. If node j is
selected as a relay, then it transmits the packet at the next
slot, while other nodes k 6= j, k ∈ S, expunge that packet.

We define the termination event for packet m to be the
event that packet m is either received at the destination or is
dropped by a relay before reaching the destination. We define
termination time τt to be the stopping time when packet t is
terminated. We discriminate amongst the termination events as
follows: we assume that upon the termination of a packet at the
destination (successful delivery of a packet to the destination),
a fixed and given positive delivery reward R is obtained, while
no reward is obtained if the packet is terminated before it
reaches the destination. Let rt denote this random reward
obtained at the termination time τt, i.e. either zero if the packet
is dropped prior to reaching the destination node or R if the
packet is received at the destination.

Let in,t denote the index of the node which transmits packet
t at time n. The routing scheme can be viewed as selecting
a (random) sequence of nodes {in,t} for relaying packets
t = 1, 2, . . .. As such, the total expected cost (minus reward)
associated with routing T packets along a sequence of {in,t}
up to the termination time of packet T is:

JT = E

[

T
∑

t=1

{

τt−1
∑

n=σt

cin,t
− rt

}]

, (1)

where the expectation is taken over the events of transmission
decisions, successful packet receptions, and packet generation
times. The regret UT is thus obtained by considering the
performance achieved when the underlying probabilistic local
broadcast model of the network is known perfectly. In other
words,

UT = JT − TV ∗(1),

where V ∗(1) denotes the optimal cost (minus reward) of
delivering a packet from source node 1 to the destination under
the perfect knowledge of network topology and the underlying
local broadcast model.
Problem (P) Choose a sequence of relay nodes {in,t} in the
absence of knowledge about the network topology to minimize
the order of the regret UT with respect to T .
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In the next sections we propose centralized and distributed
algorithms which solve Problem (P). The nature of the algo-
rithms allow nodes to make routing decisions in distributed,
asynchronous, and adaptive manner while optimally balancing
the exploration and exploitation costs.

III. CENTRALIZED OPPORTUNISTIC ROUTING

A. The Optimal Centralized Policy under A Known Model

When the probabilistic model Pi is known for all i ∈ Ω, it
is shown in [1] that the optimal routing policy is of an index
type: each node is associated with an index that summarizes
the expected-cost-to-forward from this node to the destination,
and at each time, the node with the smallest index among all
nodes that have received the packet is chosen to relay the
packet (or to retire). It is shown in [1] that the index V ∗(i) of
node i is the unique solution V ∗ : Ω → R

+ to the following
fixed-point equation:

V ∗(N) = −R

V ∗(i) = min{−ri, {ci +
∑

S

P (S|i)(min
j∈S

V ∗(j))}}.

It is easy to see that the index V ∗ leads to a ranking of
the nodes in the network regarding their priority in serving as
relays. Noticing that the computation of V ∗(i) only requires
the indexes of those nodes with higher rank (i.e., smaller
indexes) than node i, the authors of [1] proposed a Dijkstra-
type algorithm for solving the above fixed-point equation.

B. Centralized Opportunistic Routing with Learning

In this section, we propose a centralized learning algorithm
for opportunistic routing under an unknown probabilistic link
model {Pi}i∈Ω. Referred to as ORL (Opportunistic Routing
with Learning), this algorithm partitions the sequence of
packets generated at the source into two types: the explo-
ration packets and the exploitation packets. The exploration
packets are routed through the currently least traversed node
in the network to ensure sufficient learning of all links in
the network. The exploitation packets are routed through a
sequence of opportunistic relaying nodes calculated based on
the estimated link success probabilities {P̂i}i∈Ω. Specifically,
let E(t) denote the index set of the exploration packets up to
(and possibly including) the tth packet. Let ni(t) denote the
number of times that node i has served as a relaying node for
the packets in E(t). Define

l(t − 1)
∆
= min

i∈Ω−{N}
ni(t − 1) (2)

as the least traversed node before the transmission of packet
t. Consider packet t. If t /∈ E(t), then packet t is routed
opportunistically based on the current estimated priority in-
dexes of all nodes (see below). If t ∈ E(t), packet t is routed
to node l(t − 1) through a route with the least hop count.
Node l(t− 1) then relays the packet to the destination (if the
destination has not received the packet) by treating the packet
as a regular exploitation packet. After the transmission of each
exploration packet, the central controller updates ni(t−1). For

each node i that served as a relay for the transmission of packet
t, the central controller also updates the estimate of the local
broadcast model of node i as follows:

P̂ (S|i) =

∑

t∈E(t) 1S|i(t)

n(i)
, (3)

where 1S|i(t) denotes the event that all nodes and only nodes
in S received the transmission of packet t from node i. Based
on P̂ (S|i), the central controller then computes the priority
indexes (as given in [1]) of all nodes to be used for routing
the next exploitation packet.

An important design parameter in ORL is the number of
exploration packets in a sequence of T packets generated
by the source. The cardinality of E(T ) (denoted by |E(T )|)
balances the tradeoff between exploration and exploitation. It
is not difficult to see that the regret order is lower bounded
by |E(T )|. Nevertheless, the sequence of exploration packets
needs to be chosen sufficiently dense to ensure effective learn-
ing of {Pi}i∈Ω and subsequently, the opportunistic routing
indexes. The key issue here is to find the minimum cardinality
of the exploration packets that ensures the additional cost
caused by incorrectly identified node routing priorities during
the transmissions of the exploitation packets having an order
no larger than |E(T )|. As shown in the theorem below, |E(T )|
can be set to a logarithmic order with T , leading to the optimal
logarithmic regret order of the learning algorithm ORL.

Theorem 1: Let B be an upper bound on the node degree in
the network (i.e., |N (i)| ≤ B, ∀i ∈ Ω). Define α = R

∑N

i=1
1
ci

and choose ∆ ∈ (0,mini∈Ω{minj∈N (i) |V
∗(i) − V ∗(j)|}).

Then ORL has the following regret performance:
(1) General local broadcast model with link dependencies

Set G = Nα24B

2∆2 . For each packet t > 1, if |E(t −
1)| < G log t, then include t in E(t). Under this se-
quence of exploration packets, policy ORL achieves re-
gret O(NG log T ) which is logarithmic with the number
of packets and polynomial with the number of unknowns.

(2) Independent wireless links
Set G = Nα2B2

2∆2 . For each packet t > 1, if |E(t −
1)| < G log t, then include t in E(t). Under this se-
quence of exploration packets, policy ORL achieves re-
gret O(NG log T ) which is logarithmic with the number
of packets and polynomial with the network size.
Proof: Omitted due to space limit.

IV. DISTRIBUTED OPPORTUNISTIC ROUTING

A. Distributed Opportunistic Routing under A Known Model

The optimal index policy described in section III-A can
be implemented in a distributed manner once the optimal
value of the indexes are computed and the node priorities are
determined. This is because after each transmission at a node,
say i, the next relay must be one of node i’s neighbors that just
received the packet. The selection of the next relay can thus
be done through local communications among neighbors. A
distributed implementation of the opportunistic routing policy
thus only requires a distributed computation of the routing
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indexes V ∗(i), which as shown in [10], can be done through
recursive local exchanges and updates among neighbors.

B. Distributed Opportunistic Routing with Learning

We now consider a distributed implementation of the learn-
ing algorithm proposed in Sec. III-B. The basic structure of
ORL allows distributed implementation: the classification of
exploration and exploitation packets can be easily carried out
at the source by adding a header to each exploration packet;
the estimates of the link probabilities Pi are computed at
each node i using local observations obtained during the
transmissions of exploration packets; the opportunistic routing
index of each node is then obtained based on the estimated
Pi using the distributed algorithm given in [10]. The only
difficulty is in finding the least traversed node in a distributed
manner for routing each exploration packet. This can be solved
by a distributed algorithm as detailed in Fig. 1. Specifically,
through local exchanges of ni (the number of exploration
packets that each node i has relayed), the least traversed node
and a path to reach this node from the source are identified
for the transmission of the next exploration packet.

Note that we do not require a node knows whether an
exploration packet has been delivered in order to start the
distributed algorithms for finding the least traversed node and
computing the routing index. The local information exchange
for these algorithms will be initiated when a node sees a
change in its current local information (e.g., an increase in
ni after relaying an exploration packet). Furthermore, the
exploitation packets are routed based on the current routing
index at each node without assuming the convergence in the
distributed calculation of the indexes. As a consequence, the
algorithm is fully distributed; each individual node does not
need to maintain a global count on the number of exploration
packets that have been delivered (except the source) or to know
whether its current local information reflects convergence.

The theorem below gives the regret performance of the
distributed learning algorithm.

Theorem 2: In a horizon of T packets if

|E(t)| ≥ G log t, (5)

where G = Nα2B2

2∆2 , the distributed implementation of ORL
(referred to as DORL) achieves regret O(log T ) which is
logarithmic with the number of packets.

Proof: Omitted due to space limit.

V. CONCLUSION

In this paper an opportunistic routing problem in an ad hoc
wireless network is considered. A local broadcast model is
assumed for transmission. Dynamic centralized and distributed
learning algorithms are proposed for this problem under un-
known local broadcast models.
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