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Abstract—There is a recent interest in developing algorithms
for the reconstruction of jointly sparse signals, which arises
in a large number of applications. In this work, we study
the problem of wide-band spectrum sensing for cognitive radio
networks using compressed sensing to exploit the underlying
joint sparsity structure in a distributed setting. In particular, we
use the recently proposed Approximate Message Passing (AMP)
framework and exploit the spatial correlation that exists locally
between different CRs in a non-centralized fashion. We will show
that with the suggested scheme, the nodes iteratively exploit
the local spatial information and achieve the consensus on the
spectrum in a distributed fashion.

Index Terms—Cognitive Radio, Distributed Spectrum Sensing,
Compressed Sensing, Belief Propagation

I. INTRODUCTION

The goal of Cognitive Radio (CR) is to increase the utiliza-

tion of the underutilized frequency bands. Spectrum sensing

[1] plays an important role in cognitive radio since secondary

users need to detect primary signals in order to make decisions

about the occupancy of the spectrum bands.

Compressive sensing theory has been previously consid-

ered in wideband spectrum sensing techniques [2]. In [3], a

distributed compressive spectrum sensing scheme has been

proposed which uses SOMP algorithm [4] to recover the

jointly sparse signals (JSM) [5]. Other algorithms such as

MUSIC [6], ReMBo [7] have been proposed in the literature

for reconstructing such signals under this JSM model. In [8],

the authors use an approximate message passing (AMP) [9],

[10] framework in a factor graph to incorporate the spatial

information. The signals are all collected at the fusion center

and all the signals are reconstructed jointly in a synchronized

and centralized fashion. After reconstructions, the signals are

transmitted back to the individual nodes. But this method, can

not be used in an ad-hoc network where there is no fusion

center and a node might not see all the other nodes. In the ad-

hoc networks there is still a considerable amount of spatial

information among neighbors that could be exploited in a

distributed fashion to reduce the number of measurements in

compressed sensing.

In the present paper, we consider a network of distributed

CRs. Different CRs receive the same wide-band signal at

different SNRs. Each signal, experiences different attenuation

and multi-path effect, which cause different amplitudes and

phases, but we can expect that the locations of the excited

frequency bands to be roughly the same. We use the Joint

Sparsity Model (JSM) proposed in [5] to model the underlying

structure of the signals. We propose a distributed and non-

centralized algorithm that could be adopted by ad-hoc net-

works to incorporate the spatial information into compressed

sensing. Each individual CR, reconstructs its own signal sepa-

rately in a distributed fashion as follows. After each iteration,

each CR wakes up and transmits its current estimate of the

likelihood probability of the spectrum to all its neighbors and

receives the likelihood probability of all its neighbors. Each

CR then uses this information to update their estimate of the

spectrum and the process is repeated again until a consensus on

the spectrum is achieved. We call this algorithm “Distributed

Compressed Sensing AMP (DCS-AMP)” and show that the

DCS-AMP algorithm has a better performance than the state

of the art algorithms, such as DCS-SOMP [5] and S-IHT [11].

II. PROBLEM FORMULATION

Suppose that a total spectrum of W Hz is considered to

be shared among a number of primary and secondary users

in an ad-hoc network and N = W
B

is the number of available

channels. Assume we have S CR sensing receivers. Each node

is provided with a different M × N random measurement

matrix Φs whose columns are normalized to have a unit ℓ2
norm. Each CR receiver collects compressive time-domain

samples using the matrix Φs. The received signals are sparse

in the Fourier domain because of the sparsity in the occupancy

of frequency bands. However, due to the universality of

compressive sensing, without loss of generality, we can assume

that the sparsity basis matrix is the identity matrix. Hence, we

assume the signals are in the sparse domain and xi,s denotes

the frequency content of the i-th channel of the received signal

at the s−th receiver. So the compressive samples are obtained
as follows: ys = Φsxs. The sampling scheme to obtain the

vector ys is based on using an analog-to-information-converter

(AIC) [12].

Let xt
i,s denote the i−th coefficient of the estimation of

vector xs at the t−th iteration. We model the spatial corre-

lation by assuming that the received signals have exactly the

same support set across all sensors but maybe with different

coefficients. We further assume that xi,s is coming from the

following prior distribution

xi,s ∼ H(xi,s) = pi,sN (0, σ2
0) + (1− pi,s)N (0, σ2

1)
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Fig. 1. Factor graph of DCS-AMP algorithm and the connectivity graph of
the network

where σ1 ≫ σ0 and pi,s is close to one for each coefficient of

the shared support set. We model the noise by assuming a non-

zero variance σ2
0 for the coefficients that are not in the support

set. We have a distinct graph in each node, with inputs arriving

from the neighbors of the node in the network. For example,

in Fig. 1, node P can transmit and receive just from node Q

and node R. After each iteration, each sensor wakes up and

transmits a message about the estimation of its own support

set to all the other neighbors and receives all the messages

from the neighbors. As all these messages arrive at each node,

the internal graph of the corresponding node updates its values

and a new marginal distribution for xs is calculated separately

in a distributed fashion. We will prove that in the long run,

a state of agreement on the support set is achieved and the

performance is just slightly worse than the centralized case

where all the sensors have access to all the estimates at all the

iterations through the fusion center. Throughout this paper,

by F ∝ G we mean the function F = 1
Z
G , where Z is a

normalization factor that makes G a valid density function.

Consider the following joint distribution on the coefficients

of the signal.

f(x) =
1

Z

S
∏

s=1

N
∏

i=1

H(xi,s)

S
∏

s=1

M
∏

j=1

δyj,s=(Φsxs)j

where x contains the coefficients of all signals and H(xi,s) =
pi,sN (0, σ2

0) + (1 − pi,s)N (0, σ2
1) is the Gaussian mixture

prior. We consider the factor graph of Fig. 1. This factor graph

contains two types of variable nodes. The first type of variable

nodes is x1,s, x2,s, ..., xN,s representing the coefficients of

the signal and we call them the “coefficient nodes”. Also,

associated with each coefficient xi,s of the signal, there exists

a hidden random variable Pi,s ∈ {0, 1} defining the state of

the coefficients and we call them the “state nodes”. If Pi,s = 0,
then the coefficient comes from the small-variance Gaussian

distribution and if Pi,s = 1, the coefficient comes from the

large-variance Gaussian distribution. The factor graph also

contains three types of function nodes. Each fj,s is a delta

function on the hyperplane yj,s = (Φsxs)j . The function

gi,s is the conditional density function and hi,s accounts for

the prior probability of xi,s being in the support set, which

is defined by qi,s. For the single sensor case, qi,s = pi,s.

But for the multiple sensor case, as we will discuss, the

spatial correlation contributes to pi,s. The sum-product belief

propagation algorithm for this factor graph is as follows.

µxi,s→fj,s(xi,s) ∝ H(xi,s)
∏

k 6=j

µfk,s→xi,s
(xi,s)

µfj,s→xi,s
(xi,s)∝

∫
δ(yj,s−(Φsxs)j)

∏

k 6=i

µxk,s→fj,s
(xk,s) dx−i

s

where x
−i
s includes all the coefficients of xs except xi,s.

µgi,s→xi,s
(xi,s) ∝ H(xi,s) = pi,sN (0, σ2

0)+(1−pi,s)N (0, σ2
1)

µxi,s→gi,s(xi,s) ∝
∏

k

µfk,s→xi,s
(xi,s)

µgi,s→Pi,s
(Pi,s)=

[ p′
i,s

1−p′
i,s

]

∝
∫
Pr(xi,s|Pi,s)

∏

k

µfk,s→xi,s
(xi,s)dxi,s

µhi,s→Pi,s
(Pi,s) ∝ h(Pi,s) =

[ qi,s
1−qi,s

]

After each iteration, the nodes wake up and transmit the

likelihood probability of the support set to all their neighbors

which is denoted by N(s).
µPi,s→gi,s =

[ pi,s

1−pi,s

]

∝ hi,s

∏

k∈N(s) µgi,k→Pi,s

=
[ qi,s
1−qi,s

]
∏

k∈N(s)

[ p′
i,k

1−p′
i,k

]

Thus, essentially two sources of additional information

are contributing to pi,s. The first information is qi,s which

comes from the prior information about the support set of the

signals and will not change during the algorithm. The second

information comes from the likelihood of the neighbor nodes.

This information contributes to pi,s according to the equation

of µPi,s→gi,s .

At the end of the t−th iteration, each sensor node has a

belief about the probability of each coefficient of its associated

signal being in the support set. These beliefs are of the form of

likelihood functions and are being sent through the conditional

function nodes gi,s to the state nodes Pi,s. We can prove

that these likelihood functions can be approximated in the

following Gaussian form using the AMP framework discussed

in the next section.

L(xi,s|mi,s) =
1√
2παs

e
−(xi,s−mi,s)2

2αs

These likelihood functions are being sent by the coefficient

nodes to the function nodes gi,s. Each conditional function

node gi,s is responsible to make a soft decision about whether

its associated coefficient xi,s comes from the low-variance or

the high-variance Gaussian distribution. This decision should

be made from the provided likelihood functions of the upper

part of the graph. They do this job by integrating the product

of their own conditional density function Pr(xi,s|Pi,s) with
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the corresponding continuous likelihood function. So they

essentially send the discrete likelihood probability vector of
[ p′

i,s

1−p′
i,s

]

to Pi,s according to the equation of µgi,s→Pi,s
which

describes the belief of the upper part of the s−th factor graph
after the t−th iteration about whether or not the i−th index

is in the common support set. Thus, each Pi,s will receive

a different likelihood probability vectors from each neighbor

node.

If hi,s was the only source of prior information, then

the messages from gi,s to the coefficient nodes would have

remained the same throughout the algorithm. But here, in the

case of jointly sparse signals, another source of information

which comes from the spatial correlation between different

sensor nodes is also available and this additional information

is connected to the Pi,s in the factor graph and contributes

to the posterior probability of the i−th coefficient being in

the support set. In this case, the messages from gi,s to the

coefficient nodes at each sensor node will no longer remain

the same. In fact, the product of all the incoming probability

vectors to Pi,s forms
[ pi,s

1−pi,s

]

which is the belief of variable

node Pi,s from its own probability of being in the support set

after the t−th iteration. Then the updated pi,s will be sent to

gi,s and gi,s generates the updated compressible prior using

H(xi,s) = pi,sN (0, σ2
0) + (1 − pi,s)N (0, σ2

1) and provides

it to the upper part of the factor graph of each sensor. This

new compressible prior defines new denoising functions F and

G (discussed in the next section), and the messages that are

being sent back and forth between the coefficient nodes and

delta function nodes in the upper half of each factor graph will

be computed according to the updated F and G functions.

So essentially all the spatial correlation is incorporated in

the compressible prior and we run one iteration of AMP

for all sensors separately and then update the prior and this

process will be repeated again until the algorithm converges.

In this non-centralized network, we can prove the following

Proposition.

Proposition 1: If the graph is connected and one of the

sensors finds the true support set, then all of the other sensors

in the network will achieve perfect reconstruction.

Proof: If node A finds the true support set at some iteration,

the likelihood function that the coefficient nodes will receive

from the upper part of the graph will be a delta function. In

the next iterations, node A will receive different likelihood

probabilities from its neighbors which together form a new

prior for this node. But since the likelihood function of the

node is a delta function, the support set of node A would

not change regardless of the condition of other nodes and

it always stays on the true support set. Thus, the likelihood

probability that it transmits to a neighbor node such as B, is

always a sequence of 0 and 1 which denotes the true support

set. In the next iterations, node B multiplies all the incoming

likelihood probabilities (including the one received from A) by

its prior and forms a new prior. Thus, the new prior of node

B will always be the true support set and thus regardless of

its measurements, after some iterations, node B also achieves

perfect reconstruction and this process happens again for the

neighbors of node B. Since the graph is connected, after some

iterations, the true support set will be propagated through the

network and all the nodes achieve perfect reconstruction.

III. APPROXIMATING THE MESSAGES

In this work, we use the AMP framework [9] to approximate

the messages. The idea is that in the large system limits, using

the Central Limit Theorem, we can approximate the messages

from delta function nodes to the coefficient nodes with Gaus-

sian functions and the messages from the coefficient nodes to

the delta function nodes could be approximated as the product

of Gaussian and Gaussian mixture distributions. So instead of

passing the real functions, we just pass the parameters of these

distributions in our loopy belief propagation.

Let us assume that, the mean of the messages from the

i−th coefficient to the j−th delta function at the t−th iter-

ation for the s−sensor is xt
i→j,s and its variance is βt

i→j,s.

Then using the Central Limit Theorem, we can prove that

µt
fj,s→xi,s

(xi,s) ≈ N (
zt
j→i,s

Φji,s
,
αt

j→i,s

Φ2
ji,s

) where

ztj→i,s = yj,s−
N
∑

k=1
k 6=i

Φjk,sx
t
k→j,s and αt

j→i,s =
N
∑

k=1
k 6=i

Φ2
jk,sβ

t
k→j,s

The messages µt+1
xi,s→fj,s

(xi,s) can be approximated as

the product of a Gaussian mixture density function with a

Gaussian density function as

µt+1
xi,s→fj,s

(xi,s) ∝ H(xi,s)e
−(xi,s−mt

i→j,s
)2

2αt
s

where mt
i→j,s =

∑M
k=1
k 6=j

Φki,sz
t
k→i,s and it is assumed that

αt
j→i,s is an edge-independent quantity (αt

s = αt
j→i,s).

Let us assume the expectation of Xi, with respect to the

distribution µt+1
xi→fj

(xi), is the function F (m,α, pi,s) and the

variance is G(m,α, pi,s). Then we have

xt+1
i→j,s = F (mt

i→j,s, α
t
s, p

t
i,s) = F (

M
∑

k=1
k 6=j

Φki,sz
t
k→i,s, α

t
s, p

t
i,s)

βt+1
i→j,s = G(mt

i→j,s, α
t
s, p

t
i,s) = G(

M
∑

k=1
k 6=j

Φki,sz
t
k→i,s, α

t
s, p

t
i,s)

αt+1
s = 1

M

N
∑

i=1

G(
M
∑

j=1

Φji,sz
t
j→i,s, α

t
s, p

t
i,s)

µt+1
xi,s→gi,s

(xi,s) ∝ e

−(xi,s−mt
i,s

)2

2αt
s

where mt
i,s =

M
∑

j=1

Φji,sz
t
j→i,s. Furthermore, the messages

from gi,s nodes to Pi,s nodes can be approximated as

µt
gi,s→Pi,s

(Pi,s) =
[ p′t

i,s

1−p′t
i,s

]
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⇒ p′ti,s =

1√
2π(αt

s+σ2
0
t)
e

−(mt
i,s

)2

2(αt
s+σ2

0
t
)

1√
2π(αt

s+σ2
0
t)
e

−(mt
i,s

)2

2(αt
s+σ2

0
t) + 1√

2π(αt
s+σ2

1
t)
e

−(mt
i,s

)2

2(αt
s+σ2

1
t)

But the above algorithm still needs passing of MN mes-

sages at each iteration and thus is computationally expensive.

To address this problem, we utilize the first order approxi-

mation used in [9]. Therefore, the AMP algorithm for jointly

sparse signals will be simplified as follows.

DCS-AMP Algorithm

1) Initialize: x0
s = 0 , p0

s = q , z−1
s = 0 , t = 0

2) while ‖ys − Φsx
t
s‖2 > ǫ and t < #iterations do

3) z
t
s=ys−Φsx

t
s+

N
M

z
t−1
s 〈F ′(xt−1

s +Φ∗
sz

t−1
s ,αt−1

s ,pt−1
s )〉

4) mt
s = x

t
s +Φ∗

sz
t
s

5) αt+1
s = N

M
〈G(mt

s, α
t
s,p

t
s)〉

6) xt+1
s = F (mt

s, α
t
s,p

t
s)

7)p′t
s =

1√
2π(αt

s+σ2
0
t)

e

−(mt
s)2

2(αt
s+σ2

0
t)

1√
2π(αt

s+σ2
0
t
)
e

−(mt
s)2

2(αt
s+σ2

0
t
) + 1√

2π(αt
s+σ2

1
t
)
e

−(mt
s)2

2(αt
s+σ2

1
t
)

8)
[ p

t+1
i,s

1−p
t+1
i,s

]

∝
[ qi,s
1−qi,s

]
∏

k∈N(s)

[ p′t
i,k

1−p′t
i,k

]

9)t← t+ 1
10) end while

Here 〈x〉 denotes the average of the vector x, F and G are

applied element-wise on vectors, F ′ is the derivative of F with

respect to the first argument and Φ∗ is the transpose of Φ.

IV. SIMULATION RESULTS

We consider signals of length N = 200 with the sparsity

level of 50. We further assume σ0 = 0.1 and σ1 = 1. The
noise is modeled by assuming a non-zero variance for σ0.

A. Reconstruction Rate of DCS-AMP

In this part, we investigate the effect of the number of sen-

sors on the reconstruction rate of the common support set. We

run the DCS-AMP algorithm with 30 iterations on the signals
with S ∈ {1, 4, 8} in a network where node i is connected

to the node i + 1 and the last node is connected to the first

node. We also compare this case with the case of centralized

network with S = 8. Fig. 2(a) indicates that by increasing

the number of sensors, the algorithm does a better job. Also,

from this Figure, we can see that the reconstruction rate of the

ideal case (synchronous and fully connected network) is just

15% better than that of non-centralized mode which shows

that in the long run, the non-centralized mode can incorporate

most the diversity of the spatial information of the network in

reconstruction.

B. Comparison of DCS-AMP with SOMP and S-IHT

We now present a simulation comparing the DCS-AMP

algorithm with two other algorithms in distributed compressed

sensing, so called DCS-SOMP [5] and S-IHT [11] for the
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Fig. 2. Performance of DCS-AMP, SOMP and S-IHT

case of S = 8 signals. Fig. 2(b) plots the probability of

exact reconstruction of the support set versus the number of

measurements per signal (M). We can see that the performance

of our algorithm even in the non-centralized mode outperforms

the reconstruction rate of both of the algorithms.

V. CONCLUSION

In this work, we derived a fast iterative algorithm to

reconstruct a set of jointly sparse signals in a cognitive radio

network. Our method could be adopted in ad-hoc networks

where there is no fusion center. We showed that the proposed

DCS-AMP algorithm could capture spatial diversity better than

the other joint sparse recovery algorithms such as DCS-SOMP

or S-IHT.
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