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Abstract—In this paper, we present a duality between two
problems: the reconstruction of the angular periodogram from
spatial-domain signals received at different time indices and
that of the frequency periodogram from time-domain signals
received at different wireless sensors. We assume the existence
of a multiband structure in either the angular or frequency
domain representation of the received spatial or time-domain
signal, respectively, where different bands are assumed to be
uncorrelated. The two problems lead to a similar circulant
structure in the so-called coset correlation matrix, which allows
for a strong compression and a least-squares (LS) reconstruction
approach. The LS reconstruction of the periodogram is possible
under the full column rank condition of the system matrix,
which is achievable by designing the spatial or temporal sampling
patterns based on a circular sparse ruler.

I. INTRODUCTION

The duality between the spectral analysis problems in the
spatial-angular and time-frequency domains has been identi-
fied since decades. One application related to this duality is
the direction of arrival (DOA) estimation and the frequency
identification of sinusoids. In fact, this duality can be further
exploited to handle different problems using the same algorith-
mic approach. In this paper, we underline a duality between
the angular periodogram reconstruction from far-field signals
received by an antenna array at different time indices (problem
P1) and the frequency periodogram reconstruction by different
wireless sensors based on the received time-domain signals
(problem P2). We assume a multiband structure in either the
angular or frequency domain representation of the received
spatial or time-domain signal, respectively, where different
bands are assumed to be uncorrelated. This uncorrelatedness
emerges because the signals related to the different bands come
from different users (more details later on) and it leads to
a circulant structure in the so-called coset correlation matrix
allowing for a strong compression, which is implemented using
a periodic non-uniform linear array (non-ULA) in P1 and a
multi-coset sampling in P2.

With respect to P1, our work is inspired by the work of [1],
which focuses on the angular spectrum reconstruction from
spatial-domain samples received by a non-ULA. However, the
intention of [1] to reconstruct the actual angular spectrum in-
stead of its periodogram leads to an underdetermined problem
requiring a sparsity constraint on the angular domain to solve
it. We will show in this paper that by focusing on only the an-
gular periodogram reconstruction, we have an overdetermined
problem that is solvable even without a sparsity constraint on
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the angular domain. This is useful for applications that need
information only about the angular periodogram and not the ac-
tual angular spectrum. In the context of P2, some related works
on compressive power spectrum estimation by a single sensor
can be found in [2], [3]. The work of [2] attempts to reconstruct
the unknown power spectrum of a wide-sense stationary signal
from the obtained sub-Nyquist rate samples by exploiting the
Toeplitz structure of the time-domain correlation matrix. The
work of [3], which is related to our problem, considers the
existence of a multiband signal where the spectra at different
bands are uncorrelated. Hence, the correlation matrix of the
entries at different bands has a diagonal structure. However, [3]
does not focus on the strongest compression rate, relies on
only one realization of the received signal, and uses frequency
smoothing to approximate the correlation matrix computation.
In contrast, we focus on the strongest compression rate, which
can be obtained by exploiting the circulant structure of the
coset correlation matrix and by solving the so-called minimal
circular sparse ruler problem. In addition, in P2, we exploit
the signals received by different sensors to approximate the
correlation matrix computation.
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Fig. 1. The system model for problems P1 and P2.

II. SYSTEM MODEL

We introduce the Ñ × 1 vector xt = [xt[0], xt[1], . . . ,
xt[Ñ − 1]]T , where xt[ñ] represents the output of the ñ-th

antenna in a ULA of Ñ antennas with half-wavelength spacing

at time index t for P1 or the ñ-th sample out of Ñ consecutive
Nyquist-rate samples received by the t-th sensor for P2. To ob-
tain an accurate Fourier interpretation, we assume a relatively

large Ñ , which is easy to achieve for P2 and also true for P1
if we consider millimeter wave imaging applications where
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the antenna spacing is very small and thus a large number of
antennas is needed to cover the required aperture [1]. Denote
the discrete-time Fourier transform (DTFT) of xt[ñ] by Xt(ϑ),
which represents either the value of its angular spectrum at
angle sin−1(2ϑ) with ϑ ∈ [−0.5, 0.5) or that of its frequency
spectrum at frequency ϑ. Since Xt(ϑ) at ϑ ∈ [0.5, 1) is
a replica of Xt(ϑ) at ϑ ∈ [−0.5, 0), we focus on Xt(ϑ)
in ϑ ∈ [0, 1) to simplify the discussion. We consider K
active bands in the ϑ-domain, denote the support of the k-
th active band by Bk, and define the bandwidth of the k-th
active band as Λ(Bk) = sup{Bk} − inf{Bk}. We assume that
maxk Λ(Bk) is known, which is reasonable, especially for P2,
as the channelization parameter for a communication network
is usually known.

Let us split the Ñ uniform grid points (which are the
antennas in the ULA for P1 or the indices of the Nyquist-rate
samples for P2) into L non-overlapping blocks of N uniform
grid points. Collect all the (n + 1)-th grid points from each
of the L blocks and call this collection of grid points, i.e.,

{ñ|ñ ∈ {0, 1, . . . , Ñ−1}, ñ mod N = n}, the (n+1)-th coset.
For clarity of the discussion, the coset index of the (n + 1)-
th coset is n. In this way, we can view the earlier uniform
sampling as a multi-coset sampling [4] with N cosets. For

P1, this is equivalent to perceiving the ULA of Ñ antennas
as N interleaved uniform linear subarrays (ULSs) [1] (which
are the cosets), each of which has L antennas with spacing
Nλ/2 where λ is the wavelength. For P2, we can perceive the

Ñ time-domain samples in xt as the output of a time-domain
multi-coset sampler with L samples per coset. When only the
(n+ 1)-th coset is active, we obtain

xt,n[ñ] = xt[ñ]

L−1
∑

l=0

δ[ñ− (lN + n)], 0 ≤ n ≤ N − 1, (1)

which can be stacked into the Ñ × 1 vector xt,n = [xt,n[0],

xt,n[1], . . . , xt,n[Ñ − 1]]T . Note that xt =
∑N−1

n=0 xt,n. By
splitting ϑ ∈ [0, 1), without loss of generality, into N equal-
width bins and writing the spectrum at the (i+1)-th bin (0 ≤

i ≤ N − 1) as X
(i)
t (ϑ) = Xt

(

ϑ+ i
N

)

with ϑ now limited
to ϑ ∈ [0, 1/N), the DTFT of xt,n[ñ] for 0 ≤ n ≤ N − 1 is
found as [4]

Xt,n(ϑ) =
1

N

N−1
∑

i=0

X
(i)
t (ϑ)e

j2πni

N , ϑ ∈ [0, 1/N). (2)

It is clear from (2) that the spectrum Xt,n(ϑ) at each ϑ is a
sum of the N aliases of Xt(ϑ) at N different bins since either
the spatial or temporal sampling rate becomes 1/N times the

Nyquist rate. Stacking {Xt,n(ϑ)}
N−1
n=0 in (2) into an N × 1

vector x̄t(ϑ) = [Xt,0(ϑ), Xt,1(ϑ), . . . , Xt,N−1(ϑ)]
T leads to

x̄t(ϑ) = Bxt(ϑ), ϑ ∈ [0, 1/N), (3)

where xt(ϑ) = [X
(0)
t (ϑ), X

(1)
t (ϑ), . . . , X

(N−1)
t (ϑ)]T is the

N × 1 vector and the element of the N × N matrix B at
the (n + 1)-th row and the (i + 1)-th column is given by

[B]n+1,i+1 = 1
N
e

j2πni

N .

At this stage, let us consider the model in Fig. 1, assume
that the K active bands correspond to K different users, and
introduce Ut,k(ϑ) and Ht,k(ϑ) as:

• Ut,k(ϑ) is the source signal related to the k-th user
received at time index t (for P1) or at sensor t (for

P2). For P1 it can vary with the DOA sin−1(2ϑ) within
the k-th band due to scattering, whereas for P2 it can
vary with frequency ϑ within the k-th band due to
power loading.

• Ht,k(ϑ) is the related channel response for the k-th

user at time index t and DOA sin−1(2ϑ) (for P1) or
at sensor t and frequency ϑ (for P2).

Based on those definitions, for the noiseless case, we can write

X
(i)
t (ϑ) =

K
∑

k=1

H
(i)
t,k(ϑ)U

(i)
t,k(ϑ), ϑ ∈ [0, 1/N), (4)

with H
(i)
t,k(ϑ) = Ht,k

(

ϑ+ i
N

)

and U
(i)
t,k(ϑ) = Ut,k

(

ϑ+ i
N

)

.

In general, we may assume that X
(i)
t (ϑ) varies with t because

either one (or both) of the following situations occurs

• For P1, the k-th user’s source signal Ut,k(ϑ) varies
with the time index t due to the fact that the infor-
mation that is being transmitted changes with time.
For P2, it varies with the sensor index t where the
signal is received due to the fact that sensors are not
synchronized.

• For P1, the k-th user’s channel response Ht,k(ϑ)
varies with the time index t due to Doppler fading
effects. For P2, it varies with the sensor index t where
the signal is received, due to path loss, shadowing, and
small-scale spatial fading effects.

As a result, we can compute the expectations over t that
will follow later on in this paper by considering different

realizations of X
(i)
t (ϑ) in t and by simple averaging. We will

come back to this issue later on.

Since the K different active bands in Xt(ϑ) correspond to
K different users which in general transmit mutually uncor-
related source signals, we can assume that these K bands are
also mutually uncorrelated. For both problems, this assumption
is even enforced since the signals from different users pass
through mutually uncorrelated wireless channels on their way
to the receiver, as long as the bands (in angle for P1 or
in frequency for P2) and/or the frequencies (for P1) or the
locations (for P2) of the different users (source signals) are
sufficiently separated (sufficient in the sense that no coherence
is observed). Now, observing that N is a design parameter
related to the width of the predefined bins in ϑ ∈ [0, 1),
and setting its value according to 1

N
≥ maxk Λ(Bk), we can

find that for each ϑ ∈ [0, 1/N), every active band in Xt(ϑ)

has a contribution in at most one entry X
(i)
t (ϑ) of xt(ϑ)

in (3). Taking also the above uncorrelatedness assumption into
account, it is clear that the N×N correlation matrix Rx(ϑ) =
Et[xt(ϑ)x

H
t (ϑ)] is a diagonal matrix for all ϑ ∈ [0, 1/N). We

then define the so-called N × N coset correlation matrix as
Rx̄(ϑ) = Et[x̄t(ϑ)x̄

H
t (ϑ)], which can be written as

Rx̄(ϑ) = BRx(ϑ)B
H , ϑ ∈ [0, 1/N). (5)

Since Rx(ϑ) is a diagonal matrix and it is clear from (3) that
B is an inverse discrete Fourier transform (IDFT) matrix, it is
then obvious that Rx̄(ϑ) is a circulant matrix.

III. SPATIAL OR TEMPORAL COMPRESSION

In this section, we intend to exploit the circulant structure
of Rx̄(ϑ) in (5), which generally contains redundant informa-
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tion, allowing us to perform either spatial or temporal com-
pression. Due to its circularity, we can condense Rx̄(ϑ) into an
N × 1 vector rx̄(ϑ) = [rx̄(ϑ, 0), rx̄(ϑ, 1), . . . , rx̄(ϑ,N − 1)]T

and write

vec(Rx̄(ϑ)) = T̄rx̄(ϑ), ϑ ∈ [0, 1/N), (6)

where rx̄(ϑ, (n− n′) mod N) = Et

[

Xt,n(ϑ), X
∗
t,n′(ϑ)

]

with

s mod N the remainder of the integer division s/N , vec(.) is
the operator that stacks all columns of a matrix into one column
vector and T̄ is an N2 ×N repetition matrix whose j-th row
is given by the

((

j − 1−
⌊

j−1
N

⌋)

mod N + 1
)

-th row of the

N ×N identity matrix IN . Since the N2 elements of Rx̄(ϑ)
can be condensed into the N elements of rx̄(ϑ), we introduce
a compression (similar to [4]) by activating only M < N
cosets leading to a classical non-uniform periodic sampling in
either the spatial or time domain, where the indices of the M
active cosets are given by the set M = {n0, n1, . . . , nM−1}
with 0 ≤ n0 ≤ n1 ≤ · · · ≤ nM−1 ≤ N − 1. Here,
we collect all values of xt,n[ñ] in (1) and compute their
corresponding DTFT Xt,n(ϑ) in (2) for all n ∈ M. We
then stack {Xt,n(ϑ)}n∈M

into an M × 1 vector ȳt(ϑ) as

ȳt(ϑ) = [Xt,n0
(ϑ), Xt,n1

(ϑ), . . . , Xt,nM−1
(ϑ)]T and relate

ȳt(ϑ) to x̄t(ϑ) in (3) as

ȳt(ϑ) = C̄Mx̄t(ϑ), ϑ ∈ [0, 1/N),

where C̄M is an M × N selection matrix whose rows are
selected from the rows of IN according to M. Hence, we can
compute the correlation matrix of ȳt(ϑ) for ϑ ∈ [0, 1/N) as

Rȳ(ϑ) = Et[ȳt(ϑ)ȳ
H
t (ϑ)] = C̄MRx̄(ϑ)C̄

H
M. (7)

Stacking all columns of Rȳ(ϑ) into a column vector
vec(Rȳ(ϑ)) as well as considering (6) and the realness of C̄M,
we have

vec(Rȳ(ϑ)) = RC̄M
rx̄(ϑ), ϑ ∈ [0, 1/N), (8)

where RC̄M
= (C̄M ⊗ C̄M)T̄ is an M2 ×N matrix and ⊗

represents the Kronecker product operation.

In practice, we approximate the expectation operation in (7)
by taking an average over the signals at different time indices t
for P1 or at different sensors t for P2, i.e., we estimate Rȳ(ϑ)
as R̂ȳ(ϑ) =

1
τ

∑τ

t=1 ȳt(ϑ)ȳ
H
t (ϑ), which can be written as

R̂ȳ(ϑ) = C̄MR̂x̄(ϑ)C̄
H
M = C̄MBR̂x(ϑ)B

HC̄H
M, (9)

for all ϑ ∈ [0, 1/N), where τ represents either the total number
of time indices or sensors used in the averaging process

and where R̂x(ϑ) = 1
τ

∑τ

t=1 xt(ϑ)x
H
t (ϑ) is generally not a

diagonal matrix for a finite τ . Note that, for both problems,

this requires either H
(i)
t,k(ϑ) or U

(i)
t,k(ϑ) in (4) or both of them

to have different values for different indices t (as discussed
earlier). Also observe that as τ is getting very large, R̂x(ϑ)
and the estimated coset correlation matrix R̂x̄(ϑ) will be
asymptotically diagonal and circulant, respectively.

IV. RECONSTRUCTION

Observe that it is possible to have a tall matrix RC̄M
in (8)

since we can have M2 ≥ N despite M < N . Hence, it is also
possible to reconstruct rx̄(ϑ) in (8) from vec(Rȳ(ϑ)) using
least-squares (LS) for all ϑ ∈ [0, 1/N) as long as RC̄M

has
full column rank. Note that estimators other than LS could
be considered as long as the identifiability of rx̄(ϑ) in (8) is

preserved [8]. As it is clear that each row of both C̄M ⊗ C̄M

and T̄ in (8) has exactly a single one at one entry and zeros
elsewhere, every row of RC̄M

also has a single one at a certain
entry and zeros elsewhere. Hence, RC̄M

will have full column
rank if each of its columns has at least a single one. Denoting
the f -th row of IN as eTf , we have the following lemma.

Lemma 1: If f − 1, g − 1 ∈ M, i.e., eTf and eTg are two

rows of C̄M, then at least two rows of RC̄M
are given by the

((g−f) mod N +1)-th and the ((f −g) mod N +1)-th rows
of IN .
Proof: The fact that each row of C̄M ⊗ C̄M only contains

a one at one entry and zeros elsewhere means that each row
of RC̄M

is generated by selecting one of the rows of T̄. For

example, if the j-th row of C̄M ⊗ C̄M has a one at the j′-th
entry, the j-th row of RC̄M

is equal to the j′-th row of T̄.

Since eTf ⊗eTg has a one at the (N(f−1)+g)-th entry and zeros

elsewhere, it is clear that the existence of eTf and eTg in C̄M

ensures that RC̄M
has the (N(f−1)+g)-th and (N(g−1)+f)-

th rows of T̄ as two of its rows. By recalling that the j-th
row of T̄ is given by the

((

j − 1−
⌊

j−1
N

⌋)

mod N + 1
)

-
th row of IN , we can find that the (N(f − 1) + g)-th
and the (N(g − 1) + f)-th rows of T̄ are given by the
((g−f) mod N +1)-th and the ((f −g) mod N +1)-th rows
of IN , respectively. This concludes the proof. �

Let us now review the concept of a circular sparse ruler
defined in [5]. Using this concept and Lemma 1, Theorem 1
then directly follows.

Definition 1: A circular sparse ruler of length N − 1 is
defined as a set P ⊂ {0, 1, . . . , N − 1} such that {(p −
p′) mod N |∀p, p′ ∈ P} = {0, 1, . . . , N − 1}. It is called
minimal if no other circular sparse ruler of length N − 1
exists with less elements.
Theorem 1: Defining Ω as Ω = {(g − f) mod N |∀f − 1,
g−1 ∈ M}, the full column rank condition of RC̄M

is ensured
if Ω = {0, 1, . . . , N − 1}. In other words, RC̄M

will have full
column rank if it has all rows of IN as its rows. In this case,
the set M is equivalent to a circular sparse ruler of length
N − 1.

The readers are referred to [5] in order to obtain more
detailed information about circular as well as linear sparse
rulers. Given the set Ω, we now aim to obtain the best possible
compression rate M/N by minimizing |M| = M , which is
the cardinality of M or the number of marks in the length-
(N − 1) circular sparse ruler. As a result, we can write our
problem as

min
M

|M| s.t. Ω = {0, 1, . . . , N − 1} . (10)

The problem in (10) boils down to a length-(N − 1) minimal
circular sparse ruler problem. Solving this problem basically
minimizes the compression rate M/N while maintaining the
uniqueness of the LS solution for the problems in (8).

We now make some notes with respect to P1. Configuring a
linear array geometry based on a solution of the minimal linear
sparse ruler problem generally leads to the famous minimum
redundancy array (MRA) [6], whose geometry can be used
to form a virtual array (called co-array) that is uniform. This
is useful in DOA estimation as it is possible to apply spatial
smoothing followed by MUSIC [7]. However, our problem
here does not need the existence of a uniform co-array. Hence,
we use our ULA as the underlying array and activate only
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M < N ULSs in this ULA with the indices of the active ULSs
given by M leading to a periodic non-ULA of active antennas
with the location of the active antennas in each spatial period
governed by M. If M is a solution of the minimal length-
(N − 1) circular sparse ruler problem in (10), we label one
spatial period of the resulting non-ULA of active antennas as
a circular MRA and the entire array of active antennas as a
periodic circular MRA. Similarly for P2, if the indices of the
M < N active cosets in the temporal sampling are given by the
solution of (10), then we can label the non-uniform sampling in
one temporal period as minimal circular sparse ruler sampling
and the periodic non-uniform sampling as periodic minimal
circular sparse ruler sampling.

After the LS reconstruction of rx̄(ϑ) in (8) from
vec(Rȳ(ϑ)) for ϑ ∈ [0, 1/N) given the full column
rank condition of RC̄M

, we can compute Rx̄(ϑ) from
rx̄(ϑ) using (6), and Rx(ϑ) from Rx̄(ϑ) using (5) as
Rx(ϑ) = N2BHRx̄(ϑ)B. Recall that diag(Rx(ϑ)) =

[Et[|X
(0)
t (ϑ)|2], Et[|X

(1)
t (ϑ)|2], . . . , Et[|X

(N−1)
t (ϑ)|2]]T with

ϑ ∈ [0, 1/N). Reconstructing diag(Rx(ϑ)) for ϑ ∈ [0, 1/N)
will thus give Et[|Xt(ϑ)|

2] for all ϑ ∈ [0, 1). In practice
however, we only have 1

τ

∑τ

t=1 |Xt(ϑ)|
2 for all ϑ ∈ [0, 1),

which is available as the diagonal elements of R̂x(ϑ) in (9).
In this case, 1

Ñτ

∑τ

t=1 |Xt(ϑ)|
2 for all ϑ ∈ [0, 1) can be

considered as the averaged periodogram of the signals received
at different times t in P1 or at different sensors t in P2.

TABLE I. THE FREQUENCY BANDS OCCUPIED BY THE USERS, THEIR

NORMALIZED MAGNITUDE, AND THE EXPERIENCED PATH LOSS

User band Normalized magnitude/freq. Path loss at

(ϑ) (per rad/sample) each sensor

[−8

18
, −7

18
] 32 dBm (1.585 W) −13 dB (0.0501)

[−6

18
, −5

18
] 35 dBm (3.162 W) −19 dB (0.0126)

[−5

18
, −4

18
] 38 dBm (6.31 W) −18 dB (0.0158)

[−3

18
, −2

18
] 40 dBm (10 W) −19 dB (0.0126)

[ 1

18
, 2

18
] 34 dBm (2.512 W) −11 dB (0.0794)

[ 3

18
, 4

18
] 34 dBm (2.512 W) −17 dB (0.0200)

V. NUMERICAL STUDY

In this section, we evaluate our approach by focusing
only on P2. However, the result of the numerical study is
also applicable to P1 since both problems are dual. Here, we

have Ñ = 306, L = 17 and N = 18 where Ñ indicates
the number of available time-domain samples in each sensor
if the received signal is sampled at Nyquist rate. However,
every sensor employs periodic circular sparse ruler sampling
by collecting only M = 5 out of N = 18 possible samples
based on M = {0, 1, 4, 7, 9} obtained by solving the length-
17 minimal circular sparse ruler problem. This is equivalent
to constructing a 5 × 18 matrix C̄M in (7) whose rows
are selected from the rows of I18 based on M leading to
a compression rate of M/N = 0.278. This choice of C̄M

ensures the full column rank condition of RC̄M
in (8). We

consider τ = 200 fully synchronized sensors that observe one
realization of six user signals, i.e., Ut,k(ϑ) = Uk(ϑ), whose
frequency components are indicated in Table I together with

the magnitude |Uk(ϑ)|
2 at each band normalized by Ñ . At

each sensor, we assume the existence of temporal white noise
with variance σ2

n = 7 dBm. In general, the signal of each
user received by different sensors passes through different
wireless channels Ht,k(ϑ). However, to simplify the simulation
study, the signal from a certain user received by all sensors

is assumed to experience the same path loss and shadowing.
We indicate the amount of path loss experienced between a
particular user and all sensors in Table I. Here, this path loss
value is assumed to include the shadowing effect to simplify
the simulation. On top of the path loss, the existence of small-
scale Rayleigh fading is simulated by generating the channel
frequency response Ht,k(ϑ) according to a zero-mean complex
Gaussian distribution with variance governed by the amount of
path loss in Table I. The fading experienced by each band is
assumed to be flat. Fig. 2 illustrates the computed periodogram
of the user signals as a function of frequency scaled by
the fading averaged across all sensors. Here, the Nyquist-

rate based estimate (obtained by collecting all Ñ samples)
is provided as a reference. The figure indicates that, with
respect to the Nyquist-rate based estimate, the quality of the
reconstructed periodogram of the faded user signals is still
acceptable despite a very strong compression. For the purpose
of spectrum sensing (such as in cognitive radio networks),
this approach could be interesting since the six active bands
can still be correctly located despite the degradation in the
estimation quality and a significant leakage introduced by
the strong compression in the unoccupied bands. Note that
estimators other than LS can be considered and they might
lead to a better performance [8].
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Fig. 2. The reconstructed periodogram of the faded user signals as a function
of frequency.
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