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Abstract—For the case of a single colocated receive an-
tenna array and additional linear diversity (e.g. oversampling
or polarization), tensor decomposition based signal separa-
tion is now well-established. For increasing the spatial di-
versity of communication systems, the use of several widely
separated colocated antenna arrays has been suggested. How-
ever, for such problems no algebraic framework has been
proposed. We explain that recently developed coupled tensor
decompositions provide such a framework. In particular, we
explain that the use of several widely separated colocated
antenna arrays may lead to improved identifiability results.

I. Introduction

In the late nineties it was realized that several signal
separation or source localization problems in telecom-
munication are inherently multilinear when the full di-
versity is exploited. Besides temporal and spatial di-
versity, diversity yielding multilinear structure could
for instance be due to MI-ESPRIT-type subarrays [12],
oversampling [13] or polarization [6]. Exploitation of the
multilinearity suddenly made it possible to solve array
processing problems in an entirely deterministic manner
through the computation of tensor decomposition, such
as the Canonical Polyadic Decomposition (CPD).

Original work considered the case of a single colocated
receive antenna. In order to increase the spatial diversity
of a communication system more elaborate antenna ar-
ray configurations have been proposed in the meantime.
We mention multistatic MIMO radar systems [20], [11]
where both the receive and transmit antenna arrays are
composed of several widely separated colocated antenna
arrays. However, no firm algebraic tensorial framework
for array processing based on widely separated colo-
cated antenna arrays has yet been presented. Conse-
quently, no dedicated uniqueness conditions and algo-
rithms are available. The goal of the paper is to explain
that some of the coupled tensor decompositions recently
proposed in [14], [15] are good candidate models for
some problems involving widely separated colocated
antenna arrays. In particular, the coupled tensor decom-
position framework is able to explain that the use of
several widely separated colocated antenna arrays leads
to improved identifiability results.

The paper is organized as follows. The rest of the
introduction will present the notation followed by a
quick review of the CPD in section II. Section III briefly
reviews two coupled tensor decompositions studied that
are used in this paper. In section IV we demonstrate
the usefulness of coupled tensor decompositions in the
context of array signal processing problems involving
widely separated antenna arrays with at least triple
diversity. We end the paper with a conclusion in section
V.
A. Notation

Vectors, matrices and tensors are denoted by lower
case boldface, upper case boldface and upper case cal-
ligraphic letters, respectively. The number of non-zero
entries of a vector x is denoted by ω(x). The transpose,
rank, k-rank, and rth column vector of a matrix A are
denoted by AT, r (A), k (A) and ar, respectively. The
symbols ⊗ and " denote the Kronecker and Khatri-Rao
products, defined as

A⊗B !




a11B a12B . . .
a21B a22B . . .
...

...
. . .



, A"B ! [a1 ⊗ b1 a2 ⊗ b2 . . . ]

in which (A)mn = amn. The outer product of three vectors
a ∈ CI, b ∈ CJ and c ∈ CK is denoted by a ◦b ◦ c ∈ CI×J×K ,
such that (a ◦ b ◦ c )i jk = aibjck. Dk (A) ∈ CJ×J denotes
the diagonal matrix holding row k of A ∈ CI×J on its
diagonal.

II. Canonical Polyadic Decomposition

Consider the third-order tensor X ∈ CI×J×K . We say that
X is a rank-1 tensor if it is equal to the outer product
of non-zero vectors a ∈ CI, b ∈ CJ and c ∈ CK such
that xijk = aibjck. The Polyadic Decomposition (PD) is a
decomposition of X into rank-1 terms

C
I×J×K & X =

R∑

r=1

ar ◦ br ◦ cr . (1)

The rank of a tensor X is equal to the minimal number
of rank-1 tensors that yield X in a linear combination.
Assume that the rank of X is R, then (1) is called the
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Canonical PD (CPD) of X. Let us stack the vectors {ar},
{br} and {cr} into the matrices

A = [a1, . . . , aR] , B = [b1, . . . ,bR] , C = [c1, . . . , cR] .

The matrices A, B and C will be referred to as the factor
matrices of the CPD of the tensor X in (1).

A CPD of X ∈ CI×J×K is said to be unique if all the
triplets

(
Â, B̂, Ĉ

)
satisfying (1) are related via

Â = AP∆A, B̂ = BP∆B, Ĉ = CP∆C,

where P is a permutation matrix and {∆A,∆B,∆C} are
diagonal matrices satisfying ∆A∆B∆C = IR. Necessary
conditions for CPD uniqueness are that k (A) ≥ 2, k (B) ≥
2 and k (C) ≥ 2 and that the matrices A " B, A " C and
B"C have full column rank (e.g. [18]). The development
of sufficient uniqueness conditions for the CPD has been
the subject of intense investigation, see [9], [8], [3], [18],
[17], [4], [5], [16] and references therein. For the case
where one factor matrix has full column rank, say C,
the following necessary and sufficient condition has been
obtained.

Theorem II.1. Consider the PD of X ∈ CI×J×K in (1). Define
E(w) =

∑R
r=1 wrarb

T
r . Assume that C has full column rank.

The rank of X is R and the CPD of X is unique if and only
if [19], [8], [17], [2]:

r (E(w)) ≥ 2 , ∀w ∈
{
x ∈ CR

∣∣∣ω(x) ≥ 2
}
. (2)

III. Coupled tensor decompositions
The idea to couple several tensors seems to be first

suggested in [7], albeit in a very informal way, by means
of the coupled CPD briefly discussed in subsection
III-A. Coupled tensor decompositions are currently gain-
ing interest in several engineering disciplines, such as
chemometrics, data mining, biomedical engineering and
bioinformatics. However, only recently algebraic studies
of coupled tensor decompositions have been reported
in [14], [15]. Furthermore, the authors have developed
several new coupled tensor decompositions in [14], [15]
suited for array signal processing. In particular, we
briefly explain that by taking the coupling between sev-
eral tensor decompositions into account better identifia-
bility results are obtained. In subsection III-A we briefly
review the coupled CPD suggested in [7] and formally
studied in [14], [15]. Subsection III-B briefly introduces
the mixed coupled Block Term Decomposition (BTD)
proposed in [14], [15].

A. Coupled CPD
To the authors’ knowledge the first algebraic study

and definition of the coupled CPD was presented in [14],
[15]. We say that a collection of tensors X(n) ∈ CIn×Jn×K,
n ∈ {1, . . . ,N} with N ≥ 2, admits an R-term coupled PD
if each tensor X(n) can be written as

X(n) =

R∑

r=1

a(n)
r ◦ b(n)

r ◦ cr , n ∈ {1, . . . ,N}, (3)

with factor matrices A(n) =
[
a(n)

1 , . . . , a
(n)
R

]
∈ CIn×R, B(n) =[

b(n)
1 , . . . ,b

(n)
R

]
∈ CJn×R and C = [c1, . . . , cR] ∈ CK×R. We

define the coupled rank of the tensors {X(n)} as the
minimal number of rank-1 tensors a(n)

r ◦b(n)
r ◦cr that yield

{X(n)} in a linear combination. Assume that the coupled
rank of {X(n)} is R, then (3) will be called the coupled
CPD of {X(n)}. In section IV we illustrate how the coupled
CPD can be used in the context of array processing.

We call the coupled CPD of {X(n)} unique if any

alternative set of factors {{Â
(n)
}, {B̂

(n)
}, Ĉ} satisfies

Â
(n)
= A(n)P∆A(n) , B̂

(n)
= B(n)P∆B(n) , Ĉ = CP∆C,

where P is a permutation matrix and ∆A(n) , ∆B(n) and
∆C are diagonal matrices satisfying ∆A(n)∆B(n)∆C = IR,
∀n ∈ {1, . . . ,N}. Sufficient uniqueness conditions for the
coupled CPD have been developed in [14]. For the case
where the common factor matrix C has full column rank,
the following version of Theorem II.1 was obtained.

Theorem III.1. Consider the coupled PD of X(n) ∈ CIn×Jn×K,
n ∈ {1, . . . ,N}, in (3). Define

E
(n)(w) =

R∑

r=1

wra
(n)
r b

(n)T
r and Ω =

{
x ∈ CR

∣∣∣ω(x) ≥ 2
}
.

Assume that C has full column rank. The coupled rank of
{X(n)} is R and the coupled CPD of {X(n)} is unique if and
only if [14]:

∀w ∈ Ω , ∃n ∈ {1, . . . ,N} : r
(
E

(n)(w)
)
≥ 2 . (4)

Note that condition (4) does not prevent that some
of the factors are collinear, i.e., we may have coupled
CPD uniqueness despite k

(
A(n)
)
= 1 or k

(
B(n)
)
= 1. We

may also have coupled CPD uniqueness despite rank
deficient matrices A(n) "B(n). This result tells us that the
coupled CPD is unique under more mild conditions than
the ordinary CPD.

B. Mixed coupled BTD

More generally, the so-called mixed coupled multilin-
ear rank-(Lr,n, Lr,n, 1) term decomposition of the tensors
X(n) ∈ CIn×Jn×K, n ∈ {1, . . . ,N} with N ≥ 2, was proposed
in [14]:

X(n) =

R∑

r=1

Lr,n∑

l=1

a(r,n)
l
◦ b(r,n)

l
◦ c(r) =

R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r), (5)

and with factor matrices A(r,n) =
[
a(r,n)

1 , . . . , a(r,n)
Lr,n

]
∈ CIn×Lr,n ,

B(r,n) =
[
b(r,n)

1 , . . . ,b(r,n)
Lr,n

]
∈ CJn×Lr,n and C =

[
c(1), . . . , c(R)

]
∈

CK×R. Note that in the special case where N = 1 and
the matrices A(r,n)B(r,n)T have rank Lr, (5) corresponds to
the multilinear rank-(Lr, Lr, 1) term decomposition intro-
duced in [1].

We define the mixed coupled rank of {X(n)} given by (5)
as the minimal number of multilinear rank-(Lr,n, Lr,n, 1)
terms of the form

(
A(r,n)B(r,n)T

)
◦ c(r) that yield {X(n)} in a

linear combination. If the mixed coupled rank of {X(n)}
is R, then we call (5) the mixed coupled BTD of {X(n)}.
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In section IV we illustrate how the mixed coupled BTD
can be used in the context of array processing.

Let {{Â
(n)
}, {B̂

(n)
}, Ĉ} yield an alternative mixed coupled

BTD of the tensors {X(n)} in (5). We say that the mixed
coupled BTD of {X(n)} is unique if it is unique up to a
permutation of the coupled multilinear rank-(Lr,n, Lr,n, 1)

terms {Â
(r,n)T

B̂
(r,n)
◦ ĉ

(r)
} and up to the following indeter-

minacies within each term:

Â
(r,n)
= α(r,n)A(r,n)Fr,n , B̂

(r,n)
= β(r,n)B(r,n)F−1

r,n , ĉ
(r)
= γ(r)c(r)

where Fr,n ∈ CLr,n×Lr,n are nonsingular matrices and
α(r,n), β(r,n),γ(r) ∈ C are scalars satisfying α(r,n)β(r,n)γ(r) = 1,
∀n ∈ {1, . . . ,N}. Uniqueness conditions for the mixed
coupled BTD can be found in [14]. For the case where
the common factor matrix C has full column rank,
the following extension of Theorems II.1 and III.1 was
obtained.
Theorem III.2. Consider the mixed coupled multilinear rank-
(Lr,n, Lr,n, 1) term decomposition of X(n) ∈ CIn×Jn×K, n ∈
{1, . . . ,N} in (5). Define E(n)(w) =

∑R
r=1 wrA

(r,n)B(r,n)T and
Ω =

{
x ∈ CR

∣∣∣ω(x) ≥ 2
}
. Assume that C has full column rank.

The mixed coupled rank of {X(n)} is R and the mixed coupled
BTD of {X(n)} is unique if and only if

∀w ∈ Ω , ∃n ∈ {1, . . . ,N} : r
(
E

(n)(w)
)
> max

r|wr!0
Lr,n . (6)

Conditions (2), (4) and (6) may not be easy to verify
in practice. On the other hand, they are necessary for
uniqueness when C has full column rank. For conditions
that are not necessary but easier to verify and for exam-
ples, we refer to [14], [15].

IV. Application in array Processing
Let us explain how coupled tensor decompositions

may be used in array processing for a scenario with
widely separated colocated antenna arrays and oversam-
pling as third diversity. More precisely, we extend the
approach in [13] to the case of incoherent channels with
small delay spread and widely separated colocated an-
tenna arrays. We note in passing that the coupled tensor
decomposition approach can also be extended to the case
of large delay spread. Due to space considerations this
is not further discussed.

Consider a system with R users in which the transmit-
ted signal from user r is of the form xr(t) =

∑
k∈N g(t −

kT)s(r)(t), where g(t) is a pulseshaping function with
support [0, Lg], T is the normalized pulse period which
we set to T = 1 and s(r)(t) is the transmitted symbol at
time instant t. The nth receive antenna array is equipped
with In antennas and samples the data at a rate Jn times
the symbol rate. As in [13] we assume that the channel
between user r and the nth receive antenna array can be
characterized by Pr,n distinct paths each characterized by
a delay τp,r,n ∈ R and a gain factor βp,r,n ∈ C. The outputs
of the nth receive antenna array at oversampling periods
1 ≤ j ≤ Jn and symbol periods 1 ≤ k ≤ K can be stored in
a tensor Y(n) ∈ CIn×Jn×K with decomposition (e.g. [13]):

Y(n) = X(n) +V(n) =

R∑

r=1

Pr,n∑

pr=1

a(r,n)
pr
◦ h(r,n)

pr
◦ s(r) +V(n), (7)

where a(r,n)
pr
∈ CIn is the array response vector for the

prth path of user r to the nth receive array, h(r,n)
pr
=

βp,r,n

[
g
(
−τp,r,n

)
, . . . , g

(
Jn−1

Jn
− τp,r,n

)]
∈ CJn is the channel

impulse response for the prth path of user r to the nth
receive array, where it is assumed that the delay spread
is sufficiently small so that maxp,r,n

(
Lg + τp,r,n

)
< T = 1,

s(r) =
[
s(r)(1), . . . , s(r)(K)

]T
∈ CK, and V(n) ∈ CIn×Jn×K

represents noise. The vectors h(r,n)
pr

add little diversity
since they are all similar, making (7) a difficult signal
separation problem. In practice, Pr,n may not be known
in advance. For the case where min

(∑N
n=1 InJn,K

)
≥ R we

can in some instances first determine R via a singular
value decomposition of a matrix representation of {Y(n)},
see [14], [15] for details. Choose a safe estimate of Pr,n

which is denoted by P̂r,n. Next, we compute the mixed
coupled (P̂r,n, P̂r,n, 1)-BTD of {Y(n)}. Finally, we may es-
timate the integers {Pr,n} from an investigation of the
linear (in)dependencies among the columns of the factor
matrices of the (P̂r,n, P̂r,n, 1)-BTDs of Y(n), n ∈ {1, . . . ,N}.
In sections III-A and III-B we have explained that cou-
pled tensor decompositions lead to better identifiability
conditions. We now demonstrate that coupled tensor de-
compositions can also lead to more robust computations.

Let us compare a signal separation method which
exploits the coupling in (7) with a method that only
exploits the individual tensor decomposition structure
in (7). The distance between the symbol matrix S =[
s(1), . . . , s(R)

]
∈ CK×R and its estimate Ŝ, is measured

as P (S) = minΠΛ
∥∥∥∥S − ŜΠΛ

∥∥∥∥
F
/ ‖S‖F. where Π denotes

a permutation matrix and Λ denotes a diagonal ma-
trix. The Signal-to-Noise Ratio (SNR) is measured as

SNR [dB] = 10 log
(∑

n,i, j,k

∣∣∣∣x(n)
i jk

∣∣∣∣
2
/
∑

n,i, j,k

∣∣∣∣v(n)
i jk

∣∣∣∣
2)

.

Consider first the case where Pr,n = 1, ∀r, n. In that
case the decomposition (7) corresponds to a perturbed
coupled CPD. We set R = 3, N = 2 Pr,n = 1, In = 3,
Jn = 5 and K = 50. The individual CPDs will be
computed by the Simultaneous Matrix Diagonalization
(SMD) method described in [3], while the coupled CPD
will be computed by an extension of the SMD method
to the coupled CPD case, described in [15]. The mean
P (S) value over 100 trials for varying SNR can be seen
in figure 1. It is clear that the SMD method for coupled
CPD yields a better performance than the SMD method
for ordinary CPD based on Y(1).

Consider now the case where Pr,n ≥ 2 for at least one
pair (r, n). In that case (7) corresponds to a perturbed
mixed coupled BTD. Let us compare a signal separation
method which exploits the mixed coupled BTD structure
in (7) with a method that only exploits the individual
multilinear rank-(Pr,n,Pr,n, 1) term decomposition struc-
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ture in (7). We set R = 2, N = 2, In = 3, Jn = 5,
K = 50 and Pr,n = 2, ∀r, n. The individual multilinear
rank-(Pr,n,Pr,n, 1) term decompositions will be computed
by means of an extension of the SMD method described
in [10] while the mixed coupled BTD will be computed
by means of an extension of the SMD described in [15].
The mean P (S) value over 100 trials for varying SNR can
be seen in figure 2. Again it is clear that the SMD method
for mixed coupled BTD yields a better performance than
the SMD method for the decomposition of Y(1) into
multilinear rank-(Pr,1,Pr,1, 1) terms.
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CPD of  Y(1)

Fig. 1. Mean P (S) for varying SNR, case 1
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Fig. 2. Mean P (S) for varying SNR, case 2.

V. Conclusion

Tensor decompositions have already proven to be
useful in array signal processing. To increase the spatial
diversity of a communication system, the use of several
widely separated antenna arrays has been proposed.
However, the existing tensor-based methods are mainly
limited to array processing problems involving a single
colocated antenna array. To accommodate the use of sev-
eral widely separated antenna arrays, we have studied
and developed several new coupled tensor decomposi-
tion models, of which two are briefly discussed in this
paper. We first briefly explained that coupled tensor
decompositions lead to better uniqueness conditions.
Thereafter, we demonstrated by means of computer sim-
ulations that they also lead to a more robust estimation
of the transmitted symbol vectors.
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