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ABSTRACT

This paper presents a first-order analytical performance assessment

of the 1-D non-circular (NC) Standard ESPRIT and the 1-D NC Uni-

tary ESPRIT algorithms both using structured least squares (SLS)

to solve the set of augmented shift invariance equations. These

high-resolution parameter estimation algorithms were designed

for strictly second-order (SO) non-circular sources and provide a re-

duced estimation error as well as an increased identifiability of twice

as many sources. Our results are based on a first-order approxima-

tion of the estimation error that is explicit in the noise realizations

and asymptotic in the effective signal-to-noise ratio (SNR), i.e.,

the approximation becomes exact for either high SNRs or a large

sample size. We also find mean squared error (MSE) expressions,

where only the assumptions of a zero mean and finite SO moments

of the noise are required. Simulations show that the asymptotic

performance of both algorithms is asymptotically identical in the

high effective SNR.

Index Terms— Performance analysis, Unitary ESPRIT, non-

circular sources, structured least squares, DOA estimation.

1. INTRODUCTION

ESPRIT-type parameter estimation algorithms [1], [2] are some of

the most prominent subspace-based high-resolution schemes and

have gained a vast research interest. Due to their fully algebraic

estimates and their low complexity, they are specifically attractive

for a broad variety of applications such as radar, sonar, and wireless

communications. With their increasing popularity, the importance of

their analytical performance analyses has been stressed. The authors

of [3] provide a first-order error approximation for 1-D Standard ES-

PRIT caused by the perturbed subspace estimate due to a small noise

contribution, which is asymptotic in the effective signal-to-noise ra-

tio (SNR), i.e., the result becomes exact for either high SNRs or a

large sample size. This work was extended to R-D Unitary ESPRIT

and R-D Standard/Unitary Tensor-ESPRIT in [4], where also the

assumption of a circularly symmetric noise distribution for the mean

squared error (MSE) in [3] was relaxed so that only a zero mean and

finite second-order (SO) statistics of the noise are required. While

[4] only considers least squares (LS) to solve the overdetermined set

of shift invariance equations, its improved version, structured least

squares (SLS) [5], has been integrated into the performance analysis

presented in [6].

This work was supported by the International Graduate School on Mo-

bile Communications (MOBICOM), Ilmenau, Germany.

Recently, a number of improved parameter estimation schemes

such as NC Standard ESPRIT [7] and NC Unitary ESPRIT [8] have

been developed to exploit a priori knowledge about the source sig-

nals, i.e., their strict SO non-circularity. Examples include BPSK,

ASK, and PAM-modulated signals. By applying a preprocessing

procedure similar to the concept of widely-linear processing and

thereby introducing additional degrees of freedom, the array aper-

ture is virtually doubled. This results in a significantly reduced es-

timation error and the ability to detect twice as many sources. The

analytical performance assessment of 1-D NC Standard ESPRIT and

1-D NC Unitary ESPRIT both using LS was presented in [9]. It was

shown that NC Standard ESPRIT and NC Unitary ESPRIT have the

same asymptotic performance in the high effective SNR and that NC

Unitary ESPRIT does not require a centro-symmetric array structure

unlike Unitary ESPRIT [2]. However, the performance analysis for

the SLS solution of the augmented shift invariance equation has not

been reported in the literature.

In this paper, we further extend the analytical performance as-

sessment of 1-D NC Standard/Unitary ESPRIT using LS in [9] by

incorporating one iteration of SLS [6] to solve the augmented shift

invariance equation. We find the explicit first-order expansion for the

estimation error in terms of the noise realization and generic MSE

expressions, where we only assume that the noise has a zero mean

and finite SO statistics, but no assumptions about the noise distribu-

tion are needed. Moreover, we show that in analogy to the LS case

[9], the asymptotic performance of NC standard ESPRIT and NC

Unitary ESPRIT both using SLS is asymptotically identical in the

high effective SNR.

2. DATA MODEL FOR NC STRUCTURED LEAST
SQUARES

We consider N subsequent snapshots of d narrowband signals in the

far-field received by an arbitrarily formed shift-invariant M -element

sensor array. The observations can be modeled as

X = AS +N ∈ C
M×N , (1)

where A = [a(µ1), . . . ,a(µd)] ∈ C
M×d is the array steering ma-

trix that contains the d array steering vectors a(µi) corresponding

to the i-th spatial frequency with i = 1, . . . , d, S ∈ C
d×N repre-

sents the source symbol matrix and N ∈ C
M×N models the addi-

tive noise samples. In the presumed case of strictly SO non-circular

sources, the complex symbol amplitudes of each source form a ro-

tated line in the complex plane so that S can be written as

S = ΨS0, (2)
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where S0 ∈ R
d×N is a real-valued symbol matrix and Ψ =

diag{ejϕi}di=1 contains complex phase shifts on its diagonal that

can be different for each signal.

Applying a preprocessing procedure to (1) in order to exploit

the sources’ strict SO non-circularity, we define the augmented mea-

surement matrix X(nc) [8], [9] as

X
(nc) =

[

X

ΠMX∗

]

=

[

A

ΠMA∗
Ψ

∗
Ψ

∗

]

S +

[

N

ΠMN∗

]

(3)

= A
(nc)

S +N
(nc) = X

(nc)
0 +N

(nc) ∈ C
2M×N , (4)

where ΠM ∈ R
M×M is the exchange matrix with ones on its anti-

diagonal and zeros elsewhere, used to facilitate the real-valued im-

plementation of NC Unitary ESPRIT [8], and X
(nc)
0 ∈ C

2M×N

is the noise-free augmented measurement matrix. The extended di-

mensions of A(nc) ∈ C
2M×d can be interpreted as a virtual dou-

bling of the number of sensor elements, which also doubles the num-

ber of detectable sources and provides a lower estimation error. If

the physical array is shift-invariant, J1AΦ = J2A holds, where J1

and J2 ∈ R
M(sel)

×M are the selection matrices for the two subar-

rays and Φ = diag{[ejµ1 , . . . , ejµd ]} ∈ C
d×d contains the desired

spatial frequencies. It can be shown that in this case, the augmented

array steering matrix A(nc) is also shift-invariance-structured so that

J
(nc)
1 A

(nc)
Φ = J

(nc)
2 A

(nc), (5)

where the (2M (sel)×2M)-dimensional selection matrices in the NC

case are defined by

J
(nc)
1 =

[

J1 0

0 ΠM(sel)J2ΠM

]

,J
(nc)
2 =

[

J2 0

0 ΠM(sel)J1ΠM

]

.

The augmented signal subspace Û
(nc)
s ∈ C

2M×d is estimated

by computing the d dominant left singular vectors of X(nc). As

A(nc) and Û
(nc)
s span approximately the same column space, a non-

singular matrix T ∈ C
d×d can be found such that A(nc) ≈ Û

(nc)
s T .

Then, the augmented shift invariance equation can be expressed as

J
(nc)
1 Û

(nc)
s Υ ≈ J

(nc)
2 Û

(nc)
s , (6)

where Υ ≈ TΦT−1. Often, the unknown matrix Υ is estimated

using the least squares (LS) solution, i.e.,

Υ̂LS =
(

J
(nc)
1 Û

(nc)
s

)+

J
(nc)
2 Û

(nc)
s ∈ C

d×d, (7)

where (·)+ stands for the Moore-Penrose pseudo inverse. Finally,

the estimates of the desired spatial frequencies are extracted by µ̂i =

arg{EVi{Υ̂LS}}, where EVi{Υ̂LS} is the i-th eigenvalue of Υ̂LS.

A more accurate estimate of Υ than (7) can be obtained via the

structured least squares (SLS) algorithm [5]. It improves the LS so-

lution by allowing for errors on both sides of the augmented shift

invariance equation, i.e., errors in Û
(nc)
s and Υ, and additionally

takes into account the dependency of these errors due to the subar-

ray overlap. Specifically, SLS solves the minimization problem

min
∆Υ,∆U

(nc)
s,SLS

∥

∥J
(nc)
1 (Û (nc)

s +∆U
(nc)
s,SLS)(Υ̂LS +∆ΥSLS)

−J
(nc)
2 (Û (nc)

s +∆U
(nc)
s,SLS)

∥

∥

2

F
+ κ2

∥

∥∆U
(nc)
s,SLS

∥

∥

2

F
, (8)

where κ is the regularization factor. The problem (8) is quadratic

and solved iteratively by successive local linearization. However, it

is asymptotically linear such that the first iteration is already suffi-

cient in the high effective SNR regime. Therefore, we also limit the

presented asymptotic performance analysis to one iteration. Addi-

tionally, we set κ = 0, since no regularization is required in the high

effective SNR regime.

3. PERFORMANCE OF NC STANDARD ESPRIT WITH SLS

It was shown in [9] that the first-order analytical framework devel-

oped in [3] is directly applicable to the preprocessed model (4) for

1-D NC Standard/Unitary ESPRIT, where the authors only consid-

ered LS to solve the set of augmented shift invariance equations.

Inspired by the work in [6], we here extend the performance analy-

sis of 1-D NC Standard ESPRIT [9] to the case of using SLS to solve

the overdetermined set of augmented shift invariance equations. We

find a first-order expression for the parameter estimation error and

an MSE expression for the case when SLS is incorporated.

From [9], we know that the estimation error of the i-th spatial

frequency obtained by the LS solution may be expressed as

∆µi = Im
{

p
T
i ∆ΥLSqi

}

/λi +O{∆2} with (9)

∆ΥLS =
(

J
(nc)
1 U

(nc)
s

)+(

J
(nc)
2 ∆U

(nc)
s − J

(nc)
1 ∆U

(nc)
s Υ

)

,

where ∆ = ‖N (nc)‖ with ‖ · ‖ being a submultiplicative norm, qi

represents the i-th eigenvector of Υ, i.e, the i-th column vector of the

eigenvector matrix Q, and pT
i is the i-th row vector of P = Q−1.

Hence, the eigendecomposition of Υ, which is the solution to (6) in

the noiseless case, is given by

Υ = QΛQ
−1, (10)

where the diagonal matrix Λ contains the eigenvalues λi = ejµi

on its diagonal. The matrix ∆U
(nc)
s denotes the signal subspace

estimation error according to Û
(nc)
s = U

(nc)
s +∆U

(nc)
s and is given

by the expression

∆U
(nc)
s = U

(nc)
n U

(nc)H

n N
(nc)

V
(nc)
s Σ

(nc)−1

s +O{∆2}. (11)

The matrices U
(nc)
n ∈ C

2M×(2M−d), V
(nc)
s ∈ C

N×d, and Σ
(nc)
s ∈

C
d×d are extracted from the economy size SVD of the noise-free

measurement matrix X
(nc)
0 , where the columns of U

(nc)
n and V

(nc)
s

span the noise subspace and the row space respectively, and Σ
(nc)
s

is the diagonal matrix with the singular values on its diagonal. It

should be noted that (11) is explicit in the noise term N (nc) and

thus, no assumptions about the statistics of N are required.

In order to incorporate SLS into the performance analysis, we

only consider one iteration and set κ = 0 as discussed before. We

expand (8) and apply the property vec{AXB} = (BT ⊗ A) ·
vec{X} for arbitrary matrices A, B, and X of appropriate sizes.

Hence, (8) reduces to

min
∆υSLS, ∆u

(nc)
s,SLS

∥

∥

∥

∥

r̂
(nc)
LS + F̂SLS

[

∆υT
SLS ∆u

(nc)T

s,SLS

]T
∥

∥

∥

∥

2

2

, (12)

where ∆υSLS = vec{∆ΥSLS}, ∆u
(nc)
s,SLS = vec{∆U

(nc)
s,SLS}, and

the augmented residual vector r̂
(nc)
LS and the update matrix F̂SLS are

expressed as

r̂
(nc)
LS = vec

{

J
(nc)
1 Û

(nc)
s Υ̂LS − J

(nc)
2 Û

(nc)
s

}

and

F̂SLS =
[

Id ⊗
(

J
(nc)
1 Û

(nc)
s

) (

Υ̂
T
LS ⊗ J

(nc)
1

)

−
(

Id ⊗ J
(nc)
2

)

]

.
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The solution to (12) is

[

∆υT
SLS ∆u

(nc)T

s,SLS

]T

= −F̂
+
SLSr̂

(nc)
LS . (13)

Next, to find a first order approximation for the desired term ∆υSLS

in (13), we need the expansions of F̂+
SLS and rLS. Hence, we intro-

duce the error term Υ̂LS = Υ+∆ΥLS, so that we obtain

F̂
+
SLS = F

+
SLS +O{∆} and (14)

rLS = W
(nc)
R,U ∆u

(nc)
s +O{∆2}, (15)

where

FSLS =
[

Id ⊗
(

J
(nc)
1 U

(nc)
s

) (

Υ
T ⊗ J

(nc)
1

)

−
(

Id ⊗ J
(nc)
2

)

]

and

W
(nc)
R,U =

(

Υ
T ⊗ J

(nc)
1

)

+ Id ⊗
(

J
(nc)
1 U

(nc)
s

·
(

J
(nc)
1 U

(nc)
s

)+

J
(nc)
2

)

−Υ
T ⊗

(

J
(nc)
1 U

(nc)
s

·
(

J
(nc)
1 U

(nc)
s

)+

J
(nc)
1

)

−
(

Id ⊗ J
(nc)
2

)

. (16)

Inserting (14) and (15) into (13) and dropping the second block of

FH
SLS contained in F+

SLS = FH
SLS

(

FSLSF
H
SLS

)

−1
to extract ∆υSLS

[6], we have

∆υSLS = −
(

Id⊗
(

J
(nc)
1 U

(nc)
s

))H

·
(

FSLSF
H
SLS

)

−1

W
(nc)
R,U ∆u

(nc)
s . (17)

Then, the accumulated error after performing the first iteration of

SLS is

Υ̂SLS −Υ = ∆ΥLS +∆ΥSLS, (18)

where ∆ΥLS was given in (9) and ∆ΥSLS is the unvectorized ver-

sion of (17). Next, we modify (9) by inserting (18) to write the

first-order error expansion of the i-th spatial frequency as

∆µi,SLS = Im
{

p
T
i

(

∆ΥLS +∆ΥSLS

)

qi

}

/λi +O{∆2}. (19)

Finally, to compute the MSE expression for NC Standard ESPRIT

with SLS, we extend the result for LS in [9]. In [9] the authors

have shown that the preprocessing procedure (3) does not violate

the required assumptions of a zero mean and finite SO moments of

the noise in order for the MSE expressions in [4] to be applicable

in the NC case. As the incorporation of SLS instead of using LS

merely provides a more accurate solution to the augmented shift in-

variance equation, we derive the MSE expression for the i-th spatial

frequency in the SLS case, inspired by [9], as

E
{

(∆µi,SLS)
2} =

1

2

(

r
(nc)H

i,SLS W
(nc)∗

R
(nc)T

nn W
(nc)T

r
(nc)
i,SLS

−Re
{

r
(nc)T

i,SLSW
(nc)

C
(nc)T

nn W
(nc)T

r
(nc)
i,SLS

})

+O{∆2},
(20)

where

r
(nc)
i,SLS = qi ⊗

([(

J
(nc)
1 U

(nc)
s

)+ (

J
(nc)
2 /λi − J

(nc)
1

) ]T

pi

)

−W
(nc)T

R,U

(

FSLSF
H
SLS

)

−T

qi ⊗
((

J
(nc)
1 U

(nc)
s

)

∗

/λipi

)

and

W
(nc) =

(

Σ
(nc)−1

s V
(nc)T

s

)

⊗
(

U
(nc)
n U

(nc)H

n

)

.

The expressions for the covariance matrix R
(nc)
nn and the pseudo-

covariance matrix C
(nc)
nn of n(nc) = vec{N (nc)} ∈ C

2MN×1 re-

quired in (20) were derived in [9]. They are given by

R
(nc)
nn = E

{

n
(nc)

n
(nc)H

}

∈ C
2MN×2MN

(21)

= K̃

[

Rnn Cnn(IN ⊗ΠM )
(IN ⊗ΠM )C∗

nn (IN ⊗ΠM )R∗

nn(IN ⊗ΠM )

]

K̃
H

and

C
(nc)
nn = E

{

n
(nc)

n
(nc)T

}

∈ C
2MN×2MN

(22)

= K̃

[

Cnn Rnn(IN ⊗ΠM )
(IN ⊗ΠM )R∗

nn (IN ⊗ΠM )C∗

nn(IN ⊗ΠM )

]

K̃
T ,

where K̃ = KT
2M,N (I2 ⊗KM,N ) is of size 2MN × 2MN with

the MN × MN commutation matrix KM,N being the matrix that

satisfies [10]

KM,N · vec{A} = vec{AT } (23)

for arbitrary matrices A ∈ C
M×N . Thus, the SO statistics of n(nc)

in (21) and (22) can be expressed by means of the covariance ma-

trix Rnn = E{nnH} and the pseudo-covariance matrix Cnn =
E{nnT } of the physical noise n = vec{N} ∈ C

MN×1. Note

that (21) and (22) simplify to R
(nc)
nn = σ2

nI2MN and C
(nc)
nn =

σ2
n(IN ⊗ Π2M ) in the special case of zero-mean white circularly

symmetric noise with Rnn = σ2
nIMN and Cnn = 0MN .

4. PERFORMANCE OF NC UNITARY ESPRIT WITH SLS

We have shown in [9] that NC Standard ESPRIT and NC Unitary

ESPRIT both using LS have the same analytical performance in the

high effective SNR. The additional features of NC Unitary ESPRIT

are the incorporation of forward-backward averaging (FBA) and the

transformation into the real-valued domain to reduce the computa-

tional complexity. It was shown that applying FBA to the augmented

measurement matrix X(nc) does not improve the signal subspace es-

timate and that the real-valued transformation has no effect on the

estimation performance in the high effective SNR regime.

The same behavior of an asymptotically identical performance

of NC Standard ESPRIT and NC Unitary ESPRIT holds true when

SLS is applied instead of LS. This is due to the fact that using SLS to

solve the augmented shift invariance equation only provides a more

accurate solution. It can be proven that the NC signal subspace for

NC Standard ESPRIT and NC Unitary ESPRIT is modified in the

same way.

5. SIMULATION RESULTS

In this section, we provide simulation results for the presented per-

formance analysis of 1-D NC Standard/Unitary ESPRIT using SLS

to solve the augmented shift invariance equation. We compare the

results found analytically with the empirical estimation errors ob-

tained by averaging over Monte Carlo trials. We consider a uniform

linear array (ULA) composed of M = 10 isotropic sensor elements

with interelement spacing δ = λ/2 and assume that d sources with

unit power and symbols drawn from a real-valued Gaussian distri-

bution impinge on the array. Furthermore, we assume white Gaus-

sian circularly symmetric noise at the sensor elements with σ2
n =

10(−SNR/10) as discussed at the end of Section 3. The curves show
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Fig. 1. Analytical and empirical RMSEs versus SNR for M = 10, N = 20,

d = 2 correlated sources (ρ = 0.9) at µ1 = −0.1 and µ2 = 0.1 with

rotation phases ϕ1 = 0 and ϕ2 = π/4.

the total root mean squared error (RMSE) of the empirical simula-

tions (“emp”) for NC Standard ESPRIT with SLS (NC SE SLS), NC

Unitary ESPRIT with SLS (NC UE SLS), and the square root of the

analytical MSE expression (20) denoted as (“ana”). We also com-

pare our results to their counterparts using LS and the deterministic

NC Cramér-Rao bound [11]. The results are obtained by averaging

over 5000 Monte Carlo trials.

In Fig. 1, we illustrate the RMSE as a function of the SNR. We

assume d = 2 closely-spaced sources positioned at the spatial fre-

quencies µ1 = −0.1 and µ2 = 0.1 with a pair-wise correlation of

ρ = 0.9. The number of snapshots is N = 20 and the rotation

phases contained in Ψ are given by ϕ1 = 0 and ϕ2 = π/4. It can

be seen that the analytical results agree well with the empirical esti-

mation errors for high SNRs. This also validates that the asymptotic

performance of NC Standard ESPRIT and NC Unitary ESPRIT both

using SLS is identical.

In Fig. 2, we display the RMSE versus the number of snapshots

N . We have a scenario with d = 4 uncorrelated sources impinging

from the directions µ1 = −0.5, µ2 = 0, µ3 = 0.5, µ4 = 1, where

the SNR is chosen to be 10 dB. The rotation phases are given by

ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/8, and ϕ4 = π/4. Again, the analyt-

ical curve already agrees well with the empirical ones if only a low

number of snapshots is available. Moreover, the empirical estima-

tion errors of NC Standard ESPRIT and NC Unitary ESPRIT both

using SLS match for a large sample size. The simulation results ver-

ify that the analytical expressions become exact as either the SNR or

the number of snapshots becomes large.

6. CONCLUSION

In this paper, we have presented a first-order analytical performance

analysis of 1-D NC Standard ESPRIT and 1-D NC Unitary ESPRIT

both using SLS to solve the augmented shift invariance equation.

We have derived a first-order approximation of the estimation error,

which is asymptotic in the effective SNR and an explicit function of

the noise perturbation, where no assumptions about the noise statis-

tics are required. We have also found generic MSE expressions, that

only assume the noise to be zero-mean and its SO moments to be

finite. Furthermore, we have demonstrated via simulations that the

5 10 20
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−2

10
−1

Snapshots N

R
M

S
E

 (
ra

d
)

 

 

LS NC SE emp
LS NC UE emp

LS NC SE/UE ana
SLS NC SE emp
SLS NC UE emp

SLS NC SE/UE ana
Det NC CRB

Fig. 2. Analytical and empirical RMSEs versus the snapshots N for M =

10, SNR = 10 dB, d = 4 sources at µ1 = −0.5, µ2 = 0, µ3 = 0.5,

µ4 = 1 with rotation phases ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/8, ϕ4 = π/4.

empirical curves match the analytical ones and shown that the analyt-

ical performance of NC Standard ESPRIT and NC Unitary ESPRIT

using SLS is the same in the high effective SNR. At low SNRs, how-

ever, NC Unitary ESPRIT with SLS performs better while requiring

a lower complexity and should therefore be preferred in practice.
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