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Abstract— The disturbance covariance matrix in radar space
time adaptive processing (STAP) must be estimated from train-
ing sample observations. Traditional maximum likelihood (ML)
estimators are effective when training is generous but lead
to degraded false alarm rates and detection performance in
the realistic regime of limited training. We exploit physically
motivated constraints such as 1.) rank of the clutter subspace
which can be inferred using existing physics based models
such as the Brennan rule, and 2.) the Toeplitz constraint that
applies to covariance matrices obtained from stationary random
processes. We first provide a closed form solution of the rank
constrained maximum likelihood (RCML) estimator and then
subsequently develop an efficient approximation under joint
Toeplitz and rank constraints (EASTR). Experimental results
confirm that the proposed EASTR estimators outperform state-
of-the-art alternatives in the sense of widely used measures
such as the signal to interference and noise ratio (SINR) and
probability of detection – particularly when training support is
limited.

I. INTRODUCTION

Space time adaptive processing (STAP) is widely used in
modern radar signal processing since it creates an ability to
suppress interfering signals while simultaneously preserving
gain on the desired signal. Interference statistics, in particular
the disturbance covariance matrix which plays a vital role in
STAP must be estimated from training samples. In the absence
of any prior knowledge about the interference environment, a
challenge for STAP is that a large number of homogeneous
(target free) disturbance training samples are required for
STAP to be successful. Since generous homogeneous observa-
tions are generally not available, many approaches exploiting
particular structure of the disturbance covariance matrix have
been developed to overcome this practical issue of lack of
generous training. Examples of structure include persymmetry,
circulant structure, physical constraints, and so on.

The fast maximum likelihood (FML) method [1] which
enforces special eigenstructure was proposed and in fact is
shown to be the most competitive technique experimentally.
In particular, the disturbance covariance matrix obeys the
following structure

R = σ2I+Rc, (1)

where Rc represents rank deficient clutter matrix which is
positive semi-definite and I is an identity matrix. The FML
technique enforces all eigenvalues of the estimated covariance
matrix to be greater than σ2. Recently Kang et al. proposed the
rank constrained ML (RCML) estimation which incorporates
the rank of the clutter covariance matrix, Rc, explicitly into
ML estimation of the disturbance covariance matrix [2]. Their
solution is shown to be optimal for all training regimes.

Since the covariance matrix from a stationary stochastic sig-
nal is Hermitian and Toeplitz, estimating Toeplitz covariance
benefits many applications such as array processing and time
series analysis. The seminal work by Burg et al. [3] proposed
an iterative method for estimation of structured covariance
matrices using the ML method in its full generality . Li
et al. developed the asymptotic maximum likelihood (AML)
estimation for structured covariance matrices [4] using the
extended invariance principle (EXIP) [5]. Approximation of
arbitrary matrices by a (Hermitian) Toeplitz matrix using ma-
trix decompositions and outer approximations has separately
been pursued in applied mathematics. Of particular interest
is Al-Homidan’s l1 sequential quadratic programming (SQP)
method to find the nearest symmetric positive semidefinite
Toeplitz matrix to given a matrix [6].

Although various methods have been proposed for esti-
mating Toeplitz covariance matrices, it is well known that
the exact ML estimation of a Hermitian Toeplitz covariance
matrix has no closed-form solution that is valid for all training
regimes. Li et al. [4] derived a closed form solution of
the asymptotic maximum likelihood (AML) estimation for
structured covariance matrices using the extended invariance
principle (EXIP). However, it is asymptotically valid, which
means it performs well only for generous homogeneous train-
ing samples which is generally not available in practice. In
the regime of realistic training, methods relying on numerical
optimization (often non-convex) such as ITAM [7] are com-
putationally involved and hence are unsuitable.

In this paper, we deal with estimation of the structural
disturbance covariance matrix under practical constraints, in
particular, the knowledge of the rank of the clutter matrix
and Toeplitz structure. First we introduce the rank constrained
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ML (RCML) estimation and then develop an efficient ap-
proximation of structured covariance under joint Toeplitz and
rank constraints (EASTR) as an extension of the RCML.
For RCML estimator, we derive a closed form solution from
the optimization problem which is initially not a convex
problem. The EASTR is based on a cascade of two closed
form solutions. The first closed form is the RCML and then
we propose a new method to perturb the eigenvalues of the
RCML estimator in a rank preserving manner so as to impose
additional Toeplitz structure. We formulate a new quadratic
programming (QP) optimization problem that solves for the
optimal eigenvalues while incorporating Toeplitz constraints
and demonstrate that this problem also admits a closed form
solution.

II. RANK CONSTRAINED ML ESTIMATION OF
STRUCTURED COVARIANCE MATRICES

Let zi ∈ CN be the i-th realization of the target-free
(stochastic) disturbance vector and K be the number of train-
ing samples. That is, i = 1, 2, . . . ,K and N is the dimension
of the vector. Therefore, in each training sample, zi, under
assumption of zero mean, obeys

f(zi) =
1

πN |R| exp(−zHi R−1zi), (2)

which comes from a zero-mean complex circular Gaussian
distribution and R is the N × N disturbance covariance
matrix. Since each observations zi are i.i.d. (independent and
identically distributed), the likelihood of observing Z given R
is given by

f(R)(Z) =
1

πNK
|R|−K exp

(−K · tr{R−1S}), (3)

where S = 1
KZZH is the well-known sample covariance

matrix. Maximizing the likelihood function is equivalent to
minimizing the following which is the cost function of the
optimization problem,

tr{S′X} − log(|X|), (4)

where X = σ2R−1 is the inverse of normalized covariance
matrix and S′ = 1

σ2S is the sample covariance matrix
normalized by σ2. Further, the cost function (4) can be sim-
plified to the function of eigenvalues of X by the eigenvalue
decomposition of X and S′ and the fairly well known fact
that the function (4) has the minimum value when both the
eigenvector matrices of X and S′ are identical [8],

dTλ− 1T logλ, (5)

where d and λ are vectors with entries of eigenvalues of S′

and X respectively and logλ = [log λ1, log λ2, · · · , log λN ]T .
Now we consider the constraints of the optimization prob-

lem, ⎧⎨
⎩

R = σ2I+Rc

rank(Rc) = r
Rc � 0

. (6)

Since rank(Rc) = r, Rc has r positive eigenvalues and the
rest eigenvalues are all zero. Consequently, from Eq. (1), R
has r eigenvalues greater than or equal to σ2 and the rest
eigenvalues equal to σ2. Now let the i-th eigenvalue of X
be λi. Since X = σ2R−1, we can readily see that X has r
positive eigenvalues less than or equal to 1 and the rest equal
to 1. Finally, the constraint about the eigenvalues of X is

0 < λ1 ≤ λ2 ≤ · · · ≤ λr ≤ λr+1 = λr+2 = · · · = 1. (7)

Now the constraint (7) can be expressed in vector and matrix
forms. First, λ1 ≤ λ2 ≤ · · · ≤ λN is Uλ � 0 where

U =

⎡
⎢⎢⎢⎣

1 −1 · · · 0

0
. . . . . . 0

0 · · · 1 −1
0 · · · 0 −1

⎤
⎥⎥⎥⎦ ∈ RN×N . (8)

Second, 0 < λi ≤ 1 which can be expressed by

ε � λ � 1, (9)

where ε is a vector with all entries equal to the same constant
ε such that ε is picked close to zero. The final constraint is
λr+1 = λr+2 = · · · = λN = 1, and is expressed as

Eλ = h, (10)

where

E =

[
0r×r 0r×(N−r)

0(N−r)×r IN−r

]
∈ RN×N (11)

and h = [0, 0, · · · , 0r, 1, 1, · · · , 1]T .
We therefore have the following optimization problem.

⎧⎨
⎩

min
λ

dTλ− 1T logλ

s.t. Fλ � g
Eλ = h

, (12)

where F =
[
UT −I I

]T
, g =

[
0T −εT 1T

]T
.

The optimization problem (12) is obviously a convex optimiza-
tion problem because the cost function is a convex function
and feasible constraint sets are convex as well. A closed form
solution for (12) can in fact be derived using KKT conditions
[9] in constrained optimization and shown in [2]. It should be
noted that this is a generalization of the FML solution in [1]
with the rank-information incorporated.

III. EFFICIENT APPROXIMATION OF STRUCTURED
COVARIANCE UNDER JOINT TOEPLITZ AND RANK

CONSTRAINTS

The EASTR now involves enforcing the Toeplitz structure
on top of the RCML estimator. The EASTR is based on a
cascade of two closed form solutions that capture the rank
and Toeplitz constraints respectively. We modify the RCML
estimate in way that the Toeplitz structure is captured but
without compromising the rank constraint. To do that, we
optimize the eigenvalues of the clutter matrix Rc so that
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Rc be Toeplitz. Let the eigenvector matrix of S be Φ1

and the eigenvalues of Rc be λ1, λ2, . . . , λr, . . . , λN . Since
rank(Rc) = r, λr+1 = λr+2 = · · · = λN = 0. Therefore,
Rc can be expressed as

Rc = ΦΛΦH , (13)

where Λ is a diagonal matrix with r positive eigenvalues and
N − r zero’s as diagonal entries. Therefore, ijth component
of Rc is given by

(Rc)ij =

r∑
k=1

λkφikφ
∗
jk. (14)

Note that Rc is already Hermitian, that is, (Rc)ij = (Rc)
∗
ji.

Now in order for Rc to be Toeplitz matrix, all elements in each
diagonal must be same. For example, in the main diagonal,

(Rc)11 = (Rc)22 = · · · = (Rc)NN (15)

must hold. Let’s see the first equation, (Rc)11 = (Rc)22. It
can be expressed as in vector form,

[
φ11φ

∗
11 − φ21φ

∗
21 · · · φ1rφ

∗
1r − φ2rφ

∗
2r

]
⎡
⎢⎣

λ1

...
λr

⎤
⎥⎦ = 0.

(16)
The other equations also can be expressed as the vector form
like Eq. (16). Consequentially we have totally N(N − 1)/2
equations and finally get the following equation which is a
constraint for Toeplitz matrix.

Ψλ = 0, (17)

where each row of Ψ ∈ CN(N−1)/2×r comes
from identicalness of the diagonal elements and
λ =

[
λ1 λ2 · · · λr

]T
.

Eq. (17) is a homogeneous overdetermined linear system,
that is, we have more equations than unknowns. Therefore we
consider two cases here. The first case is that we have an
infinite set of solutions when the column rank of Ψ is less
than r. On the other hand, when Ψ has a full column rank,
we have the only one trivial solution, λ = 0, which results
in the covariance matrix estimate, R̂ = σ2I, which we do not
desire. Now we derive the optimal eigenvalues for each case.

A. rank(Ψ) < r – Exact Toeplitz Solution

Let λRCML be the eigenvalues obtained from the RCML
estimator. We already know the eigenvalues λ from the RCML
estimate are the optimal ML estimate of the eigenvalues of
the true covariance matrix under only the rank constraint. We
want the eigenvalues of the clutter matrix to satisfy Eq. (17).
Since Eq. (17) has the infinite number of solutions, we find

1Note that Φ is the optimal eigenvector matrix of unconstrained (other
than normality) ML estimation of non-singular R. However, finding the
optimal solutions of the eigenvalues and the eigenvectors for Toeplitz matrix
simultaneously is very difficult and involves a computationally expensive
iterative procedure. In this paper, we focus on efficient approximation and
analytically tractable framework for exploiting both Toeplitz structure and
clutter rank though the solution can be suboptimal.

the closest vector of the eigenvalues to λRCML by solving the
following convex optimization problem.

min
λ

||λRCML − λ||2
subject to : Ψλ = 0

. (18)

The optimization problem (18) is a quadratic programming
(QP) problem with a equality constraint and therefore the
closed form solution is available using KKT condition [9] and
it is given by solving the following equations.[

2I ΨT

Ψ 0

] [
λ�

ν�

]
=

[
2λRCML

0

]
, (19)

where ν� is a vector of Lagrange multipliers.

B. rank(Ψ) = r – Toeplitz Approximation

In this case, Eq. (17) has the only one solution, λ = 0,
which does not give us any useful information about the
covariance matrix at all. Therefore, we take a little perturbation
on Ψ so that the constraint can have infinite number of
solution. We want to find the closest matrix to Ψ with the
column rank less than r. By the well-known theorem, Eckart-
Young theorem [10], we know that the closest matrix Ψ̃ to Ψ
in the sense of Frobenius norm is given by

Ψ̃ = UΣ̃VH , (20)

where Σ̃ is a diagonal matrix with r − 1 largest positive
singular values of Ψ. By substituting Ψ with Ψ̃ in Eq. (17),
we obtain the infinite number of solutions for λ.

Now we have the final optimization problem which is given
by

min
λ

||λRCML − λ||2 + γ||Ψλ||2
subject to : Ψ̃λ = 0

. (21)

Note that a regularization term in the cost function is added to
keep faithfulness to Toeplitz structure of the estimated covari-
ance matrix and the regularization parameter γ is determined
heuristically in this paper. Eq. (21) is also a QP problem with
an equality constraint and the closed form solution is available
as before.

Remark: It should be noted that the actual rank of Ψ which
is derived from Φ depends on the training data. If the true
covariance is indeed Toeplitz, we expect training samples to
reflect that particularly in the regime of K ≥ N training
samples (reasonably high training), this is indeed what we
observe in practice.

IV. EXPERIMENTAL INVESTIGATION

In this section, we compare the performance of the proposed
EASTR with alternative algorithms. We use the normalized
signal to interference and noise ratio (SINR) and probability
of detection vs. signal to noise ratio (SNR) as measurements.
The normalized SINR measure [11] is commonly used in the
radar literature and the detection probability is defined as the
probability that the value of test statistic is greater than a
threshold conditioned on the hypothesis that the received data
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Fig. 1. Normalized SINR versus number of training samples, N = 20

includes target information. We apply the normalized matched
filter (NMF) as the test statistics which is given by

|sHR−1x|2
[sHR−1s][xHR−1x]

H1

≷
H0

λNMF, (22)

where x and K are the observation vector and the number of
training samples, respectively.

We employ a radar covariance simulation model which
satisfies Toeplitz and low rank property of the true clutter
covariance matrix and was successfully used in previous
literature [12] for the experiments. In addition, the true clutter
covariance matrix generally has rank r less than N . Therefore,
this model can not only be used to simulate radar disturbance
samples but also makes ground truth covariance and the clutter
rank available. We compare four different Toeplitz covariance
estimation techniques, SMI, iterated Toeplitz approximation
method (ITAM) [7], the asymptotic maximum likelihood
(AML) [4], and EASTR.

We plot the normalized average SINR versus the number
of independent snapshots in Fig. 1. When K < N the sample
covariance is singular, therefore we used its pseudo-inverse in-
stead of inverse itself.2 The AML does particularly well when
training is generous K � N because AML is asymptotically
based. ITAM is effective in very low training as expected
because its exploits both rank and Toeplitz constraints - ITAM
does not exhibit scalable improvements as training support
is increased. By virtue of incorporating the rank information
and Toeplitz property, the proposed EASTR outperforms the
competing methods.

Fig. 2 shows the detection probability Pd plotted as a
function of SNR for different estimators. We use K = 2N =
40 training samples to estimate the covariance matrix. The
proposed EASTR is also the closest to the Pd achieved by
using the true covariance matrix (upper bound) and AML
follows EASTR.

2Note that SMI and AML have a dip when K = 20 due to numerical
instabilities in the K = N training regime. In contrast, ITAM and EASTR
guarantee nonsingularity in all training regimes.
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Fig. 2. Probability of detection vs. SNR via normalized matched filter (NMF)
test. K = 2N = 40 is used.

V. CONCLUSION

Our work focuses on estimation of structured covariance
matrices for radar STAP under practical constraints, 1.) the
rank constraint and 2.) Toeplitz structure. We introduce a
closed form solution of the RCML estimator and then develop
a new estimator that is based on a cascade of two closed forms.
Crucially, this optimization also has a closed form making the
overall estimator very friendly from a computational stand-
point. Via evaluating probability of detection and normalized
SINR, our estimators are shown to outperform traditional ef-
forts in Toeplitz and low rank covariance estimation including
those based on expensive numerical solutions.
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