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Abstract—A two-stage predictor strategy is introduced in the
context of high dimensional data (large p, small »n). Here the focus
application is a medical one: prediction of symptomatic infection
given molecular expression levels in blood. The first stage of
the two-stage predictor uses the previously introduced method
of Predictive Correlation Screening (PCS) to select a subset of
genes that are important in the prediction of symptom scores.
Selected genes are used in the second stage to learn a predictor
for the prediction of symptom scores. Under sampling budget
constraints we derive the optimal sample allocation rules to the
first and second stages of the two-stage predictor. Superiority
of the proposed predictor relative to the well known method of
LASSO is shown via experiment.

I. INTRODUCTION

Consider the problem of under-determined multivariate
linear regression in which training data {Y;, X;1, ..., X;, }7;
is given and a linear estimate of the g-dimensional response
vector Y;, 1 <17 < n <p,is desired:

Yl:alXﬂ—t——&—alep—Fel,lS?Sn, (1)

where X;; is the ith sample of regressor variable (covari-
ate) X, Y; is a vector of response variables, a; is the g-
dimensional vector of regression coefficients corresponding to
X;,1<i<n,1<j<p,and ¢ is the noise vector. In many
applications the number of regressors p is significantly larger
than the number of available samples n. Such applications arise
in gene expression array analysis, text processing of internet
documents, combinatorial chemistry, and others [1], [2]. Due to
rank deficiency of the normal equations, overfitting errors and
high computational cost, learning a linear predictor is difficult
in such applications. Recently we introduced a method called
Predictive Correlation Screening (PCS) that is specifically
designed for selecting a subset of predictive regressors in cases
where p > n [3]. A generalization of hub screening method of
[4], [5], PCS is a highly scalable technique for screening for
connected variables in a correlation graph. However, unlike the
correlation and partial correlation screening methods [4], [5],
PCS screens for connectivity in a bipartite graph between the
regressor variables {X7,...,X,} and the response variables
{Y1,...,Y,}. An edge exists in the bipartite graph between
regressor variable j and response variable k if the thresholded
min-norm regression coefficient matrix A = [ay,...,a,] has
a non-zero kj entry. The main idea behind PCS is that when
the j-th column of this thresholded matrix is identically zero
the j-th regressor variable is thrown out.
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In this paper we provide additional results on the applica-
tion of the two-stage prediction method to disease prediction,
discussed briefly in [3]. The first stage of the two-stage
predictor applies PCS to a few samples to select a subset of
genes that are important for prediction of symptom scores.
Selected genes are then used at the second stage of the two-
stage predictor to learn a linear predictor using all of the
available samples. The two-stage predictor is motivated by
applications where the cost of samples increases with p. This
is true, for example, in gene microarray experiments: a high
throughput “full genome” gene chip with p = 40,000 gene
probes can be significantly more costly than a smaller assay
that tests fewer than p = 15000 gene probes (see Fig. 1). In
this situation a cost-effective approach would be to use a two-
stage procedure: first select a smaller number of variables on a
few expensive high throughput samples and then construct the
predictor on additional cheaper low throughput samples. The
cheaper samples assay only those variables selected in the first
stage.

The optimal sample allocation for the first and second
stages of the two-stage predictor to minimize the Mean
Squared Error (MSE) of the prediction under a sampling
budget constraint is obtained. Specifically, we show that under
the assumption of sparsity of active regressors (genes), if a total
number of ¢ samples are available, it is optimal to allocate only
O(logt) samples to the first stage.

The rest of the paper is organized as follows. Section II
briefly describes the PCS method. In Sec. III we describe our
two-stage predictor in the context of flu symptom prediction
and we specify the optimal sample allocation rule. Finally,
Sec. IV presents the experimental results and a comparison
with LASSO.
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Fig. 1. Pricing per slide for Agilent Custom Micorarrays G2309F, G2513F,
G4503A, G4502A (Feb 2013). The cost increases as a function of probeset
size. Source: BMC Genomics and RNA Profiling Core. See also [3].
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II. VARIABLE SELECTION VIA PREDICTIVE
CORRELATION SCREENING

Assume X = [X;,...,Xp] and Y = [Y7,...,Y] are
random vectors of regressor and response variables, from
which n observations are available. We represent the n X p
and n X ¢ data matrices as X and Y, respectively.

The p X p sample covariance matrix S” for data X is defined
as:

n

(X4 —X), 2)

where X(i) is the ith row of data matrix X, and X is the vector
average of all n rows of X.

Consider the n x (p + ¢) concatenated matrix Z = [X, Y].
The sample cross covariance matrix S¥* is defined as the lower
left ¢ x p block of the (p + ¢) x (p + g) sample covariance
matrix obtained by (2) using Z as the data matrix instead of
X. Assume that p > n. We define the ordinary least squares
(OLS) estimator of Y given X as the min-norm solution of
the underdetermined least squares regression problem

min [V - BX%, 3)

where || A | r represents the Frobenius norm of matrix A. The
min-norm solution to (3) is the ¢ X p matrix of regression
coefficients

B = §v(s7)T, )

where AT denotes the Moore-Penrose pseudo-inverse of matrix
A. If the ith column of B is zero then the ith variable is not
included in the OLS estimator. This is the main motivation for
the proposed partial correlation screening procedure.

It can be shown that [3]:
B = (H")'D, &)

where D is a diagonal matrix with non-zero diagonal entries
and

v = (U Tuv. (6)

in which U* and UY are (n — 1) x p and (n — 1) X ¢ matrices
whose columns lie on the unit sphere in R”~1. Therefore,
screening for non-zero columns of B is equivalent to screening
for non-zero rows H"Y.

Now for a degree threshold 1 < é < ¢ and a correlation
threshold 0 < p < 1, define the graph G,(H™) as the
undirected bipartite graph with parts labeled = and y, vertices
{X1,---,Xp} in part « and {Y3,---Yg} in part y (Fig. 2,
see also [3]). For 1 < i < pand 1 < j < g, there is an
edge connecting X; and Yj if |h;f| > p, where hj} is the
(z j)th entry of H*Y. Denote by d” the degree of vertex X;
in G,(H™). For each value ¢ € {1 ,maxi<;<pdy}, and
each i, 1 <4 < p, denote by p;(0) the maximum value of the
correlation threshold p for which df > § in G,(H™). p;(0)
is in fact equal to the dth largest value |hj/[,1 < j < ¢.
pi(6) can be computed using Approximate Nearest Neighbors
(ANN) type algorithms [6], [7]. Now for each 7 define the
modified threshold p®4(§) as:

prd(8) = wipi(8), 1<i<p, @)
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Fig. 2. Predictive correlation screening thresholds the matrix H*Y in (6) to
find variables X; that are most predictive of responses Y. This is equivalent
to finding sparsity in a bipartite graph G,(H®Y) with parts = and y which
have p and g vertices, respectively. For 1 <¢ < pand 1 < j < g, vertex X;
in part z is connected to vertex Yj in part y if |hi| > p.

where w; = D(i)/>%_; D(j), in which D(i) is the ith di-
agonal element of the dlagonal matrix D in the representation

®.

Due to Propositions 1 and 2 in [3], representation (6) of
H*Y allows us to assign approximate p-values to hubs in the
graph G,(H™) under the null hypothesis of sparse covariance
matrices.

Assume Vi and Vs are two independent uniformly dis-
tributed vectors on the unit sphere in R”~!. The quantity Py(p)
is defined as the probability that either |V, — V3| < 7 or

IV1+ Va| <7 for r = /2(1 — p). Also let:
q
Ep.andp = P(5> PO(P)(S- ®)

Using definitions above, the approximate p-value assigned to
vertex X; for being a hub of degree at least § in G,(H™) is:

pos(i) ~ 1= exp(—E, 4.n.5,m9(5))- ©)

Finally selecting variables (genes) is performed by thresh-
olding the p-values assigned to the genes at the desired
significance level.

Next we introduce a bound on Familiy-Wise Error Rate
(FWER) of PCS. Consider the following ground truth model:

Y:ailXil —|—ai2X12 —|—~~~+aikXik —|—€, (10)

in which € is a noise vector that is statistically independent of
X. Assume that X follows a multivariate normal distribution
with mean 0 and covariance matrix 3 = [0y;]1<; j<p Which
satisfies the following condition:

Oij = 0ji :0, Vie {i1,~'- ,ik},j Q/{il,”- ,ik}. (11)
Therefore, active (respectively inactive) variables are only
correlated with the other active (respectively inactive) vari-
ables. Also, we assume that ¢ follows a multivariate normal
distribution with mean 0 and covariance matrix olgy,. The
following theorem bounds the probability of selection error

for PCS method with § = 1.

Theorem 1: Assume that k is known and we set PCS
algorithm to select k variables with the smallest p-values. If the
number of samples used for PCS is ©(log p), then PCS selects
the true variables X, ,---, X;,, with probability greater than

1—q/p.
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Theorem 1 is proven in [3]. Note that the constant involved
in the © above, depends on the coefficient matrix A.

III. TwWO-STAGE SYMPTOM SCORE PREDICTOR

Assume that there are a total of ¢ samples {Y;, X;};_;

available. We propose the following two-stage predictor for
prediction of symptom scores Y, as a function of gene
expression levels X;.
Stage 1. Perform PCS using n < ¢ samples to select a subset
of genes that are important in prediction of symptom scores.
Stage 2. Use all ¢ samples to obtain the OLS estimation of
symptom scores as a function of selected gene expressions
levels.

In stage 1 the predictor assays the whole genome on
n samples to select a small subset of genes using PCS.
To reduce the sampling cost, the second stage subsequently
assays only the selected genes on all available samples to
learn the predictor coefficients. We approximate the sampling
cost at first and second stages with the quantities np and
(t — n)k, respectively. Therefore, under a sampling budget u,
the following constraint must be satisfied:

np+ (t —n)k < p. (12)

The following theorem states the optimal sample allocation
rule in order to minimize the asymptotic expected MSE of
the two-stage predictor as a function of n, as ¢ — oco. The
assumptions on the data are similar to those of theorem 1.

Theorem 2: The sample allocation rule for MSE optimal
two-stage predictor introduced above is:

n:{ O(logt), c(p—k)logt+kt<p (13)
, o.w.

Theorem 2, which is proven in [3], implies that under a gener-

ous budget limit , it is optimal to allocate only n = O(logt)

samples to the first stage. However, if the budget is tight it is

better to skip the first stage of the predictor. Figure 3 shows the

allocation region as a function of sparsity coefficient 1 — k/p.
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Fig. 3. Left: surface u/p = plogt + (1 — p)t. Right: contours indicating
optimal allocation regions for p1/p = 30 and p/p = 60, where p = 1 — k/p.
See also [3].

IV. EXPERIMENTAL RESULTS

We illustrate the two-stage predictor on the Predictive
Health and Disease dataset to predict the flu symptoms scores
as a function of gene expression levels. The data was collected
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from 37 individuals enrolled in two challenge studies during
which some subjects become symptomatically ill with the
H3N2 flu virus [8]. For each subject, the gene expression
levels and the symptoms were recorded at a large number of
time points that include pre-inoculation and post-inoculation
sample times. At each time point p = 12023 gene expression
levels and 10 different symptom scores were measured. Each
symptom score takes an integer value from 0 to 4, which
measures the severity of that symptom at the corresponding
time. The goal here is to learn a predictor that can accurately
predict the symptom scores of a subject based on his measured
gene expression levels. We applied our two-stage predictor to
perform this task. The number of predictor variables (genes)
selected in the first stage is restricted to 50. Since the symptom
scores take integer values the second stage uses multinomial lo-
gistic regression instead of the OLS predictor. The performance
is evaluated by leave-one-out cross validation. To do this, the
data from all except one subject are used as training samples
and the data from the remaining subject are used as the test
samples. The final MSE is then computed as the average over
the 38 different leave-one-out cross validation trials. In each
of the experiments 18 out of the 37 subjects of the training set,
are used in first stage and all of the 37 subjects are used in the
second stage. Table I shows the result of this experiment for
two-stage PCS predictor versus two-stage LASSO predictor
[9]. We implemented LASSO using an active set type algo-
rithm [10]. Note that, in this experiment, each symptom is
considered as a one dimensional response and the two-stage
algorithm is applied to each symptom separately. It is notable
that the average symptom MSE of the two-stage PCS method
performs better than that of LASSO. Furthermore, except for
the first two symptoms, PCS performs better in predicting
the symptom scores. The inferior performance of LASSO can
be attributed to the fact that, unlike PCS, LASSO’s stage 1
variable selection is not optimized for variable detection.

TABLE 1. MSE OF THE PROPOSED TWO-STAGE PCS PREDICTOR AND
THE TWO-STAGE LASSO PREDICTOR USED FOR SYMPTOM SCORE
PREDICTION [3]. THE DATA COME FROM A CHALLENGE STUDY
EXPERIMENT THAT COLLECTED GENE EXPRESSION AND SYMPTOM DATA
FROM HUMAN SUBJECTS [8].

Symptom MSE: PCS | MSE: LASSO
Runny Nose 0.3537 0.3346
Stuffy Nose 0.5812 0.5145
Sneezing 0.3662 0.4946
Sore Throat 0.3026 0.3602
Earache 0.0761 0.0890
Malaise 0.3977 0.4840
Cough 0.2150 0.2793
Shortness of Breath 0.1074 0.1630
Headache 0.3299 0.3966
Myalgia 0.3060 0.3663
Average for all symptoms | 0.3036 0.3482

Table II shows the 50 most frequent genes selected by
PCS and LASSO. Note that for each of the 10 symptoms
38 different sets of 50 genes are selected by leaving each
subject out. Therefore, the maximum possible frequency for
selection of any gene is 10 x 38 = 380. It is observable
that genes selected by PCS are generally more frequent than
genes selected by LASSO. Hence, PCS tends to perform
more consistent in selecting genes over different subjects and
symptoms.

The 9 genes 'DMPK’, *CLIP3’, ‘'GAPDHS’, "TFCP2L1’,
’ANXA2P3’, 'RGR’, ’KLHL25’, *SRC’ and ’C9orf45’ are
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TABLE II. Top 50 MOST FREQUENT GENES SELECTED BY PCS AND
LASSO METHODS FOR THE TASK OF FLU SYMPTOM PREDICTION. WE CAN
SEE THAT PCS TENDS TO BE MORE STABLE, WITH HIGHER GENE
SELECTION FREQUENCIES, AS COMPARED TO LASSO. THERE ARE 9
GENES THAT ARE SELECTED FREQUENTLY BY BOTH METHODS WHICH ARE
SHOWN WITH BOLD FONT IN THE TABLE.

Time

(a) Heat map of the complete
genome over time for a ran-
domly selected subject (subject
#25).

Genes

Time

(c) Heat map of the top 50
frequent genes selected by PCS
over time for a randomly se-
lected subject (subject #25).

Symptoms

2
1
. !0
-1
2

Time

(b) Heat map of the standard-
ized symptom scores over time
for a randomly selected sub-
ject (subject #25). The subject
shows severe symptoms, shown
in red.

Genes

Time

(d) Heat map of the top 50 fre-
quent genes selected by LASSO
over time for a randomly se-
lected subject (subject #25).

Genes (PCS) | Frequency || Genes (LASSO) | Frequency
"TRAF2’ 207 ’GAPDHS’ 144
"CTPS2’ 192 "MARCO’ 115
’NR2C2’ 155 ’SNORA64’ 113
’ZNHIT2’ 153 *728985_at’ 103
’CYorf45’ 152 "MAFK’ 78
"HMGAT’ 148 ’ANXA2P3’ 73
’GMPPB’ 143 "LGALS2’ 73
’RCANT’ 139 ’ADAMTSS’ 72
’CLIP3’ 115 ’SRC’ 71
’KLHL25’ 115 "C4orf18’ 70
"KIAA0133’ 115 ’KLHL25” 68
’PAFAHIB3” | 113 "Clorfl15° 64
"TXNLA4B’ 113 "CAMK#’ 64
’GAPDHS’ 112 "CLEC10A’ 62
"ZFP64’ 112 "EPS8’ 62
’PTDSS2’ 112 "TRIB3’ 62
"F10° 111 ’CLIP3’ 59
’PCYT2’ 111 "KLC2’ 59
’RGR’ 111 ’CYorf45’ 59
’ELMO3’ 111 "TOMM40’ 58
’AKR7A3’ 110 "CLIP4 58
"THSD4’ 110 "ZFHX3’ 55
’SQSTMI” 110 ’ALDH2’ 54
’GLRX3’ 107 "NOL6’ 53
’SRC’ 106 "BTBD2’ 52
XYLT2 103 "SMGS’ 51
*ASH2IY 102 "TRIM32’ 48
"TADA3L’ 94 "C3ARY’ 46
"BRCAI’ 92 'RUFY3’ 45
"TPM3’ 91 ’BICDY” 45
’SYNJ2? 91 ’CD300C’ 44
"MYOIFE’ 88 ’SGK3’ 44
"HCFCIRYI’ 85 "TFCP2L1’ 44
’NDST2’ 83 "NR2F1’ 44
*CPT2’ 82 "GRB7’ 43
"TFCP2LY’ 82 ’ANKRD7’ 43
"ZNF446’ 80 ’DMPK’ 42
"GSTTI’ 79 "IFI27° 42
"TPPP3’ 79 "PCTK3’ 42
"ZNF576’ 79 "SIGLECI” 42
’DMPK’ 78 "GJAY’ 42
’CROCCL?2’ 76 "KIAA0556’ 41
>ALAD’ 76 "GPR20’ 41
’INPP5B’ 76 ’RGR’ 41
"MAPK7’ 76 "USP46’ 41
"CXCL13’ 75 "LOC643332’ 40
’ANXA2P3 | 75 P2’ 40
’SOCST’ 75 "FZD1’ 40
"CCDCS88A 75 "INSL3’ 39
"SYNI’ 75 ’SERPINBS’ 39

selected frequently by both methods. These genes are shown
with bold font in table II. Also, Fig. IV shows the heat map
of the 50 most frequent genes shown in table II over time, for
a randomly selected subject.

V. CONCLUSION

Using the previously proposed method of Predictive Cor-
relation Screening (PCS) we developed a two-stage predictor
of flu symptoms based on measured gene expression levels
in the blood. The first stage incorporated the PCS method to
select a subset of predictive genes. The second stage performed
multinomial logistic regression on the selected genes to learn
a predictor of the symptom scores. Experimental results estab-
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lished the advantages of the two-stage PCS predictor compared
to the two-stage LASSO predictor.
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