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Abstract— In this paper, we exploit a priori knowledge of 

building layout for imaging of stationary scenes associated with 

through-the-wall radar imaging and urban sensing. More 

specifically, the support of the part of the image corresponding to 

the exterior and interior walls is assumed known. This 

information may be available either through building blueprints 

or from prior surveillance operations. The contributions of the 

exterior and interior walls are removed from the data through 

use of projection matrices, which are determined from wall 

specific dictionaries. The wall-free data is then processed by 

delay-and-sum beamforming to obtain the image of the 

stationary indoor scene. Numerical electromagnetic data is used 

to demonstrate the effectiveness of the proposed approach. 

I. INTRODUCTION 

Through-the-wall radar imaging (TWRI) technology aims 

at achieving actionable intelligence in a reliable manner for a 

variety of applications in both civil and military paradigms 

[1]-[3]. This goal is faced with various challenges, the 

predominant one stemming from the presence of one or more 

walls between the radar and the targets. The backscatter from 

the first wall, which is the exterior wall of the building being 

imaged, is much stronger than the returns from the interior of 

the building. This is because the signal undergoes attenuation 

in the wall materials and the more walls the signal has to go 

through to reach the indoor targets, the weaker are the returns. 

Further, the reverberations in the front wall can significantly 

contaminate the radar data, especially in case of 

nonhomogeneous walls. All of these factors hinder the main 

intent of providing enhanced system capabilities for imaging 

of building interiors and detection and localization of 

stationary indoor targets. Moving targets are a lesser challenge 

and are outside the scope of this paper [4]. 

Several approaches have been proposed for dealing with 

front wall returns in imaging of stationary scenes [5]-[8]. 

Among these approaches is the subspace decomposition 

method [7], [8]. It utilizes the approximately identical wall 

scattering characteristics across the array elements and also 

the higher strength of the front wall reflections compared to 

that of the target reflections. When singular value 

decomposition (SVD) is applied to the measured data matrix, 

the wall subspace can be captured by the singular vectors 

associated with the dominant singular values. As a result, the 

front wall contributions can be removed by projecting the data 

measurement vector at each antenna on the wall orthogonal 

subspace. It is noted that as the round-trip signal traveling 

times from the antennas to each interior wall, which is parallel 

to the front wall, are constant across the array aperture, the 

subspace decomposition method will also mitigate returns 

from interior parallel walls as long as they are not shadowed 

by other contents of the building [9].  

In this paper, we propose an alternative scheme for imaging 

of stationary indoor scenes. We assume prior knowledge of 

the building layout. That is, the support of the part of the 

image corresponding to the exterior and interior walls is 

assumed known. This knowledge may be available either 

through building blueprints or from prior surveillance 

operations. The radar returns are cast as the sum of reflections 

from wall and non-wall objects. Focusing on stepped-

frequency synthetic aperture radar (SAR) operation, we 

employ projection matrices that are determined from wall 

specific scattering responses, which are specular in nature, to 

remove the exterior and interior wall contributions from the 

measurements. Then, we proceed to apply delay-and-sum (DS) 

beamforming to obtain an image of the part of the scene 

containing the stationary indoor targets.   Using numerical 

electromagnetic (EM) data, we demonstrate the effectiveness 

of the proposed approach for accurate reconstruction of 

stationary through-the-wall scenes.  

The remainder of this paper is organized as follows. 

Section II presents the signal model under the assumption of 

known support of the exterior and interior walls. The wall 

contribution removal technique and scene reconstruction are 

discussed in Section III. Section IV evaluates the performance 

of the proposed approach for through-the-wall scene 

reconstruction using numerical EM data of a single story 

building. Conclusions are drawn in Section V. 

II. SIGNAL MODEL 

Consider a monostatic SAR with N antenna positions located 

along the x-axis parallel to a homogenous front wall. The 

transmit waveform is assumed to be a stepped-frequency 

signal of M frequencies, which are equispaced over the 

desired bandwidth ���� − ��, 
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 �� = �� +
∆�,				
 = 0,1,⋯ ,� − 1    (1) 

where  ��  is  the  lowest frequency in  the  desired  frequency 

band and ∆ω is the frequency step size. The scene behind the 

front wall is assumed to be composed of P point targets and  

L-1 interior walls, which are parallel to the front wall and to 

the radar scan direction. Due to the specular nature of the wall 

reflections, a SAR system located parallel to the front wall 

will only be able to receive backscattered signals from interior 

walls, which are parallel to the front wall. The contribution of 

walls perpendicular to the front wall will be captured 

primarily through the backscattered signals from the corners 

[10]. Although not part of this work, the corner reflections can 

be readily incorporated into the signal model and the proposed 

scene reconstruction approach. 

The received signal corresponding to the mth frequency at 

the nth antenna position, with phase center at x�� = (���, 0), 
is given by  

             z(m, n) = σ pe
− jωmτ p ,n

p=0

P−1

∑ + σ w,le
− jωmτ w,l

l=0

L−1

∑                 (2) 

where σ p  and σ w,l
are the complex amplitudes associated with 

the pth target return and the lth wall return, respectively, and

τ p,n  and τ w,l
are the respective two-way traveling times 

between the nth antenna and the pth target and the nth antenna 

and the lth wall. Note that since the scan direction is parallel 

to the walls, the delay τ w,l
 does not depend on the variable n 

and is a function only of the downrange distance between the 

lth wall and the antenna baseline.  

Assume that the scene being imaged is divided into a 

finite number of pixels, say Q, in crossrange and downrange. 

Let zn represent the received signal vector corresponding to 

the M frequencies and the nth antenna location, and s  be the 

concatenated scene reflectivity vector of length Q 

corresponding to the spatial sampling grid. Under the 

assumption that the building layout is known a priori, s  can 

be expressed as s = [ s1

T
s2

T
]

T
, where �� ∈ ℂ��  

is the part 

corresponding to the walls parallel to the antenna baseline 

whose support is known, and �� ∈ ℂ�� , �� = � − ��,		is the 

remaining part of the image containing the stationary indoor 

targets. Using (2), we can express the nth received signal in 

matrix-vector form as 

  zzzz� =  ��� + !���   (3) 

where  � and	!�  are the dictionaries corresponding to the 

wall and point target, respectively. The (m, q2 )th element of 

the M ×Q2 matrix !� is given by 

                     "CCCC�$�,%� = exp)−*��+%�,�,																													  (4) 

where 	+%�,�  is  the two-way  traveling time between the  nth 

antenna and the 	-�th pixel  of  the image part containing the 

stationary targets. The wall dictionary  � 
is an � × �� matrix, 

whose (m,	-�)th element takes the form [11] 

                "AAAA�$�,%� = exp)−*��21%�/3,ℑ%�,�                   (5) 

where 1%� is the downrange coordinate of the -�th pixel in the  

image part with known support, and ℑ%�,�  is an indicator 

function, which assumes a unit value only when the -�th pixel 

lies in front of the nth antenna. That is, if �%� 	represents the 

crossrange coordinate of the -�th pixel and 5� represents the 

crossrange sampling step, then ℑ%�,� = 1  provided that 

�%� −
67

�
≤ ��� ≤ �%� +

67

�
.   

Equation (3) considers the contribution of only one 

antenna location. Stacking the measurement vectors 

corresponding to all N antennas to form a tall vector  

                             zzzz = """"9�:			9�: 			⋯			9;��: $$$$:,                        (6)	

we obtain the following representation of the measurement 

vector: 

                                zzzz =  �� + !��                                      (7) 

where  

    = " �: 			 �: 			⋯			 ;��: $: ,			! = "!�: 			!�: 			⋯			!;��: $: . (8) 

III. EXTERIOR AND INTERIOR WALL CONTRIBUTIONS 

REMOVAL AND SCENE RECONSTRUCTION 

Given the measurement vector z and knowledge of the support 

of the walls, the goal is to reconstruct the part of the image 

where the stationary indoor targets are located. As such, we 

first need to remove the contributions of the interior and 

exterior walls in the scene from z. Let	=> be the matrix of the 

orthogonal projection from ℂ� 	 onto the orthogonal 

complement of the range space of the matrix  . If   is a full 

rank matrix, then => can be expressed as [12] 

                                   => = ?MN −   @                                (9) 

where ?MN	 is an identity matrix of dimensions MN	 × 	MN , 

and  @	denotes the pseudoinverse of  . On the other hand, if 

  has a reduced rank, then we have to resort to the SVD of   

to obtain the matrix => as 

                                       => = A>A>B                                   (10) 

where A> 
is the matrix consisting of the left singular vectors 

corresponding to the zero singular values and the superscript 

‘H’ denotes the Hermitian operation. Applying the projection 

matrix => to the observation vector z, we obtain  

                C> ≡ =>z = =>(((( �� + !��) ≈ =>!��              (11) 

Thus, the measurement vector C>	contains contributions from 

only the image part, ��, which can then be reconstructed by 

using delay-and-sum (DS) beamforming [13].  

IV. SIMULATION RESULTS 

In this section, we present scene reconstruction results for 

the proposed technique using numerical EM data and provide 

performance comparison with the subspace decomposition 

based wall-mitigation approach [8].  

The simulation is based on the Xpatch
® 

EM Simulator. We 

modeled a single story building, with overall dimensions of    

7m×10m×2.2 m, containing four humans (labeled 1 through  

4) and several furniture items, as shown in Fig. 1. The exterior 
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Fig. 1.  Building Layout and Contents. 

walls were made of 0.2 m thick bricks and had glass windows 

and a wooden door. The interior walls were made of 5 cm 

thick sheetrock and had a wooden door. The ceiling/roof is 

flat, made of a 7.5 cm thick concrete slab. The entire building 

is placed on top of a dielectric ground plane. The furniture 

items, namely, a bed, a couch, a bookshelf, a dresser, and a 

table with four chairs, were made of wood, while the mattress 

and cushions were made of generic foam/fabric material. 

Humans 1 through 4 were positioned at various locations in 

the interior of the building with different azimuthal orientation 

angles. Human 3, positioned inside the interior room, was 

carrying an AK-47 rifle. The human model was made of a 

uniform dielectric material with properties close to those of 

skin [14]. The AK-47 model is made of metal and wood [15], 

[16]. The dielectric properties of the various materials 

employed are listed in Table 1. 

A 6m long synthetic aperture line array, with an inter-

element spacing of 2.54 cm and located parallel to the front of 

the building at a standoff distance of 4 m, was used for data 

collection. Monostatic operation was assumed. The antenna 

was positioned 0.5m above the ground plane and its boresight 

was aimed perpendicular to the exterior wall. A stepped-

frequency signal covering the 0.7 to 2 GHz frequency band 

with a step size of 8.79 MHz was employed.  

The region to be imaged was chosen to be 9 m x 12 m 

centered at the origin and divided into 121 x 161 pixels, 

respectively.  Fig. 2(a) shows the image obtained with DS 

beamforming using the raw data. In this figure and all 

subsequent figures in this paper, we plot the image intensity 

with the maximum intensity value in each image normalized 

to 0dB. Hanning window was applied to the data along the 

frequency dimension in order to reduce the range sidelobes in 

the image. We can clearly see the front wall, some of the 

corners, the bookshelf, and humans 1 and 2. Other humans 

and furniture items cannot be detected due to the strong front 

wall return. Fig. 2(b) shows the beamformed image after 

masking out the regions with known support. Although all the 

targets are visible in the image, the image is highly cluttered 

due to the presence of the residual sidelobes of the walls. 

Next, we reconstructed the scene using the subspace 

decomposition based wall mitigation approach. The first two 

dominant singular vectors of the frequency vs. antenna raw 

data matrix were used to reconstruct the wall subspace. 

Finally, DS beamforming was performed on the wall clutter 

mitigated data and the corresponding  image is  shown in Fig. 

TABLE I 

MATERIAL PROPERTIES 

Material ε' ε" 

Brick 3.8 0.24 

Concrete 6.8 1.2 

Glass 6.4 0 

Wood 2.5 0.05 

Sheetrock 2.0 0 

Foam Cushion and Fabric 1.4 0 

Ground 10 0.6 

Human 50 12 

 

 
(a) 

 
(b) 

Fig. 2.  Results of DS beamforming using raw data. (a) Full image,  (b) Image 

with the support region of exterior and interior walls masked out.  

3(a). We observe that although the stationary targets are more 

visible and the front and interior wall reflections are 

successfully removed, the corners indicating the presence of 

doors and windows are still present. So is most of the back 

wall due to shadowing effects. The approach also removed the 

reflections from the edge of the couch and only the couch 

corners survive.  More importantly, the presence of 

discontinuities in the front wall (windows and door) causes 

the subspace decomposition based approach to introduce 

artifacts in the image, indicated by the red rectangles. Such 

artifacts in the interior of the building are more visible in Fig. 

3(b), which shows the image after masking out the regions 

with known support.  

Finally, Fig. 4 presents the beamformed image obtained 

using the proposed approach. Compared to Figs. 2(b) and 3(b),  
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(a) 

 

(b) 

Fig. 3.  Results of DS beamforming after application of the subspace 

decomposition based technique for wall mitigation. (a) Full image,  (b) Image 

with the support region of exterior and interior walls masked out. 

 

Fig. 4.  Results of DS beamforming after application of the proposed 

technique.  

the image in Fig. 4 is the least cluttered since the residual 

sidelobes, in particular near the back wall, are absent. All of 

the humans and the furniture items are clearly visible in the 

image. We, therefore, conclude that the proposed approach 

provides superior performance compared to the subspace 

decomposition based wall mitigation approach. 

V. CONCLUSION 

In this paper, we exploited the prior knowledge of building 

layout for indoor scene reconstruction associated with 

through-the-wall radar imaging of stationary targets. For the 

underlying problem, the support of the part of the scene 

corresponding to the building layout was assumed known 

beforehand.  The contributions of the exterior and interior 

walls were removed through projection matrices, which are 

determined for wall specific dictionaries. An image of the 

indoor scene was reconstructed by applying DS beamforming 

to the wall-free data. Using numerical EM data of a single-

story building, we demonstrated the effectiveness of the 

proposed approach in detecting and locating stationary targets 

in through-the-wall scenes. 
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