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Abstract—Modern social networks frequently encompass mul-
tiple distinct types of connectivity information; for instance,
explicitly acknowledged friend relationships might complement
behavioral measures that link users according to their actions or
interests. One way to represent these networks is as multi-layer
graphs, where each layer contains a unique set of edges over
the same underlying vertices (users). Edges in different layers
typically have related but distinct semantics; depending on the
application, multiple layers might be used to reduce noise through
averaging, perform multifaceted analyses, or a combination of the
two. However, it is not obvious how to extend standard graph
analysis techniques to the multi-layer setting in a flexible way.
In this paper we develop latent variable models and methods for
mining multi-layer networks for connectivity patterns based on
noisy data.

Index Terms—Hypergraphs, multigraphs, mixture graphical
models, Pareto optimality

Multi-layer networks arise naturally when we have more than
one source of connectivity information for a group of users. In
a social networking context, we often have knowledge of direct
communication links, i.e., relational information. However, we
might also derive behavioral relationships based on user actions
or interests. The question that this paper attempts to address
is how to deal with these multiple layers of a social network
when attempting to perform tasks like inference, clustering,
and anomaly detection.

We propose a generative hierarchical latent-variable model
for multi-layer networks, and show how to perform inference
on its parameters. Using techniques from Bayesian Model
Averaging [1], we conditionally decouple the layers of the
network using a latent selection variable; this makes it possible
to write the posterior probability of the latent variables given
the multi-layer network. The resulting mixture can be viewed
as a scalarization of a multi-objective optimization problem [2],
[3], [4]. When the posterior probability functions are convex,
the scalarization of the multiobjective problem is both optimal
and consistent with the Bayesian context [2], [5].

We then step back from the Bayesian setting and discuss
how multi-objective optimization can be used to perform MAP
estimation of the desired latent variables. Using the concept of
Pareto optimality [4], we can define an entire front of solutions;
this allows a user to define a preference over optimization
functions and tune the algorithm accordingly. The result is a
level of supervised optimization and inference that still utilizes
the structure of multi-layer networks.

We perform experiments on a simulated example, showing
that our method yields improved clustering performance in
noisy conditions. We discuss how our framework can be
combined with existing models, and describe the details of
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Fig. 1. Simple graphical model (L = 2). In general, each observation matrix
may be influenced by multiple adjacency matrices.

this process for the dynamic stochastic block model (DSBM)
[6], which captures a variety of complex temporal network
phenomena. Finally, we apply the multi-layer DSBM to a
real-world data set drawn from the ENRON email corpus.

I. MULTI-LAYER NETWORKS

A multi-layer graph G = (V, E) comprises vertices
V = {v1, . . . , vp}, common to all layers, and edges E =
(E1, . . . , EL) in L layers, where Ei is the edge set for layer i.
We write Ai ∈ {0, 1}p×p to denote the adjacency matrix of
layer i: [Ai]uv = I[(u, v) ∈ Ei].

We will assume that the data observed in practice are noisy
reflections of this true underlying multi-layer graph, and we
denote by Wi ∈ Rp×p the observed adjacency weight matrix. In
some cases Wi might be binary, reflecting merely the presence
or absence of an observed connection—for instance, whether
two users were seen to communicate. In other settings, such
as measuring temporal or content correlation scores between
users, the entries of Wi could be real-valued. Note that the
observed matrix Wi may depend on Aj for i 6= j; see Figure 1.

II. HIERARCHICAL MODEL DESCRIPTION

We wish to estimate A1, . . . , AL given the observations
W1, . . . ,WL. Using standard parametric methods this will
require computing posterior distributions of A1, . . . , AL, which
may be quite complex since the layers are coupled.

Instead, we propose a modified hierarchical model that
simplifies the inference procedure. For simplicity, let us
specialize to the case where L = 2. (For instance, imagine the
setting described in the introduction: one layer of the network
represents the observed extrinsic relationships between users,
and the other their correlated intrinsic behaviors.)

We first introduce a latent variable denoted Y (see Fig-
ure 2) that allows the model to continue to express coupling
between layers while conditionally decoupling their posterior
distributions:

P (W1,W2|A1, A2, Y ) = P (W1|A1, Y )P (W2|A2, Y ) . (1)

Since the variables A1, . . . , AL are now intermediaries
between Y and the observed weight matrices, we will simplify
by collapsing them into W1, . . . ,WL and simply inferring Y
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Fig. 2. Latent variable model. The latent variable Y determines the
distributions of the adjacency matrices and, through them, the observation
matrices.

itself. (If desired, we can reconstruct A1, . . . , AL later once we
know the distribution of Y .) Decomposing Y = (W,Z), we end
up with the graphical model in Figure 3, where W ∈ Rp×p is a
latent adjacency (or similarity) matrix describing the underlying
connections between vertices, and Z ∈ {1, 2} is a model
selection variable with P (Z = 1) = α and P (Z = 2) = 1−α.

Here we are making the implicit assumption that there is a
common connectivity structure W that informs all layers of the
network; due to the different attributes of each layer, they may
reveal this underlying structure in different ways, or obfuscate
it altogether. In a sense the model produces observed matrices
that correspond to multiple views of the latent variable W .
The model selection variable Z will decouple the posterior
distribution of W given both layers into a weighted sum of
marginalized posteriors given each individual layer.

The distributions P (W1|W,Z) and P (W2|W,Z) are in
general task-dependent (e.g., they could be Gaussian, Wishart,
Bernoulli, etc.), but we will make the simplifying assumption
that Z acts as a selector variable, so that W and W1 are
conditionally independent given Z = 2, and likewise W and
W2 are conditionally independent when Z = 1. Formally, using
the notation Pz to denote conditioning on Z = z, we have

P2(W1|W ) = P2(W1) (2)
P1(W2|W ) = P1(W2) . (3)

We are interested in the posterior distribution of the latent
variable W given the observed variables W1,W2:

P (W |W1,W2) = ξP (W |W1,W2, Z = 1)

+ (1− ξ)P (W |W1,W2, Z = 2) , (4)

where ξ = P (Z = 1|W1,W2). Let’s consider the first term.
We have

P (W |W1,W2, Z = 1) =
P (W )P1(W1|W )P1(W2)∑
Ŵ P (Ŵ )P1(W1|Ŵ )P1(W2)

.

(5)

Since P1(W2) does not depend on W , it factors out of the
sum in the denominator and cancels; thus we have

P (W |W1,W2) (6)

= ξ
P (W )P1(W1|W )

P1(W1)
+ (1− ξ)P (W )P2(W2|W )

P2(W2)
(7)

= P (W ) [γ1P1(W1|W ) + γ2P2(W2|W )] , (8)

where γ1 = ξ/P1(W1) and γ2 = (1−ξ)/P2(W2) are constants
with respect to W . If we assume the prior on W is uniform,
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Fig. 3. Model with similarity matrix and selection variable. W and Z take
the place of Y , and the adjacency matrices have been collapsed.

then the MAP value of W is also the maximum likelihood
estimate, and can be written as

Ŵ = argmaxW [γ1P1(W1|W ) + γ2P2(W2|W )] . (9)

For example, assume that both P (W1|W ) and P (W2|W )
are distributed as isometric Gaussians, i.e.,

P (W1|W ) = N (W,σ2
1Ip) (10)

P (W2|W ) = N (W,σ2
2Ip) . (11)

Then the solution to Equation 9 has the form

Ŵ = βW1 + (1− β)W2 (12)

for some 0 ≤ β ≤ 1.
The above describes not only one MAP estimate of W ,

but rather a family of MAP estimates based on the priors
assigned to each model by α (which affects ξ and γ in turn).
Qualitatively, this can be viewed as a relative confidence
measure on the layers; if W1 is more trustworthy than W2,
then the best choice of α would be greater than 0.5.

III. PARETO SUMMARIZATIONS

Of course, in practice it may be difficult to effectively set
the prior α directly; as a result it might be more useful to
generate the entire family of possible solutions and then choose
among them afterward. We can view this procedure as a special
case of a general framework that offers more flexibility in the
inference and estimation procedure.

Let us consider a straightforward multi-objective optimiza-
tion problem

Ŵ = argminW [f1(W ), f2(W )] . (13)

For the model derived in the previous section, we have
f1(W ) = −P1(W1|W ) and f2(W ) = −P2(W2|W ). One
potential approach to the multi-objective optimization problem
above is scalarization of the two objective functions, so that
the new problem to be solved is

Ŵ = argminW γf1(W ) + (1− γ)f2(W ) . (14)

This view leads to the objective in Equation 9.
However, this can be a somewhat naı̈ve approach to this

optimization problem, as potentially valuable solutions may
be discarded. A more general notion is Pareto optimality. A
solution to a multi-objective optimization problem is said to be
weakly Pareto optimal (or weakly non-dominated) if it is not
possible to improve any objective function without worsening
some other objective function [2], [3]. More formally, we say
that a solution W dominates a solution W ′ if fi(W ) ≤ fi(W ′)
for every objective function fi and there exists some j such that
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Fig. 4. Clustering simulation. This surface plot shows the ARI for different
values of σ2 and β. Note that in all cases, β that is around 0.5 tends to
produce the best clustering.

fj(W ) < fj(W
′). The first Pareto front is the set of weakly

non-dominated points.
In general, the scalarization technique described above

identifies a subset of Pareto optimal points. This subset is
complete in some cases; for instance, if the solution space
is a convex set and the individual objective functions are
convex functions, scalarization gives the full Pareto front [5].
However, when such convexity conditions are not met, the
scalarization technique yields an incomplete family of solutions.
In our setting, the posterior distributions in Equation 13 are
frequently non-convex. Thus, by employing the concept of
Pareto optimality, we are extending our list of possible optimal
solutions, and generalizing the MAP estimate of Equation 9.

IV. SIMULATION EXAMPLE

We use simulations to show that clustering of nodes in a
weighted graph can be improved using the MAP estimate of W .
Two random graphs with 500 nodes are constructed with 10
known clusters. The weights between nodes in the same cluster
are normally distributed as N (5, 0.5), and weights between
nodes that are not in the same cluster are normally distributed as
N (4.7, 0.5). Both layers come from this underlying similarity
structure, but are corrupted with i.i.d. Gaussian noise with
zero mean and different variances σ1 and σ2. For different
choices of β, the networks are clustered using a normalized-cut
spectral clustering algorithm, and the Adjusted Rand Indices
(ARI) [7] are computed. For each of several different levels
of variance, this experiment is run 50 times, and the results
are averaged. Figure 4 shows a plot of the results, and Table I
reports optimal values of β. These results show that using
Equation 9 to estimate the mixture of networks improves the
clustering. Note that even with unequal variance, optimal β is
consistently near 0.5.

V. ENRON EXAMPLE

We next look at the ENRON email data set1. This data set
consists of approximately half a million email messages sent or

1http://www.cs.cmu.edu/ enron

TABLE I
VARIANCES AND ARI SCORES

σ1 σ2 Max ARI β

1 1 0.6782 0.5051
1 1.5 0.6199 0.5253
1 2 0.5828 0.4343
1 2.5 0.5514 0.5051
1 3 0.5073 0.4545
1 3.5 0.4878 0.4848
1 4 0.4876 0.5253
1 4.5 0.4635 0.5354
1 5 0.4429 0.4646

received by 150 senior employees of the ENRON Corporation.
These emails were made publicly available as a result of the
SEC investigation of the company in 2002, and constitute one
of the largest publicly available email repositories.

To explore dynamic multi-level structure, we create two
layers from the ENRON dataset over a series of time periods.
The information that builds the layers is chosen so that one layer
represents the extrinsic, ”relational” information between users,
and the other represents intrinsic, ”behavioral” information
between users.

First, a relational network is recovered from the headers
of emails by identifying the sender and receiver(s) of each
message, including Cc and Bcc recipients. For each week in the
dataset, a separate network of employees is constructed from
the emails sent during that week. A second set of behavioral
networks are recovered using the contents of email messages.
On the same weekly basis the contents of all emails originating
from each user are combined to form long “documents”, for
which term frequency-inverse document frequency (TF-IDF)
scores are calculated [8]. Using the vector of TF-IDF scores
for each user, we then apply the standard metric of cosine
similarity and obtain a symmetric matrix that forms the second
observed layer for a given week.

In order to perform inference on this node set, we employ
the dynamic stochastic block model (DSBM) [6]. This method
infers the probabilities of connection inside and outside of
communities, and treats members of the same community as
statistically identical. It then propagates this model through time
using an extended Kalman filter structure. Since we wish to use
this framework, it is necessary to transform the weighted edge
network into a binary network. To do this, the similarity scores
are thresholded. To be roughly consistent with the density of the
relational network, we keep the top 15% greatest correlations
between users at each time step, setting all other connections
to 0. This allows us to create networks of similar sparsity
level. The above procedure yields a two-layer binary dynamic
network that we can use to obtain insight into the structural
dynamics of the ENRON data. For the DSBM structure, we
group employees by their role in the company (CEO, President,
Director, etc.).

Combining the two networks as in Section II, we run the
DSBM for different levels of the mixing parameter α. Because
of the use of binary networks in this example, the α parameter
is used as the probability that the combined data will choose to
use the relational network when the two layers disagree with
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Fig. 5. Betweenness centrality for directors. This centrality is a measure of
how connected a node is to the rest of the network. Larger centrality scores
often occur for intermediate values of α, particularly between time 95 and
115.

each other. The objective in this particular example is to show
that using this method we can not only reduce noise, but also
discover interesting multifaceted behavior that is not obvious
from one layer alone.

Figure 5 shows the betweeness centrality of the Directors
group over time as the mixing parameter is varied. In general,
the centrality measure increases approximately monotonically
as α is varied; however, from week 95 to week 115, between-
ness centrality is significantly increased when using a combined
dynamic network—that is, an intermediate value of α. This
time corresponds to the beginning of the company’s upheaval
and public disclosure of troubles. Perhaps by examining both
network layers simultaneously we have removed some of the
edges between other classes, and thus the centrality score of
this particular group increased. It is true that during this time,
when overall email usage increased, the betweenness centrality
measure went down, as there were more shortest paths through
users from other groups. Using the combination of layers,
however, there appears to be an increase in the number of
shortest paths through the Directors group.

On the other hand, we can also see well-behaved monotonic
correlations in some cases. Figure 6 shows a transition of
degree centrality for the class of CEOs (of which there were
four during this time period). The behavioral network shows
more connectivity for the CEO class. This phenomenon makes
sense, as the behavioral data takes into account all written
documents, which could be correlated with those of other
users, while the relational network only takes into account
direct communication between the CEOs and others. In reality,
much of that communication is performed through third parties
(such as assistants), and thus CEOs probably do not send as
much email as the average employee. Increasingly anomalous
behavior occurs toward the end of the time period. We
hypothesize that this is due to a larger volume of unusual
emails sent directly to the CEO during this tumultuous period.

VI. CONCLUSION

We introduced a novel method for inference on multilayer
networks. A hierarchical model was used to jointly describe the
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Fig. 6. Degree centrality for CEOs. Higher degree centrality for α near one
signifies greater activity in the behavioral network. Anomalous behavior can
be seen in the later time steps as activity patterns shift.

noisy observation matrices and MAP estimation was performed
on the relevant latent variable. A simulation example using
clustering demonstrated that the mixture of layers under the
correct circumstances can lead to better results, and possibly a
better understanding of the underlying structure between users.
A real-data example was also discussed using the ENRON
email dataset. This paper also leads the way for future work;
in addition to trying more noise models that are not so simply
reproduced or even non-convex, one can use multi-objective
optimization to explore other objective functions that could be
useful in describing a multi-layer network, such as network
smoothness or the centrality distribution.
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