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Abstract—Spectrum sensing algorithms for cognitive radios
that can interpolate and predict the spatio-temporal interference
power distribution are proposed using the dictionary learning
framework. The algorithms jointly estimate the dictionaries to
capture the spatial spectrum measurements as well as their
temporal dynamics via parsimoniously chosen atoms. Both batch
and efficient online implementations are developed. Numerical
tests verify the effectiveness of the novel approach.

I. INTRODUCTION

The cognitive radio (CR) concept aims at increasing spectral

efficiency of wireless communication systems via agile sensing

of the environment and intelligent adaptation. Through spec-

trum overlay, in which the access priorities of primary user

(PU) systems are respected by CR systems, the inefficiency

of fixed spectrum allocation can be mitigated [1].

An essential component of CR systems is spectrum sensing,

which refers to various tasks related to dynamically acquiring

the status of spectral resources. Extensive research has been

done on this topic, ranging from identifying the presence or

the absence of PU transmitters [2], to revealing their number

and locations, as well as estimating the relevant channel gains

useful for subsequent resource allocation [3].

The goal of this work is to leverage cooperation among

CRs dispersed over a geographical area to accurately assess

the interference power levels at the node locations, as well as

predict their future levels. An important challenge is that the

CR network does not have prior information on the number

of PU transmitters, and the corresponding PU-to-CR channel

gains, which are essential for combining the measurements

from different nodes. Furthermore, it is assumed that the CRs

cannot always report their measurements to the fusion center,

due to various practical reasons. Still, it is desired that the

missing observations are reconstructed from the available ones,

and their future values predicted.

A logistic regression model was employed to predict future

spectrum occupancy in [4]. Time series models were used

to aid channel switching decisions in [5]. Channel sensing

and access schedules were determined in the framework of

partially observed Markov decision process in [6].

In this work, contemporary tools from machine learning and

compressive sensing are employed. Specifically, a dictionary
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learning framework is adopted to model the spatial RF inter-

ference distribution. Different from a related approach in [7],

where the temporal dimension was incorporated simply by

stacking observations at multiple time instants in a super-

vector, the novel approach here advocates a vector autore-

gressive (AR) model for the sparse coefficients, where the

unknown dynamic model is jointly estimated.

The rest of this paper is organized as follows. The system

model and the problem statement are presented in Sec. II.

A dictionary learning formulation for dynamic signals and a

batch solution are provided in Sec. III. An online counterpart

is proposed in Sec. IV. The results from numerical tests are

presented in Sec. V, followed by conclusions in Sec. VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A network of M CR nodes is deployed in a geographical

area and over a frequency band where K PU transmitters

operate. Suppose that the k-th PU transmits at time t with

power level pk(t). Let gmk(t) represent the channel gain from

the k-th PU transmitter to the m-th CR node. Then, the

interference power πm(t) due to the K PUs experienced by

CR m at time t can be expressed as

πm(t) =

K
∑

k=1

gmk(t)pk(t), m = 1, 2, . . . ,M. (1)

Due to various practical constraints such as task priorities,

or the sleep modes for saving battery, not all CR nodes can

take measurements in each time instant. Also, communication

errors and congestions in the control channel may hinder

timely relaying of the measurements to the fusion center.

These considerations motivate the goal of spectrum sensing,

which is to interpolate the interference levels at all CR node

locations, based on the subset of measurements collected at

the fusion center at each time. Moreover, through learning the

dynamics of the spatio-temporal variation of the interference

levels, prediction of the future spectrum states is desired as

well.

Define vectors π(t) := [π1(t), . . . , πM (t)]T and p(t) :=
[p1(t), . . . , pK(t)]T , where ·T denotes transposition. Also,

define matrix G(t) with its (m, k)-entry equal to gmk(t).
Then, (1) can be compactly written as

π(t) = G(t)p(t). (2)
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Let Mobs(t) ⊂ M := {1, 2, . . . ,M} denote the set of CR

nodes whose observations have been collected. Stacking these

observations in vector yobs(t) ∈ R
|Mobs(t)|, one obtains

yobs(t) = O(t)[π(t) + ǫ(t)] (3)

where ǫ(t) := [ǫ1(t), . . . , ǫM (t)]T represents the measurement

noise, and O(t) is the matrix consisting of the rows from

an M × M identity matrix corresponding to the CR nodes

m ∈ Mobs(t). Thus, the spectrum sensing problem is to

estimate π(t) for interpolation (which contains πm(t) for m ∈
Mmiss(t) := M\Mobs(t)) and π(t+1) for prediction, given

the available measurements yobs(t),yobs(t− 1), . . . ,yobs(1).
Note that estimating G(t) and p(t) with all observations

available (i.e., Mobs(t) = M ∀t) was addressed in [8]. A

graph Laplacian-based regularizer was shown to be effective

in [7] when the number of missing observations is large, and in

particular, when the entire observations are missing for some

CR nodes m (i.e., m ∈ Mmiss(t) for all t).

III. DICTIONARY LEARNING FOR DYNAMIC SIGNALS

Motivated by (2), we adopt a bilinear model to represent

π(t) as a linear combination of a few bases taken possibly

from an overcomplete dictionary. Let D1 ∈ R
M×Q denote a

dictionary with Q atoms, or bases, that can represent signal

π(t) with a sparse set of expansion coefficients s(t) ∈ R
Q.

This amounts to postulating a model

π(t) = D1s(t) + z(t) (4)

where the nonzero entries in s are much fewer than Q. Fourier

or the wavelet bases are some of the examples that admit such

a model for a variety of natural and man-made signals.

Furthermore, to effectively learn and predict spatio-temporal

dynamics in a sparsity-leveraging framework, the temporal

evolution of s(t) is also modeled. Again adopting a bilinear

model to account for the dynamics that have yet to be learned,

using a dictionary D2 ∈ R
Q×Q, we have

s(t) = D2s(t− 1) + v(t). (5)

It is clear that (4) and (5) resemble the observation and

state equations of a state-space model, except for the prior

information regarding the sparsity of {s(t)}. That is, if z(t)
and v(t) were mutually independent and zero-mean Gaussian

with covariances R and Σ, respectively, s(0) Guassian with

mean s̄0 and covariance Σ0, and D1 and D2 were given, the

MMSE- and MAP-optimal estimates of {s(t)} can be obtained

by solving

min
{s(τ)}t

τ=0

t
∑

τ=1

[

||π(τ)−D1s(τ)||
2
R−1 (6)

+||s(τ)−D2s(τ − 1)||2
Σ−1

]

+ ||s(0)− s̄0||
2

Σ−1

0

where ||x||2
M

:= xTMx for a positive-definite matrix M. The

same solution is optimal also for the class of linear estimators

even when z(t), v(t) and s(0) are non-Gaussian.

Inspired by this, a Kalman smoother incorporating sparsity

of states was proposed in [9]. Here, to jointly learn the

observation and the state models in a dictionary learning

framework, and also to account for the missing observations

per (3), we consider

min
D1∈D1,D2∈D2,{s(τ)}

t
∑

τ=1

[

1

2
||yobs(τ)−O(τ)D1s(τ)||

2
2 (7)

+
µ

2
||s(τ)−D2s(τ − 1)||22 + λ||s(τ)||1

]

where s(0) := s̄0,

D1 := {[d1, . . . ,dQ] ∈ R
M×Q : ||dq||

2
2 ≤ 1, q = 1, . . . , Q}

(8)

and D2 is similarly defined for Q-by-Q dictionaries. Parame-

ters µ ≥ 0 and λ ≥ 0 weight the state evolution fitting term

and the sparsity-promoting penalty term, respectively.

Problem (7) is nonconvex, and thus difficult to solve for the

global optimum. However, a locally optimal solution can be

sought by alternating minimization, based on the fact that with

D1 and D2 fixed, minimization with respect to (w.r.t.) {s(t)}
entails convex optimization, and vice versa.

Therefore, a batch algorithm for spectrum sensing can be

implemented in two stages. First, in the training stage, given a

training set {yobs
n }Nn=1, the estimated dictionaries D̂1 and D̂2

are obtained by solving

(D̂1, D̂2) = arg min
D1∈D1,D2∈D2,{sn}

N
∑

n=1

[

1

2
||yobs

n −OnD1sn||
2
2

+
µ

2
||sn −D2sn−1||

2
2 + λ||sn||1

]

. (9)

In the operational stage, a sparse state ŝ(t) is estimated at each

time t = 1, 2, . . . , via

ŝ(t) = arg min
{s(τ)}t

τ=1

t
∑

τ=1

[

1

2
||yobs(t)−O(t)D̂1s(t)||

2
2

+
µ

2
||s(τ)− D̂2s(τ − 1)||22 + λ||s(τ)||1

]

. (10)

Once ŝ(t) is obtained, the desired interference level recon-

struction can be found as π̂(t) = D̂1ŝ(t) and prediction can

be carried out as π̂
pre(t) = D̂1D̂2ŝ(t).

The batch algorithm becomes computationally very inten-

sive as t grows, since the entire sparse coefficient sequence

{s(τ)}tτ=1 must be updated at each time t in the operational

stage, although an iterative recursive implementation is avail-

able [9]. Unfortunately, unlike the original Kalman filtering

problem, an efficient online implementation does not seem

feasible for (10) without sacrificing optimality. Furthermore,

the training stage may add up to sensing delay, especially when

periodic re-training is necessary due to continual evolution of

the dynamic model. In the next section, approximate online

implementations are considered.

IV. ONLINE ALGORITHMS

As pointed out in Sec. III, an online implementation is desir-

able, because one does not need to update the whole sequence

{s(τ)}tτ=1 per time t, and possibly track slow changes in the
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dictionaries D1 and D2. To capture slowly varying dynamics,

one can adopt a time-weighted fitting objective, and solve

[cf. (7)]

min
D1,D2,{s(τ)}

t
∑

τ=1

βt−τ

[

1

2
||yobs(τ)−O(τ)D1s(τ)||

2
2 (11)

+
µ

2
||s(τ)−D2s(τ − 1)||22 + λ||s(τ)||1

]

where 0 < β ≤ 1 represents a forgetting factor. Instead of

solving this in a batch fashion, the idea of online algorithms

is to update only the current estimate ŝ(t) at any time t.

A. Online Update for Sparse Coefficients

Suppose first that estimates of dictionaries D̂1(t − 1) and

D̂2(t − 1) from time t − 1 are available. The online update

for sparse coefficients ŝ(t) has attracted much attention re-

cently [10]–[13]. Given ŝ(t − 1), a simple approach is to

propagate only the sparse coefficient estimates by solving [12]

ŝ(t) = ŝ(0)(t) := argmin
s

1

2
||yobs(t)−O(t)D̂1(t− 1)s||22

+
µ

2
||s− D̂2(t− 1)ŝ(t− 1)||22 + λ||s||1. (12)

Recall that in the case of Kalman filtering, not only the state

estimates, but also the covariance estimates are propagated

over time. On the other hand, roughly speaking, the above

approach propagates only the first-order statistic, thus signifi-

cantly undermining optimality [13].

A simple remedy is to update a sliding window

of coefficients to trade-off computational complexity for

(sub)optimality [14]. With a sliding window of size ℓ, the

estimate ŝ(t) (or ŝ(ℓ)(t)) is obtained as the optimal s0 of the

following optimization problem:

min
s0,...,s−ℓ

t
∑

τ=t−ℓ

βt−τ

[

1

2
||yobs(τ)−O(τ)D̂1(t− 1)sτ−t||

2
2

+
µ

2
||sτ−t − D̂2(t− 1)sτ−t−1||

2
2 + λ||sτ−t||1

]

(13)

where s−(ℓ+1) := ŝ(t− ℓ− 1). Clearly, setting ℓ = t− 1 (and

β = 1) falls back to a batch implementation (cf. (10)), while

ℓ = 0 recovers (12).

B. Online Update for Dictionaries

Once ŝ(t) is obtained, the dictionary update amounts to

min
D1∈D1,D2∈D2

t
∑

τ=1

βt−τ
[

||yobs(τ)−O(τ)D1ŝ(τ)||
2
2

+µ||ŝ(τ)−D2ŝ(τ − 1)||22
]

. (14)

Although the solution depends on the entire observation and

sparse coding history, a recursive computation reduces the

computational complexity and memory requirement.

Note that (14) is decoupled for D1 and D2. To obtain D̂1(t),
the algorithm proposed in [7] can be used, which is adapted

to the present setting here for easy reference. The idea is to

Input: {yobs(t)}, {O(t)}, D1,ini, D2,ini, λ ≥ 0, µ ≥ 0,
integer ℓ ≥ 0, β ∈ (0, 1]

Output: {π̂(t)} and {π̂pre(t)}

1: Set D̂1(0) = D1,ini, D2(0) = D2,ini, Am(0) = 0 ∀m ∈ M,

A(0) = 0, and B(0) = B̃(0) = 0.
2: for t = 1, 2, . . .

Perform sparse coding

3: Solve s∗0, . . . , s
∗

−ℓ
:= argmins0,s−1,...,s−ℓ

∑t
τ=t−ℓ β

t−τ
[

1
2
||yobs(τ)−O(τ)D̂1(t− 1)sτ−t||22

+µ
2
||sτ−t − D̂2(t− 1)sτ−t−1||22 + λ||sτ−t||1

]

where s
−(ℓ+1) := ŝ(t− ℓ− 1), and set ŝ(t) = s∗0 .

Perform prediction

4: Output π̂(t) = D̂1(t− 1)ŝ(t)

and π̂
pre(t) = D̂1(t− 1)D̂2(t− 1)ŝ(t).

Perform dictionary update

5: Update {Am(t)}, B(t), A(t) and B̃(t) by (15)–(16) and (21)–(22)

6: Set [d̂i,1(t), . . . , d̂i,Q(t)] = D̂i(t− 1), i = 1, 2
7: Repeat
8: For q = 1, 2, . . . , Q

9: Update d̂1,q(t) as (19)–(20) and d̂2,q(t) as (23)–(24).
10: Next q
11: Until convergence

12: Set D̂i(t) = [d̂i,1(t), . . . , d̂i,Q(t)], i = 1, 2.
13: Next t

TABLE I
AN ONLINE ALGORITHM FOR SPECTRUM PREDICTION.

use block coordinate descent (BCD) for the columns of D1.

For this, the following quantities are maintained:

Am(t) :=
t

∑

τ=1

βt−τ
1{m∈Mobs(τ)}ŝ(τ)ŝ

T (τ)

= βAm(t− 1) + 1{m∈Mobs(t)}ŝ(t)ŝ
T (t), m ∈ M (15)

B(t) :=

t
∑

τ=1

βt−τOT (τ)yobs(τ)ŝT (τ)

= βB(t− 1) +OT (t)yobs(t)ŝT (t) (16)

where 1{·} is an indicator function equal to 1 if the condition

inside the braces are satisfied, and 0 otherwise.

Now, let ŝj(τ) denote the j-th entry of ŝ(τ), and Am,jq(t)
and Ajq(t) the (j, q)-th entry of matrices Am(t) and A(t),
respectively. Also, let bj(t) represent the j-th column of B(t).
Then, upon defining

Φj,q(t) :=
t

∑

τ=1

βt−τ ŝj(τ)ŝq(τ)O
T (τ)O(τ) (17)

= diag([A1,jq(t), A2,jq(t), . . . , AM,jq(t)]) (18)

the column-wise BCD leads to the following update for the

j-th column d̂1,j(t) of D̂1(t):

d̄1,j := Φ−1
j,j (t)



bj(t)−

Q
∑

q=1,q 6=j

Φj,q(t)d̂1,q(t)



 (19)

d̂1,j(t) =
d̄1,j

max{||d̄1,j ||2, 1}
. (20)

The update for D̂2(t) is relatively simpler [15]. Upon
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Fig. 1. CR and PU node locations.
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Fig. 2. Reconstructed and predicted interference levels.

defining A(t) and B̃(t) as

A(t) := βA(t− 1) + ŝ(t)ŝT (t) (21)

B̃(t) := βB̃(t− 1) + ŝ(t)ŝT (t− 1) (22)

the BCD update for the j-th column d̂2,j(t) of D̂2(t) is

d̄2,j := A−1
jj (t)

[

b̃j(t)− D̂2(t)aj

]

+ d̂2,j(t) (23)

d̂2,j(t) =
d̄2,j

max{||d̄2,j ||2, 1}
. (24)

The overall online algorithm is listed in Table I.

V. NUMERICAL TESTS

To assess performance of the proposed algorithms, numeri-

cal tests were carried out. A CR network consisting of M = 20
nodes with the node locations depicted as circles in Fig. 1 was

considered. The interference power distribution due to K = 3
PU transmitters is also shown in Fig. 1. The pathloss was

set to (d/d0)
α, where d was the distance, d0 = 0.01 and

α = 2.5. The number of atoms in the dictionaries was set

to Q = 50. Rayleigh fading channels were simulated using a

first-order AR model with coefficient 0.9995. The forgetting

factor was set to β = 0.95. The PU transmit power pk(t)
was drawn independently from a uniform distribution over the

interval [100, 200]. Temporal correlations in the interference

distribution were effected by assuming certain patterns in

the PU traffic. At each time t, PU 1 tosses a coin and

transmits with probability 0.1. If PU 1 does transmit, then

PU 2 will transmit in the next time slot. Likewise, per time

t, PU 3 transmits with probability 0.15, followed by PU 2

in the 2nd time slot, and PU 1 in the 3rd. Fig. 2 depicts

the reconstructed and predicted interference power levels for

CR 1 using λ = 0.005 and µ = 1 with 30% missing

observations employing the online algorithm with ℓ = 10. It

can be seen that the missing observations (marked by crosses)

are well reconstructed, and the one-time slot-ahead predictions

are quite reliable.

VI. CONCLUSIONS

Spatio-temporal dynamics of the interference distribution

was learned by a set of cooperating CRs for interpolation of

missing observations, as well as for prediction of future inter-

ference levels, in a dictionary learning framework. Given the

dictionaries, Kalman filter-type formulations with augmented

sparsity-promoters were considered. Batch and efficient online

solutions have been developed. The numerical tests verified the

efficacy of the proposed approach. Experimentation with real

datasets will be considered in a future work.
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