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Abstract—In this paper, we focus on the design of a Kalman
filter-based algorithm to track multiple targets in range and
azimuth. The detection stage implements a multitarget strategy
and is aimed at collecting and eventually processing all target
components (i.e., in range and azimuth). Existing tracks are
updated using a JPDA to handle the data association problem.
We model target echoes as coherent pulse trains in white
Gaussian noise with unknown power. The performance analysis
assumes a maritime scenario and shows that the proposed tracker
outperforms more conventional approaches.

I. INTRODUCTION

Tracking algorithms rely on a detection stage that provides
a set of point measurements at each scan; most detectors
considered so far assume that the target is located exactly
“where the matched filter is sampled” and, hence, that there is
no spillover of target energy to adjacent matched filter samples.
However, the spillover is taken into account in [1] where the
case of several closely spaced targets, ruled by a Swerling 2
model, that fall within the same beam of a monopulse radar and
among three or more adjacent matched filter samples in range,
is considered; therein, a maximum likelihood (ML) extractor is
developed. The idea is further investigated in order to estimate
the angles and ranges of multiple unresolved extended targets
in [2]. In [3] an adaptive space-time detector is derived and
assessed: it takes advantage of the possible spillover of target
energy for the case of coherent target echoes. In [4] this
idea has been extended to address localization of multiple
point-like targets within the same range cell or range cells
in spatial proximity; therein, it is shown that the multitarget
approach outperforms the corresponding single target one in
the localization of a weak target for the case of targets with
different strength. In [5], a Kalman filter-based algorithm, to
track a single target in range, has been designed and assessed.
The proposed approach exploits spillover of target energy
between consecutive matched filter samples.

In this work, we propose and assess an algorithm to track
multiple targets in range and azimuth. It is the natural, though
not trivial, extension of the Kalman filter-based algorithm,
proposed in [5] to track a single target in range, to multitarget
scenarios and to range-azimuth tracking. The main novelty of
the proposed algorithm is the potential to deal with multiple
targets in spatial proximity adopting a multitarget scheme as an
alternative to the single target detector proposed in [3] that, in
turn, has been modified to collect all useful target components
in both range and azimuth.

This work was supported by CNIT within the “HABITAT” project (PON-
011936) funded by MIUR.

The paper is organized as follows. Section II introduces
the detection stage while Section III focuses on the tracking
stage. Section IV deals with the performance assessment.

II. DESIGN OF A MULTITARGET DETECTOR

A mechanically rotating reflector is assumed as radar
antenna. It is mounted at a certain height above the sea level
and illuminates the surveillance area transmitting a bandpass
signal whose lowpass equivalent is a train of rectangular pulses
of duration Tp. The rate at which observations are made
in azimuth depends on the time for the antenna to make
one rotation, namely Ta = 2π/|ωa|, where ωa denotes the
angular velocity of the antenna, in radians per seconds (rad/s),
which we assume to be positive in case of counterclockwise
rotation. Notice also that the number of consecutive pulses
on a stationary target, N say, is (approximately) equal to
N = (π/180) · (∆θ3)/(|ωa|T ), where ∆θ3 is the (-3 dB)
beamwidth (in degrees) and T is the pulse repetition time
(PRT). Typically, a discrete form for the signal corresponding
to each range-azimuth cell is obtained by properly sampling
the output of a filter matched to the transmitted pulse and
fed by the received signal [6]. Thus, we can form an N -
dimensional vector of samples representative of the received
signal corresponding to the lth range gate, l = 1, . . . , L. To
this end, it is customary to assume that the target is located
exactly “where the matched filter is sampled”; however, the
round-trip delay of the received signal is generally different
from the sampling instants and, hence, there exists a residual
delay that gives rise to a spillover of target energy. In other
words, a target contributes to two consecutive range cells.

In the sequel we assume a multitarget scenario. Suppose
that two targets are present at most. The generalization to an
arbitrary, albeit known, number of targets is straightforward.
Moreover, assume that the two closely spaced (point-like and
slowly-fluctuating) targets are moving with constant radial
velocity (and in the antenna far field) within three consecutive
range cells, indexed by l − 1, l, l + 1. We denote by θi the
azimuth of the ith target that is supposed to be approximately
constant over the coherent processing interval. We also suppose
that θm = (θ1 + θ2)/2 is approximately known. Due to the
presence of spillover there might be target energy also in
the matched filter outputs corresponding to the (l − 2)th and
the (l + 2)th range cells. Then, in order to collect most of
the energy backscattered by the targets, it is reasonable to
process samples at the output of the matched filter at the
instants tj,n = tmin + (j − 1)Tp + nT , j = l − 2, . . . , l + 2,
n = nθm − 3N/2, . . . , nθm +5N/2− 1, where tmin represents
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the beginning of the sampling process while nθm is given by

nθm = round

(
θm + 2hπ sgn(ωa)− θ0a

ωaT

)
− N

2
(1)

with θ0a the angular position of the antenna at t = 0, h an
integer indexing the antenna scan, sgn(x) the signum of x,
and round(x) the integer closest to x. Thus time samples are
grouped to form the 4N -dimensional vector zj = sj + nj ,
j = l − 2, . . . , l + 2, with sj the signal component and nj

the noise component. It is not difficult to compute, following
the lead of [3], [4], the contribution, si,j ∈ C4N×1 say, of
the ith target to the jth range cell, j = l − 2, . . . , l + 2, up
to a complex factor αi taking into account target and channel
effects. Obviously, si,j depends on the range cell the target
belongs to, the “residual delay” from the center of its range
cell, ǫi say, its normalized Doppler shift, νi say, and θi. In
particular, it is proportional to the steering vector:

v(νi, θi) =
1√
N

[ 0 · · · 0︸ ︷︷ ︸
3N/2+r

cθi(nθi) cθi(nθi + 1)e
√
−1 2πνi

· · · cθi(nθi +N − 1)e
√
−1 2π(N−1)νi 0 · · · 0︸ ︷︷ ︸

3N/2−r

]′ (2)

where cθi(nθi) takes into account the amplitude modulation
due to antenna rotation, r ∈ {−3N/2, . . . , 3N/2} represents
an index taking into account quantization of targets’ azimuths,
and ′ denotes transpose. It follows that the signal component
sj , j = l− 2, . . . , l+ 2, is given by

sj(j1, j2, ǫ1, ǫ2, ν1, ν2, θ1, θ2) =
2∑

i=1

αisi,j(ji, ǫi, νi, θi)

where ji ∈ {l − 1, l, l + 1} denotes the range cell the
ith target belongs to. We also assume that signal returns
are buried in zero mean, complex normal noise, independent
from range cell to range cell, with covariance matrix σ2I4N ,
where Im is the m-dimensional identity matrix. In symbols,
nj ∼ CN (0, σ2I4N ) with σ2 an unknown parameter.

Summarizing, the problem at hand is that of detecting
the possible presence of two targets and of estimating the
parameters of interest, namely j1, j2, ǫ1, ǫ2, ν1, ν2, θ1, and θ2,
together with the nuisance parameters α1, α2, and σ2. In order
to formulate and eventually solve the estimation problem we
can now define an augmented received vector

z̃ = [z′
l−2 z′

l−1 z′
l z

′
l+1 z′

l+2]
′ ∈ C

20N×1.

Accordingly, we can define an augmented steering vector,
corresponding to the ith target, hi(ji, ǫi, νi, θi) ∈ C20N×1 say.
In addition, the hypothesis test to be solved is

{
H0 : z̃ = ñ

H1 : z̃ =
∑2

i=1 αihi(ji, ǫi, νi, θi) + ñ = H(x1,x2)x3 + ñ

where H(x1,x2) = [h1(j1, ǫ1, ν1, θ1) h2(j2, ǫ2, ν2, θ2)]
is assumed to be a full-column-rank matrix, with x1 =
[j1 j2 ǫ1 ǫ2 θ1 θ2]

′, x2 = [ν1 ν2]
′, and x3 = [α1 α2]

′. Obvi-
ously, ñ ∼ CN (0, σ2I20N ) (with σ2 an unknown parameter).
Thus, leaving aside for the moment the unknown parameters
ν1, ν2, the above hypothesis test can be solved through the

generalized likelihood ratio test (GLRT) that assumes the
intermediate form

max
x1

z̃†PH (x1,x2)z̃

z̃†z̃

H1
>
<
H0

γ (3)

where PH (x1,x2) is the projection matrix onto the space
spanned by the columns of the matrix H(x1,x2) and γ
denotes a threshold to be set in order to ensure the desired
probability of false alarm (Pfa).

It still remains to overcome the uncertainty on ν1 and ν2. To
this end, we use a suboptimum procedure. In fact, neglecting
the actual expression of the spillover term to adjacent range
cells, we can model the received signal in the jth range cell,
j = l − 2, . . . , l + 2, as

zj = [v(ν1, θ1) v(ν2, θ2)]uj + nj ∈ C
4N×1

with v given by (2), uj = [α1,j α2,j ]
′
, and nj ∼

CN
(
0, σ2I4N

)
. It turns out that the ML estimate of x2,

x̂2 = [ν̂1, ν̂2]
′ say, is given by

x̂2 = argmax
ν1,ν2

max
θ1,θ2

l+2∑

j=l−2

z
†
jP (ν1, ν2, θ1, θ2)zj (4)

where P (ν1, ν2, θ1, θ2) is the projection matrix onto the space
spanned by the columns of the matrix [v(ν1, θ1) v(ν2, θ2)],
(ν1, θ1) 6= (ν2, θ2), νi ∈ {0, 1/M, . . . , (M − 1)/M}. Then,
we plug the estimated pair of normalized Doppler frequencies
x̂2 into the above detector (3), in place of x2.

A few final remarks are in order. First, observe that maxi-
mization over x1 = [j1 j2 ǫ1 ǫ2 θ1 θ2]

′ cannot be conducted
in closed form. We thus resort to a grid search to maximize
with respect to such parameters. Second, the GLRT and its
ad hoc implementation guarantee the constant false alarm rate
(CFAR) property with respect to σ2.

III. TRACKING STAGE

Assume that radar data are available over [0,+∞). More-
over, assume that the motion of each target can be modeled
according to a nearly constant velocity model along x and y.
More precisely, we suppose that the kinematics of the ith target
is ruled by the following state space model

{
xi(k + 1) = Fxi(k) +w1i(k)
yi(k) = Kxi(k) +w2i(k)

with k denoting the kth antenna scan and xi(k) =
[xi(k) vxi(k) yi(k) vyi(k)]

′; xi(k) and yi(k) are the cartesian
coordinates of the target over (Tk,i, Tk,i + NT ), namely the
time interval during which the target is within the (-3 dB)
antenna beamwidth, while vxi(k) and vyi(k) are the target
velocity components along x and y over the same time interval;
yi(k) = [xi(k) yi(k)]

′,

F =diag (F 1,F 1) , F 1=

[
1 Ta

0 1

]
, K=

[
1 0 0 0
0 0 1 0

]

As to w1i(k) and w2j(k), they are assumed to be (approxi-
mately) independent, zero-mean normal sequences. Moreover,
we have that

E[w1i(k)w
′
1j(h)] = Qδijδkh, E[w2i(k)w

′
2j(h)] = Rδijδkh
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with Q = diag (Q1,Q1) where Q1 is given in [7] and δij
the Kronecker symbol. Q1 can be set based on the maximum
tolerable difference between the nominal and the actual target
velocity component (along x or y), ∆vmax say, over the
“sampling interval” Ta. Similarly, R = diag (R1,R1). As
to R1, it can be chosen based on an educated guess on the
second-order moments of the measurement errors.

In order to describe the main ideas underlying the proposed
multitarget tracker, denote by Nk, k ≥ 2, the set of (positive)
integers indexing the tracks that are active over the kth antenna
scan (i.e., confirmed and to-be-confirmed ones).

1) Over the kth scan, for the ith track, i ∈ Nk, we compute
the one step prediction of the state, x̂i(k + 1|k) say, and
the associated error covariance matrix by implementing the
Kalman filter (KF) equations.

2) Based on the predicted positions of targets over the (k+1)th
scan (corresponding to active tracks over the kth scan) we
construct a partition of Nk, N 1

k , . . . , Nmk

k say, in order to
determine targets that might be in close spatial proximity and,
hence, groups of range-azimuth cells to be jointly processed
by the detection stage; the partition is constructed according
to a given criterion (subsequently described).

3) If the cardinality of N j
k , j = 1, . . . ,mk, is greater than one,

the multitarget decision scheme is used to detect and localize

the targets whose indices are in N j
k ; otherwise, we use a single

target detector based on [3] and properly adapted to the case
at hand. At this point we have a set of measurements for the
(k + 1)th scan, Mk+1 say.

4) Mk+1 is fed to a non parametric joint probabilistic data
association (JPDA) algorithm [7].

5) The state of each track is updated: a to-be-confirmed track
can be confirmed (otherwise, it is deleted) using an mc/nc

rule, i.e., we confirm a track the first time the number of
detections over the last nc scans is greater than or equal
to mc; similarly, a confirmed track can be deleted using an

md/nd rule. In addition, tracks in N j
k , j = 1, . . . ,mk, are

compared to merge possible “close tracks”: ∀r, s ∈ N j
k , r < s,

j = 1, . . . ,mk, if the rth track is close in position and
velocity to the sth track, the former is deleted. In formulas, if
[(xr(k)−xs(k))

2+(yr(k)−ys(k))
2]1/2 is less than a threshold

value Thpos and [(vxr(k)− vxs(k))
2+(vyr(k)− vys(k))

2]1/2

is less than a threshold value Thvel the rth track is deleted.

6) After existing tracks have been updated, we run a con-
ventional detector over remaining range-azimuth cells of the
surveillance region. Range-azimuth cells “occupied by targets”
associated with active tracks, but also cells surrounding the
above estimated target positions, are not scanned by the
conventional detector; notice that it is necessary to set guard
cells (not fed to the more conventional detector) to avoid
that the spillover due to (already detected) strong targets

might originate additional false targets. Thus, if l̂ and θ̂ are
the estimated range cell and azimuthal position of the target
corresponding to an active track, respectively, the conventional

detector does not scan range cells l̂, l̂ − 1, and l̂ + 1 together
with (at least) pulses nθ̂ − N/2, . . . , nθ̂ + 3N/2 − 1. The
conventional detector is the cascade of two detectors: the
observables corresponding to each range-azimuth cell within

the area of interest are fed to a first stage designed assuming
the presence of a target “matched to” the lth range cell and the
hth azimuth cell. If a target is detected, setting the threshold
to guarantee Pfa = 10−2, the observables are fed to the
single target detector of item 3. Again, the threshold is set
to guarantee Pfa = 10−2.

7) The tracker initiates potential tracks over the (k+1)th scan
in case of detections (which come from the detector described
in the previous item) over the kth and the (k + 1)th scans
corresponding to range-azimuth cells in spatial proximity.
More precisely, assume that a new target has been detected
over the kth and the (k+1)th scan and denote by (x̃(k) ỹ(k))
and (x̃(k+1) ỹ(k+1)) its estimated position over the kth and
the (k+1)th scan, respectively; moreover, assume that the Eu-
clidean distance between the above points is less than vmaxTa,
with vmax denoting the maximum admissible target velocity;
then, such measurements can be interpreted as originated by
the same target and give rise to a new (to be confirmed) track.
More generally, in presence of multiple detections over the
kth scan and/or the (k + 1)th scan, we initiate new tracks
for a subset of available candidates. To this end, we compute
all distances between detections over consecutive scans and,
among those compatible with the maximum admissible target
velocity, choose the pair with the smallest distance; then, after
discarding all pairs having the first or the second point in
common with the selected one, we choose the pair with the
smallest distance among the survivors, and so on. The same
rationale is used to initiate tracks over the second scan based
on possible detections over the first two scans (which come
from the detector described in the previous item).

At this point Nk+1 contains the set of (positive) integers
indexing the active tracks over (k + 1)th scan.

It still remains to specify how to partition Nk. To this end,
denote by d(x,y) the Euclidean distance between x and y and
by d0 > 0 a given threshold. In particular, we investigate the
following partition rule that, leading to sets consisting of one
or two elements, keeps the computational complexity of the
detection stage at a low level (we assume that the cardinality
of Nk is greater than one):

1) set N ′ = Nk and j = 1.

2) Construct the set of distances, D say, between any two
elements ŷr(k + 1|k) and ŷs(k + 1|k) of the set {ŷi(k +
1|k), i ∈ N ′} that satisfy the following additional constraints
|lr − ls| ≤ 2 and |nθr − nθs | ≤ 3N , where li and θi
denote the range cell and the azimuthal position of the target
corresponding to the ith track in N ′.

3) Compute the minimum among such distances, i.e., dj =
minD (remember that the minimum is equal to +∞ for an

empty set): if such a minimum is different from +∞, let N j
k =

{r1, r2} where r1 and r2 are such that d(ŷr1(k+1|k), ŷr2(k+
1|k)) = dj ; otherwise construct a singleton for any element of
{ŷr(k + 1|k), r ∈ N ′} and quit the loop.

4) Compute the new N ′ as N ′ = N ′ \ {r1, r2} if N ′ is an
empty set quit the loop; if, instead, the cardinality of N ′ is

one, let N j+1
k = {r, r ∈ N ′} and quit the loop; otherwise, let

j = j + 1 and return to step 2.
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IV. PERFORMANCE ASSESSMENT AND CONCLUSIONS

In this section, we assess the performance of the tracker
by simulation techniques. All the illustrative examples assume
the following values for the relevant parameters: fc = 9.375
GHz, Tp = 0.2 µs, 1/T = 3 kHz, ωa = π rad/s, ∆θ3 = 0.36◦,
N = 6, q = 1 m2/s3, R1 = 5 m2, mc = 5, nc = 8, md = 1,
nd = 8, vmaxTa = 60 m, Thpos = 3 m, and Thvel = 1 m/s.
The trajectories of the targets are depicted in Fig. 1 where
we assume a constant acceleration model; markers indicate
the position of each target at scans multiple of 5. Notice the
crossing of three targets around scan 50 and concerning the
two targets moving along parallel trajectories the overtake of
the left one on the right one in between scans 45 and 55.
Moreover, we define the signal-to-noise ratio (SNR) for the ith
target as SNRi = |αi|2/σ2 with σ2 = 1. Figs. 2-3 refer to the
case of targets with the same strength while in Figs. 4-5 one of
the three targets whose trajectories cross each other is weaker
than the others (the one moving from top-right to bottom-
left); similarly, one of the two targets moving along parallel
trajectories is weaker than the other (the one on the right). For
comparison purposes the performance of a tracker that employs
the single target detector even for targets in spatial proximity
is considered too. In Figs. 2-5 actual trajectories are in blue,
estimated ones in green for the proposed tracker and in red
for the competitor. The proposed tracker seems to outperform
the competitor; in fact, in the considered examples it is more
effective to track close targets.
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Fig. 1. Simulated trajectories.
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Fig. 2. Tracking results assuming targets with equal strength. SNR=20 dB.
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