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Abstract—We present a novel convex formulation to
learning binary, 2-region local linear classifiers. From this
convex formulation, we formulate an online optimization
scheme using stochastic gradient descent that allows for ef-
ficient training using streaming training data. We demon-
strate the fast convergence and accurate classification on
the canonical XOR dataset.

I. INTRODUCTION

We present a convex approach to learning local de-
cision boundaries by partitioning the feature space into
two regions and learning independent local classifiers
in each region, as shown in Fig. 1. Under this structure,
the binary decision function g maps each observation
to a region where the associated local classifier f1 or
f2 makes a class prediction. We use an empirical risk
minimization approach to jointly train both the decision
function, g, and the local classification functions, f1 and
f2. We present a globally convex formulation, allowing
for globally optimal solutions to be efficiently found.

Given that data is often structured such that the
optimal decision boundary is locally simple, complex
classification functions are generally unnecessary to
reduce empirical error [1]. We therefore focus on lin-
ear partitioning and classification functions, although
the methods proposed are easily extended to kernel-
based classifiers. Linear partitioning and classification
functions allow for complex decision boundaries to be
approximated by piecewise linear functions.

Local linear classifiers of the form shown in Fig. 1
are easily applied to large data sets due to the extremely
small test-time run cost. In contrast, non-linear kernel
methods or boosting-based methods with high-numbers
of weak learners can be computationally costly during
test-time, limiting their practicality in high-throughput
classification scenarios.

A. Related Work

The architecture of our classifiers is closely related
to decision trees [2]. However, decision trees typically
are trained in a greedy, top-down fashion in an attempt
to minimize some loss or a heuristic, such as region
purity or entropy, at each split/partition of the feature
space. In contrast, our approach directly minimizes a

surrogate on the global empirical risk. Furthermore,
the heuristics employed by decision trees are often
difficult to optimize, limiting each decision to single
feature splits which can be optimized by brute force
search. The approach we propose allows for any kernel-
based decision boundary for both the partitioning and
classification functions.

Approximating decision boundaries with piecewise
simple functions has also been proposed in generative
learning schemes, such as Mixture Discriminant Anal-
ysis (MDA), proposed by Hastie et al. [3], where each
class is modeled as by mixture of Gaussian distributions.
Local Linear Discriminant Analysis (LLDA), proposed
by Kim et al. [4], clusters data and learns decision
boundaries independently within each cluster. Addi-
tional piecewise linear techniques have been proposed
in the past [5], [6], [7], however these approaches do not
learn decision boundaries based on minimizing global
empirical risk.

Minimizing the empirical error of local classifiers
has been proposed in the mixture of experts frame-
work [8], bilinear separation framework [9], and space
partitioning classification framework [1]. The mixture
of experts framework hybridizes generative and dis-
criminative approaches by replacing the partitioning
classifier, G, with a ”latent” probability distribution.
Alternating minimization is used, switching between
learning the parameters of the ”latent” distribution and
training local classifiers using standard learning meth-
ods. In the bilinear separation problem, an attempt is
made to directly minimize empirical risk. The empirical
loss is expressed as a product of indicators which are
approximated with hinge loss surrogate functions. This
introduces a bilinear optimization problem whose glob-
ally optimal solution cannot be efficiently found. The
space partitioning classifier framework can be seen as a
generalization of the bilinear separation problem, where
alternating minimization is used to train the partitioning
and local classifiers, with each subproblem posed as
a standard supervised learning problem. While space
partitioning classifiers have been shown to have strong
performance, convergence can only be guaranteed to a
local minima without resorting to exhaustive search.

Online learning is a well studied problem [10]
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Fig. 1. Left: A local linear classifier with 2 regions. The

binary reject classifiers g(x) partitions the space, and the region
classifiers f1(x) and f2(x) output labels in each regions. Right:

Decision boundaries learned for two synthetic examples.

in which classifiers are trained over extremely large
training data sets. In online learning, the goal is to train
classifiers using streaming training data and labels, with
the classifier updated after every observation. A well
studied approach to optimizing convex loss functions
is online gradient descent, which has been shown to be
an efficient and effective approach to training classifiers
[11], [12].

II. CONVEX LOCAL LEARNING

A. Empirical Risk Reformulation

Consider the binary local classifier as shown in Fig.
1. The function given by this structure is:

F (x) = 1g(x)≤0f1(x) + 1g(x)>0f2(x).

The function g(x) partitions the data into two regions.
Dependent on the output of the function g(·), a binary
label y is estimated using either the classifier f1(x)
or f2(x). Our goal is to jointly learn the partitioning
function g and local functions f1 and f2.

For a classifier of this form, the event of an error
(empirical risk) can be expressed:

R(g, f1, f2) =
n
∑

i=1

1g(x)≤01f1(x) 6=yi
+ 1g(x)>01f2(x) 6=yi

.

(1)

Replacing indicators with surrogate functions generally
yields a non-convex upper bound on the empirical risk.
Instead, we reformulate the empirical risk to yield a
convex upper-bounding surrogate:

Theorem II.1. The empirical risk (1) can equivalently

be expressed:

R(g, f1, f2) =
n
∑

i=1

[

max
(1g(xi)>0 + 1f2(xi) 6=yi

,1f1(xi) 6=yi
+ 1g(xi)≤0

)

− 1

]

(2)

Proof: Consider the empirical risk with respect to
the event of a correct classification:

R(g, f1, f2) =
n
∑

i=1

[

1−
[1g(xi)≤01f1(xi)=yi

+ 1g(xi)>01f2(xi)=yi

]

]

.

(3)

Equivalently, the product of indicators can be replaced
with the minimization:

R(g, f1, f2) =

n
∑

i=1

[

1−

min
λ1

i
∈[0,1],λ2

i
∈[0,1]

[

λ1
i1g(xi)≤0 + (1− λ1

i )1f1(xi)=yi

+λ2
i1g(xi)>0 + (1− λ2

i )1f2(xi)=yi

]

]

.

(4)

The minimization with respect to λ1
i and λ2

i is not
guaranteed to have a unique solution. Due to the fact
that 1g(x)≤0 = 1− 1g(x)>0, one valid optimal solution

occurs when λ1
i = 1 − λ2

i . Enforcing this constraint
allows for the substitutions λ1

i = λi and λ2
i = 1 − λi,

simplifying the empirical risk:

R(g, f1, f2) =
n
∑

i=1

max
λi∈[0,1]

[

1−
[

λi1g(xi)≤0 + (1− λi)1f1(xi)=yi

+(1− λi)1g(xi)>0 + λi1f2(xi)=yi

]

]

.

(5)

Changing the sign in the arguments of the indicator
functions (1z<0 = 1 − 1z≥0), the empirical risk can
be expressed:

R(g, f1, f2) =
n
∑

i=1

max
λi∈[0,1]

[

λi1g(xi)>0 + (1− λi)1f1(xi) 6=yi

+(1− λi)1g(xi)≤0 + λi1f2(xi) 6=yi
− 1

]

.

(6)

2
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Note that the optimal solution to the variables λi is at
the boundaries of the constraints, that is λi ∈ {0, 1}.
As such, the variable λi can be replaced with a maxi-
mization, allowing the empirical risk to be expressed:

R(g, f1, f2) =
n
∑

i=1

[

max
(1g(xi)>0 + 1f2(xi) 6=yi

,1f1(xi) 6=yi
+ 1g(xi)≤0

)

− 1

]

.

Introducing convex surrogate functions for the indi-
cator into the empirical risk as formulated in (2) leads to
a convex, upper-bounding loss function. The resulting
risk is globally convex and allows for efficient optimiza-
tion, whereas existing approaches [9], [1] are generally
non-convex, preventing efficient global optimization.

B. Convex Relaxations and Uniqueness

Although a globally optimal solution of this convex
relaxation can be efficiently found, directly replacing
indicators with convex surrogates generally leads to
poor classification performance. This is a result of the
structure of classifier, which allows for the sign of
the partitioning function, g(x), to be flipped and the
local classifiers to be exchanged, yielding the same
predictions and empirical risk.

Theorem II.2. For any convex relaxation R̂(g, f1, f2),
where the indicators are each replaced with upper-
bounding surrogate functions of the same form, the set
of global optimal solutions includes the partitioning
function g(x) = 0.

Proof: Consider set of functions g∗, f∗
1 , f

∗
2 that

minimize R̂(g, f1, f2). An alternative set of functions

g̃∗ = −g∗, f̃∗
1 = f∗

2 , f̃
∗
2 = f∗

1 also minimizes

R̂(g, f1, f2). Given that the surrogate loss function is
convex, any convex combination of these two functions
(including the partitioning function g(x) = 0) has a

value less than or equal to R̂(g∗, f∗
1 , f

∗
2 ).

The exchangeability of solutions (R̂(g, f1, f2) =
R̂(−g, f2, f1)) is a fundamental limitation when con-
structing convex relaxations of the empirical risk. This
fundamental limitation arises in estimating an un-
observed exchangeable variable, as previously shown
when using convex relaxations to fit latent variable
models [13].

To overcome this fundamental limitation, we mod-
ify the feasible set of solutions so that it does not
include both(g, f1, f2) and (−g, f2, f1). In particular,
we randomly select an observation, xj , and enforce

Algorithm 1 Online Update

Input: Observation and label, xt, yt, current parti-
tioning classifier, α, and local classifiers β1, β2

Output: Updated partitioning classifier, α, updated
local classifiers β1, β2

1. Find active region

rt =











1 if log(1 + eα
Txt) + log(1 + e−ytβ

T
1
xt) >

log(1 + e−αTxt) + log(1 + e−ytβ
T
2
xt)

2 otherwise

2. Calculate the subgradient for the partitioning clas-
sification functions

5α =

{

−xt

1+e−αT xt
if rt = 1

xt

1+eα
T xt

if rt = 2

5β1 =

{

−ytxt

1+e
ytβ

T
1

xt
if rt = 1

0 if rt = 2

5β2 =

{

0 if rt = 1
−ytxt

1+eytβ
T
2

xt
if rt = 2

3. Return updated functions

α = α− 5α√
t

β1 = β1 −
5β1√

t

β2 = β2 −
5β2√

t

the constraint g(xj) ≥ β for some constant β ≥ 1.
Intuitively, this constraint fixes the region that the point
xj is assigned to, removing the exchangeability as
g(xj) < 0 is not a feasible solution.

III. ONLINE TRAINING OF LOCALLY LINEAR

CLASSIFIERS

In practice, we upper-bound the indicator losses
in (2) using logistic loss functions. The logistic loss
function is an ideal choice when training local linear
classifiers using streaming data, as it is smooth continu-
ously differentiable while asymptotically approximating
the tightest convex surrogate functions (hinge losses as
shown in [14]). Starting with a random set of functions,
we use a stochastic gradient descent algorithm shown in
Alg. 1 to find the local linear classifier that minimizes
the objective function [11].

Performance of this online algorithm is shown on a
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Fig. 2. Left: Synthetic gaussian XOR data. Right: Average training error over the entire training set vs. observed training observations.

Fig. 3. Left: Partitioned regions learned via online training.

Right: Decision boundaries learned by online training.

synthetic dataset in Fig. 2. The synthetic dataset, shown
in Fig. 2, was generated from a mixture of Gaussians,
with a single gaussian distribution centered in each
quadrant and labels corresponding to each Gaussian
equal to the XOR of the mean coordinates. A randomly
initialized local linear classifier is updated by randomly
generated training examples. The average training error
on the entire training dataset is shown on the right
of Fig. 2. On the Gaussian XOR data set, the local
linear classifier converges at an extremely fast rate, with
convergence approximately after 200 updates.
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