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Abstract—Particle filters are simulation-based algorithms for
computational inference in dynamical systems that have become
very popular over the years in many areas of science and
engineering. They are derived from Bayes’ theorem and the
technique of importance sampling (IS), which entails the ap-
proximation of probability measures by way of weighted random
samples in the space of interest. As a consequence, particle
filters suffer from problems related to the degeneracy of these
weights, a limitation shared with other IS-based methods. In
practice, the weight degeneracy implies that in some scenarios
(typically when the dimension of the state space is high or
when the likelihood function of the system is sharp) classical
particle filters become numerically unstable and fail to converge.
In this paper we investigate the application of a recently proposed
technique, termed nonlinear importance sampling (NIS), to the
design of particle filters. We show how the standard particle
filter can be easily modified to incorporate transformed weights
computed according to the NIS scheme, then provide a concise
proof of convergence of the resulting algorithm, and finally
present computer simulation results to illustrate the potential
improvement in performance that can be attained.

I. INTRODUCTION

Particle filters (PFs) are simulation-based algorithms for
inference in dynamical random systems that have become
popular tools in various fields of science and engineering [1],
[2], [3], [4].

Essentially, a PF is a recursive algorithm that approxi-
mates the sequence of posterior probability distributions of
the (unobserved) dynamic variables in the system of in-
terest given a series of observations collected sequentially.
The probability distributions are approximated recursively (by
exploiting Bayes’ theorem) by constructing and sequentially
updating a set of random samples in the space of the variables
of interest with associated weights. The computation of the
weights is carried out according to the importance sampling
(IS) technique and, as a consequence, PFs suffer from the
weight degeneracy phenomenon [5], the same as virtually all
other IS-based schemes. While occasional resampling steps can
keep the problem under control in many systems [5], severe
weight degeneracy can occur nevertheless in some scenarios. In
that case classical particle filters become numerically unstable
and fail to converge. This is a typical phenomenon in high-
dimensional models [6] but also, contrary to intuition, in
systems where the observations present a high signal-to-noise
ratio and hence the posterior probability mass is confined
within a very small region of the space of the system variables
[7].

We propose to tackle the problem of weight degeneracy
using a recently introduced variation of the IS technique
called nonlinear importance sampling (NIS) [7]. In classical

IS schemes, standard importance weights (IWs) are computed
proportional to the ratio of the target probability density
function (pdf) and the proposal density used to generate
samples, and then they are normalized (so they add up to
1). When the IWs present large variations in their magnitude,
they degenerate, meaning that after normalization all IWs but
the biggest one become negligible (practically zero). In a
NIS scheme, transformed importance weights (TIWs) are ad-
ditionally computed by applying a nonlinearity to the standard
IWs before their normalization. The nonlinearity is chosen
to reduce the variation of the IWs and hence mitigate their
degeneracy, at the expense of introducing a certain distortion
in the approximation of the target probability distribution1

The benefit of performing NIS has been advocated for
the population Monte Carlo class of methods in [7]. In this
paper, we investigate the application of this technique to PFs.
Specifically, we introduce a variation of the sequential im-
portance resampling (SIR) [5] algorithm that computes TIWs,
then sketch a proof of its asymptotic convergence and finally
show computer simulation results that illustrate the sort of
performance improvement that can be expected from the new
algorithm compared to the standard SIR filter. Namely, we
provide numerical evidence of the SIR algorithm with TIWs
being robust in a simulation scenario where standard IWs
typically degenerate.

The rest of this paper is organized as follows. Section II
contains background material on state space Markov dynamical
models, the stochastic filtering problem and standard PFs.
We intoduce the new algorithm, including a simple analysis
of its asymptotics, in Section III. A numerical example is
presented in Section IV and, finally, Section V is devoted to
the conclusions.

II. BACKGROUND

A. Filtering in state space Markov models

Many real-world systems of interest can be formally repre-
sented as discrete-time stochastic dynamical models in state-
space form (state-space models, for conciseness, in the sequel).
Let Xt be a dx × 1 random vector taking values in R

dx that
represents the state of the system of interest at discrete time
t ≥ 0. Typically, this state cannot be observed and, instead,
one observes realization of the dy×1 random vector Yt, t ≥ 1,
that takes values in R

dy and depends (statistically) on Xt.

The probability measure that characterizes the initial state,
X0, is denoted π0. We assume that π0 has a density with
respect to the Lebesgue measure, denoted p0, hence π0(dx0) =

1In other words, the TIWs are not proper in the sense of [8] or [9].
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p0(x0)dx0. The sequence {Xt; t ≥ 0} is Markov and the state
dynamics are governed by a transition kernel Kt(dxt, xt−1).
As in the case of π0, we assume that, for every xt−1 ∈ R

dx , the
measure Kt(dxt, xt−1) has a pdf and we denote it kt(xt|xt−1)
(i.e., the conditional density of xt given xt−1). Finally, the
dependence between the observation Yt and the state Xt is
given by the pdf gt(yt|xt). In particular, we assume that the
observations are conditionally independent (given the states),
i.e., the random vector Yt is independent of all other obser-
vations Yn, n 6= t, and all other states Xn, n 6= t, given Xt.
To summarize, a state-space Markov model with conditionally
independent observations is completely described by the triplet

p0(x0), kt(xt|xt−1) and gt(yt|xt), where t = 1, 2, ...
(1)

Let xt1:t2 , with t1 ≤ t2, be shorthand for the set xt1:t2 =
{xt1 , xt1+1, ..., xt2} (if t1 > t2 then xt1:t2 is the empty
set). The problem of stochastic filtering consists in computing
the posterior probability distribution of the state Xt given
a sequence of observations Y1:t = y1:t. This distribution is
denoted πt(dxt). The measure πt has a pdf, that we denote
pt(xt|y1:t) and is often termed the filter density.

The filter density can be written recursively as

pt(xt|y1:t) ∝ gt(yt|xt)

∫

kt(xt|x
′)pt−1(x

′|y1:t−1)dx
′.

However, the integral in the equation above does not have
a closed form except in a few specific cases, namely when
the model in Eq. (1) is linear and Gaussian (and pt is then
computed exactly using a Kalman filter; see, e.g., [3]) or when
Xt takes values on a finite and discrete space (and the integral
reduces to a finite sum).

B. Particle filtering

Particle filters are simulation-based (i.e., Monte Carlo)
methods for the recursive approximation of the sequence of
measures πt, t ≥ 0. The following procedure is often termed
standard particle filter or sequential importance resampling
(SIR) algorithm [5], [1], [2].

Initialization. Draw N samples x
(i)
0 , i = 1, ..., N , from the

prior pdf p0(x0) and assign them equal weights, w
(i)
0 = 1

N .

Recursive update. Given the set {x
(i)
t−1, w

(i)
t−1; i = 1, ..., N}

and a positive integer R ≥ 1, take the following steps:

1) Draw x̄
(i)
t from kt(xt|x

(i)
t−1), i = 1, ..., N .

2) Update the importance weights,

ŵ
(i)
t = w

(i)
t−1gt(yt|x̄

(i)
t ), (2)

w̄
(i)
t =

ŵ
(i)
t

∑N
j=1 ŵ

(j)
t

,

for i = 1, ..., N .

3) If t
R ∈ N then resample: for i = 1, ..., N set x

(i)
t =

x̄
(j)
t with probability w̄

(j)
t , j ∈ {1, ..., N}. Reset the

weights: w
(i)
t = 1

N for every i.

Otherwise, if t
R /∈ N, set x

(i)
t = x̄

(i)
t and w

(i)
t = w̄

(i)
t

for i = 1, ..., N .

This is arguably the simplest PF, where the new samples

x̄
(i)
t , usually called particles, are drawn from the kernel Kt

in the model, yielding the simple weight update of Eq. (2). In
general, other proposal distributions can be selected to improve
the efficiency of the algorithm [1], [3], [4]. The resampling step
3) is necessary to mitigate the weight degeneracy phenomenon
[5]. Here we assume a multinomial resampling scheme that is
carried out periodically, every R steps, for simplicity. More
sophisticated schemes can be plugged in, however, including
systematic, residual or minimum variance resampling [10],
without affecting the other steps of the algorithm. Hereafter

we will refer to the unnormalized weights ŵ
(i)
t as standard

IWs (normalized IWs, correspondingly, for w̄
(i)
t and/or w

(i)
t ).

The particles and normalized IWs at time t yield a random
approximation of the measure πt, namely

πN
t (dxt) =

N
∑

i=1

w
(i)
t δ

x
(i)
t

(dxt), (3)

where δx denotes the unit delta measure located at x ∈ R
dx .

For any integrable function f : Rdx → R
d, we can approxi-

mate the integral (f, πt) ,
∫

f(xt)πt(dxt) as the weighted

sum (f, πN
t ) =

∫

f(xt)π
N
t (dxt) =

∑N
i=1 w

(i)
t f(x

(i)
t ). In

particular, for the identity function I(x) = x, (I, πN
t ) is an

estimate of the posterior mean of pt(xt|y1:t).

III. PARTICLE FILTER WITH TRANSFORMED WEIGHTS

A. Modified SIR algorithm

The weight update of Eq. (2) results from the sequential
application of the IS method. In particular, note that the joint
posterior pdf of the sequence x0:t given the observations y1:t,
denoted p0:t(x0:t|y1:t), can be decomposed recursively as

p0:t(x0:t|y1:t) ∝ gt(yt|xt)kt(xt|xt−1)p0:t−1(x0:t−1|y1:t−1).

If we ignore the resampling steps for the moment, it is

apparent that the sequence of particles x
(i)
0:t is drawn from the

product pdf qt(x0:t) = p0(x0)
∏t

n=1 kn(xn|xn−1). Therefore,

the standard IW associated to x
(i)
0:t is

ŵ
(i)
t ∝ gt(yt|x

(i)
t )w

(i)
t−1 ∝

p0:t(x
(i)
0:t|y1:t)

qt(x
(i)
0:t)

, (4)

i.e., proportional to the ratio of the target pdf, p0:t(x0:t|y1:t),
and the proposal pdf, qt(x0:t). Note that the filter density pt
is just a marginal of p0:t. If there is a resampling step at time

t − 1 then w
(i)
t−1 = 1

N is constant and the recursion for the
weights is “restarted” at time t.

The nonlinear IS (NIS) method of [7] entails the application
of a nonlinear transformation to the ratio in Eq. (4), in such a
way that the resulting transformed IWs (TIWs) have a smaller
range of variation (and hence a smaller empirical variance)
than the original IWs. While various possibilities exist, we
restrict our attention here to the clipping transformation of
[7]. Specifically, let i1, ..., iN be a permutation of the indices

{1, ..., N} such that ŵ
(i1)
t > · · · > w

(iN )
t , and choose an

integer Nc such that 1 ≤ Nc < N . We compute the TIWs
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by way of the nonlinear function ψN
t : {ŵ

(i)
t , i = 1, ..., N} ×

{1, ..., N} → [0, 1) defined as

ψN
t ({ŵ

(j)
t , j = 1, ..., N}, i) =

{

ŵ
(iNc )
t , if ŵ

(i)
t ≥ w

(iNc )
t

ŵ
(i)
t , if ŵ

(i)
t < w

(iNc )
t

.

(5)

For simplicity, in the sequel we write w̆
(i)
t = ψN (ŵ

(i)
t ) as

shorthand for w̆
(i)
t = ψN

t ({ŵ
(j)
t , j = 1, ..., N}, i). For the

class of models in Section II, all the weights are different with
probability 1 and this transformation guarantees a decrease the

range of variation, i.e.,
maxi w̆

(i)
t

mini w̆
(i)
t

<
maxi ŵ

(i)
t

mini ŵ
(i)
t

.

The SIR algorithm with TIWs using the clipping function
of Eq. (5) is identical to the original SIR algorithm except for
the weight update step 2), which is extended as follows:

2) Update the importance weights: for i = 1, ..., N , first
compute the unnormalized IWs

ŵ
(i)
t = w

(i)
t−1gt(yt|x̄

(i)
t ),

and then obtain the clipped TIWs, w̆
(i)
t = ψN (ŵ

(i)
t ).

Finally, normalize the TIWs,

w̄
(i)
t =

w̆
(i)
t

∑N
j=1 w̆

(j)
t

, i = 1, ..., N.

We hereafter refer to the SIR algorithm with clipped TIWs as
ClipSIR for conciseness.

B. Asymptotic convergence

Consider the ClipSIR algorithm with resampling at every

time step (i.e., R = 1) for simplicity, in such a way that w
(i)
t =

1/N for every t and i. The extension of the analysis to the
case R > 1 is straightforward but notationally cumbersome.
Let f : Rdx → R be an arbitrary bounded real function of
xt, namely ‖f‖∞ = supx∈Rdx |f(xt)| < ∞, and define the
following discrete random measures,

ξNt =
1

N

N
∑

i=1

δ
x̄
(i)
t

, π̂N
t =

N
∑

i=1

ŵ
(i)
t δ

x̄
(i)
t

∑N
j=1 ŵ

(j)
t

, π̄N
t =

N
∑

i=1

w̄
(i)
t δ

x̄
(i)
t

and πN
t like in Eq. (3). The measure ξNt is an approximation

of ξt = Ktπt−1, which is defined, in turn, as

(f, ξt) =

∫ (∫

f(xt)Kt(dxt|x
′)

)

πt−1(dx
′) = (f̄t, πt−1),

where f̄t(xt−1) =
∫

f(xt)Kt(dxt|xt−1) and ‖f̄t‖∞ ≤
‖f‖∞ < ∞. All π̂N

t , π̄N
t and πN

t are approximations of

πt. Additionally, let us denote gyt

t (xt) , gt(yt|xt) for the
likelihood function. We have the following result on the
asymptotic convergence of the ClipSIR algorithm.

Theorem 1: Let f : R
dx → R be a bounded function,

let T < ∞ be an arbitrary but finite time horizon and let
Y1:T = y1:T be an arbitrary but fixed (deterministic) sequence
of observations. Assume that ∀t ≤ T gyt

t > 0 is bounded,
(gyt

t , ξt) > 0 and limN→∞
Nc

N = 0. Then, limN→∞(f, πN
t ) =

(f, πt) almost surely (a.s.) for every t = 0, ..., T .

Outline of the proof: We proceed by induction in t, using the
same type of argument as, e.g., in [10]. At t = 0, the particles

are independent and identically distributed (i.i.d.) samples from
the true distribution π0, hence it is straightforward to show that
limN→∞(f, πN

0 ) = (f, π0) a.s. As an induction hypothesis, we
assume that limN→∞(f, πN

t−1) = (f, πt−1) a.s., for arbitray t,
and try to establish the convergence of (f, πN

t ).

We proceed in four steps. Let us first consider (f, ξNt ). A
simple triangle inequality yields

|(f, ξNt )− (f, ξt)| ≤ |(f, ξNt )− (f,Ktπ
N
t−1)|

+|(f,Ktπ
N
t−1)− (f,Ktπt−1)|,(6)

where ξt = Ktπt−1. We note that the second term in (6)
is |(f,Ktπ

N
t−1) − (f,Ktπt−1)| = |(f̄t, π

N
t−1) − (f̄t, πt−1)|,

hence |(f,Ktπ
N
t−1)−(f,Ktπt−1)| → 0 a.s. using the induction

hypothesis. As for the first term in (6), let Ft be the σ-algebra

generated by the variables x
(i)
0:t and x̄

(i)
1:t for 1 ≤ i ≤ N , and

define the random variables θ
(i)
t , f(x̄

(i)
t )− f̄t(x

(i)
t−1), which

are centered and conditionally independent given Ft−1. It can

be shown that |(f, ξNt ) − (f,Ktπ
N
t−1)| = | 1N

∑N
i=1 θ

(i)
t | → 0

a.s. using the Marcinkiewicz-Zygmund inequality and the
Borel-Cantelli lemma. Since both terms on the right-hand side
of (6) converge to 0, we obtain |(f, ξNt )− (f, ξt)| → 0 a.s.

To analyze the error |(f, π̂N
t ) − (f, πt)| we note that

(f, π̂N
t ) = (fgyt

t , ξ
N
t )/(gyt

t , ξ
N
t ) and, similarly, (f, πt) =

(fgyt

t , ξt)/(g
yt

t , ξt). After some manipulations we obtain

|(f, π̂N
t )− (f, πt)| ≤ ‖f‖∞

|(gyt

t , ξt)− (gyt

t , ξ
N
t )|

(gyt

t , ξt)

+
|(fgyt

t , ξ
N
t )− (fgyt

t )|

(gyt

t , ξt)
. (7)

Since ‖fgyt

t ‖∞ ≤ ‖f‖∞‖gyt

t ‖∞ < ∞, the induction hypoth-
esis combined with (7) yields |(f, π̂N

t )− (f, πt)| → ∞ a.s.

In the third step we bring in the error introduced by the
TIWs, namely |(f, π̄N

t )− (f, πt)|. Since

|(f, π̄N
t )− (f, πt)| ≤ |(f, π̄N

t )− (f, π̂N
t )|+ |(f, π̂N

t )− (f, πt)|

and |(f, π̂N
t ) − (f, πt)| → 0 a.s. we only have to show

that |(f, π̄N
t ) − (f, π̂N

t )| → 0 a.s. However, the latter is
immediately obtained from [7, Lemma 3] under the assumption
that limN→∞Nc/N = 0.

Finally, in order to prove that |(f, πN
t )−(f, πt)| → 0 a.s. it

is sufficient to prove that |(f, πN
t )−(f, π̄N

t )| → 0 a.s. and then
apply a triangle inequality again. This is similar to the second

step. Conditional on the σ-algebra F̄t generated by x
(i)
0:t−1 and

x̄
(i)
1:t, 1 ≤ i ≤ N , the random variables θ̄

(i)
t = f(x

(i)
t ) −

(f, π̄N
t ) are centered and independent, hence we combine again

the Marcinkiewicz-Zygmund inequality and the Borel-Cantelli
lemma to obtain

|(f, πN
t )− (f, π̄N

t )| =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

θ̄
(i)
t

∣

∣

∣

∣

∣

→ 0 a.s.

IV. EXAMPLE

We consider a simple problem of navigation in a 2D
region using radio signal strength (RSS) and accelera-
tion observations. The state vector at time t is Xt =
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(P1,t, P2,t, V1,t, V2,t)
⊤ ∈ R

4, where (P1,t, P2,t)
⊤

is the po-

sition and (V1,t, V2,t)
⊤

is the velocity, respectively, of the
platform. The prior distribution of X0 is zero-mean Gaussian
with a 4× 4 identity covariance matrix I4. This is denoted as
p0(x0) = N(x0; 0, I4).

At every time t the acceleration of the platform is assumed
measured and denoted at = (a1,t, a2,t)

⊤. For the simulation,
we generate {at; t ≥ 1} as an i.i.d. sequence with pdf
N(at; 0, σ

2
aI2) and variance σ2

a = 1
5 . The transition kernel

Kt is also Gaussian, namely

kt(xt|xt−1) = N
(

xt|Aτxt−1 +Bτat, σ
2
xBτB

⊤
τ

)

,

where the variance σ2
x = 1, the matrices Aτ =

(

I2 τI2
02 I2

)

4×4

and Bτ =

(

τ2

2 I2

τI2

)

4×2

and the time-

increment τ = 1/2 are known. Note that the process noise
in this model represents the error in the measurement of at.

RSS observations are collected from dy = 4 beacons, hence
Yt = (Y1,t, ..., Y4,t)

⊤, and the density gt is assumed Gaussian
as well. Specifically,

gt(yt|xt) =

4
∏

i=1

N









yi,t; 10 log10









S0
∥

∥

∥

∥

(

x1,t
x2,t

)

− bi

∥

∥

∥

∥

α , σ
2
y

















,

where S0 = 1 is the power of the signal transmitted from the
beacons, bi ∈ R

2 is the position of the i-th beacon, α = 2
is the path-loss coefficient (we assume open space) and σ2

y is
the variance of the observational noise variables, assumed i.i.d.
for the four beacons. The beacons are located in the positions
b1 = (600, 0)⊤, b2 = (0, 600)⊤, b3 = (−600, 0)⊤ and b4 =
(0,−600)⊤, with units in meters.

We have selected three different values of the observation
variance, namely σ2

y = 5× 10−3, 1, 20, and for each variance
we have run 400 independent simulations with the SIR and
ClipSIR algorithms with parameters N = 800 particles,
Nc = ⌈N1/3⌉ = 10 clipped weights and resampling period
R = 10. For each run, we have generated an independent
platform trajectory and an independent collection of RSS data.
Then, we have applied each filter with the same data and initial

particles x
(i)
0 , i = 1, ..., N . As an outcome, for each PF and

each simulation, we have recorded the square-errors

ε2t (j) =

∥

∥

∥

∥

∥

(

N
∑

i=1

w̄
(i)
t (j)x̄

(i)
t (j)

)

− xt(j)

∥

∥

∥

∥

∥

2

, j = 1, ..., 400,

for each discrete-time step t = 0, 1, ..., 800, where x̄
(i)
t (j)

denotes the i-th particle of the filter before resampling in the

j-th simulation (with associated weight w̄
(i)
t (j)), and xt(j) is

the true state vector at time t in the j-th simulation.

Table I displays the results of the simulations. The mean
error ε̄2 is the average (over j = 1, ..., 400 and t = 0, ..., 800)
of the ε2t (j)’s. The empirical variance of the ε2t (j)’s, denoted
Var(ε2), is also shown. The ClipSIR algorithm yields a large
performance improvement when σ2

y = 5 × 10−3. This is the
scenario where the IWs are affected by severe degeneracy. For
the other two cases the algorithms attain similar performance.

TABLE I. EMPIRICAL ERRORS: MEAN (ε̄2) AND VARIANCE (VAR(ε2)).

ε̄2 ε̄2 Var(ε2) Var(ε2)
SIR ClipSIR SIR ClipSIR

σ2
y = 5 × 10−3 18.69 7.36 3,029.30 79.40

σ2
y = 1 282.34 273.71 5,698.03 2,8264.23

σ2
y = 20 2,723.90 2,720.10 7.33 × 106 5.63 × 106

V. CONCLUSIONS

We have investigated a new particle filtering scheme that
incorporates a nonlinear transformation of the importance
weights in order to reduce the weight variance and, hence,
mitigate the well-known weight degeneracy phenomenon.
Modifying the importance weights introduces a bias in the
estimators computed from the particles. However, we have
also analyzed the asymptotics of the resulting algorithm and
proved that, under mild assumptions, the estimates of integrals
of bounded functions with respect to the target posterior
distributions converge a.s. to the true integrals as the number of
particles increases (i.e., the filter is asymptotically unbiased).
Finally, we have conducted computer simulations to show the
improvement provided by the new methodology, specially in
a scenario which is prone to severe weight degeneracy.
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