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Abstract—Suppose that we wish to determine the location
of a point x∗ ∈ Rk by comparing the distance from x∗ to
various points x1, x2, . . . , xk ∈ Rk with known position. In this
paper we consider the scenario where we are only provided
with (possibly noisy or contradictory) relations of the form
‖x∗ − xi‖2 < ‖x∗ − xj‖2. We propose a simple algorithm that
uses convex optimization techniques to estimate x∗ from such
data and we provide simulations demonstrating its effectiveness
in practice.

I. INTRODUCTION

In this paper we consider the problem of triangulation,
i.e., determining the position of a point in Euclidean space
based on comparisons to a small set of known landmark
points. Triangulation1 arises in a variety of contexts where
we would like to estimate the positions of various objects in
two- or three-dimensional space, such as sensors in a sensor
network [2–4], the positions of hydrogen atoms in nuclear
magnetic resonance spectroscopy [5, 6], or simply the location
of a single object in space. Triangulation also arises in a variety
of contexts where we wish to localize an object in a space
with k > 3 dimensions. For example, in multidimensional
scaling (MDS) we wish to determine a configuration of points
in a low-dimensional space from a set of pairwise distance
measurements [7, 8]. The problem of triangulation arises in this
context when we have already determined the configuration of
a set of landmark points and wish to add a new point using
the already learned configuration [1].

Triangulation is by no means a new problem — indeed, the
essential ideas for how to perform this task were laid out by
Gemma Frisus in his “Booklet concerning a way of describing
places” nearly 500 years ago [9]. However, in this paper we
consider the case where our observations are nonmetric. To be
concrete, let x∗ ∈ Rk denote the true position of the point that
we are trying to learn, and let x1, x2, . . . , xn ∈ Rk denote the
(known) positions of the landmark points. Rather than directly
observing the raw distances from x∗ to x1, x2, . . . , xn, i.e.,
‖x∗ − x1‖2, ‖x∗ − x2‖2, . . . , ‖x∗ − xn‖2, we instead obtain
only paired comparisons of the form ‖x∗−xi‖2 < ‖x∗−xj‖2
for various pairs (i, j). Our ultimate goal will be to estimate
x∗ from a set of such inequalities.

1Strictly speaking, triangulation refers to the process of determining the
location of a point by measuring angles to the set of landmark points.
Our approach will focus on estimating the position using data regarding
the distances to the landmark points, a process more correctly denoted
trilateration. However, we will follow the usage of [1] and ignore this subtlety.

Our motivation for considering such nonmetric observa-
tions stems from the nature of the data that often arises in
many applications of MDS and triangulation. In particular,
MDS is often applied in situations where we have a collection
of items and hypothesize that it should be possible to embed
the items in Rk in such a way that the distance between points
in Rk corresponds to their “similarity” (with small distances
corresponding to similar items), but where “similarity” might
be derived from human judgements and difficult to quantify.

As an illustrative example, we will consider one possible
architecture for a kind of collaborative filtering system [10–
12]. In collaborative filtering, we have a set of items that
might represent movies, songs, books, or any number of other
consumer items, and a large set of users who each provide
ratings of some subset of the objects. Our goal is to use the
observed ratings to learn a joint model for the items and the
users so that we can predict which items a user will prefer.
At the core of any approach to this problem is an underlying
model of human preference. One popular and effective model
of preference is the ideal point or unfolding model [13], in
which it is assumed that we can represent all the items as points
in a low-dimensional subspace, and an individual’s preferences
can be captured by an “ideal point” positioned such that objects
closest to this point are the most preferred by the individual.2
If our observations consisted of accurate measurements of the
distance from a user to a particular item, then learning an
ideal point model would essentially be a special case of MDS.
However, in practice such data is not available. One obstacle
in collecting this data is that people are generally not able to
reliably distinguish between more than a few categories [18],
and so responses are often restricted to a small numerical
scale. For example, in many collaborative filtering systems,
ratings are restricted to be integers on a scale from 1 to 5,
or even simply binary thumbs up/thumbs down or like/dislike
responses. In other cases our data may consist of the results
of paired comparisons, where a user evaluates a pair of items
and indicates whether they are similar or dissimilar, or whether
one is preferred to the other. This type of data frequently arises

2The ideal point model of preference is subtly different from the model pos-
tulating that the underlying “rating matrix” has low-rank, which has received a
great deal of attention in recent years in the context of matrix completion [14–
16]. Both models imply that only a few attributes determine a user’s rating, but
ideal point models suggest that there is an ideal “concentration level” of each
attribute and that “more” of each attribute is not always “better”. Empirical
studies have suggested that the ideal point model often does a better job of
capturing consumer preferences [17].
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when dealing with judgements made by human subjects, since
people are typically more accurate and find it easier to make
such judgements than to assign numerical scores [19].

In this paper we will restrict our attention to the case where
the observations are the results of binary paired comparisons.
We will focus on the related problems of nonmetric MDS and
nonmetric triangulation. In nonmetric MDS, our goal is to find
a configuration of points x1, x2, . . . , xn ∈ Rk that agree with
the observed data, which takes the form of a set S of ordered
quadruples such that

‖xi − xj‖2 < ‖xk − x`‖2 (1)

for all (i, j, k, `) ∈ S . In nonmetric triangulation, we assume
that x1, x2, . . . , xn ∈ Rk are known and we wish to find x∗ ∈
Rk that agrees with the observed data, which here takes the
form of a set T of ordered pairs such that

‖x∗ − xi‖2 < ‖x∗ − xj‖2, (2)

for all (i, j) ∈ T .

As we will see below, these two problems are closely
related. But even ignoring any deeper connections, there is
another important link between the problems that lies just
below the surface. Specifically, any algorithm for nonmetric
triangulation can be exploited to develop efficient algorithms
for large-scale nonmetric MDS. This builds on the techniques
developed in [1], which showed that a highly effective way
to perform MDS on a very large dataset is to select a small
number of landmark points, apply a traditional MDS algorithm
to learn an embedding of these landmark points, and then use
triangulation to fill in the rest of the embedding. A key goal
of this paper is to develop effective methods for nonmetric
triangulation so that this approach can be extended to the
nonmetric case.

The remainder of the paper is organized as follows. In
Section II we review the approach to nonmetric MDS proposed
in [20]. Our approach to nonmetric triangulation is described
in Section III. Section IV describes the results of preliminary
simulations that demonstrate the effectiveness of this approach
in practice, and Section V concludes with a discussion of open
questions and future work.

II. GENERALIZED NONMETRIC MDS

The oldest approaches to nonmetric MDS date back to
the work of Shepherd [21, 22] and Kruskal [23, 24] in the
early 1960’s. These early approaches were based on a simple
strategy of essentially trying to learn a set of distances that
agreed with the given inequalities by iteratively performing
MDS using the estimated distances, and then updating the
distances to agree with the given inequalities. While this simple
algorithm is easy to implement, it can easily get caught in local
minima.

More recently, Agarwal et al. proposed a novel approach
to nonmetric MDS based on convex optimization and called
generalized nonmetric MDS (GNMDS) [20]. Our approach
to nonmetric triangulation shares much in common with the
approach of GNMDS, and so we will first briefly review the
ideas behind the algorithm. To begin, we let X denote the
k × n matrix with columns x1, x2, . . . , xn. This is ultimately
the matrix that we would like to recover, but to state the

algorithm most concisely, we consider the equivalent problem
of recovering the Gram matrix G = XTX . Observe that we
can re-express inequality (1) as

gii − 2gij + gjj < gkk − 2gk` + g``, (3)

where gij denotes the (i, j)-th element of G. Our goal is to find
a Gram matrix G that satisfies these constraints. Of course, as
in any MDS problem, G cannot be determined uniquely, since
the constraints will be unaffected by any translation or scaling
of the dataset. The translation of the embedding is typically
fixed to be centered at the origin, which as shown in [20] is
equivalent to requiring that∑

i,j

gij = 0.

To fix the scale of G and exclude the trivial solution, we
enforce a (somewhat arbitrary) margin in (3) by modifying
it to be of the form

gkk − 2gk` + g`` − gii + 2gij − gjj ≥ 1.

We would now like to find a positive semidefinite matrix G
that satisfies these conditions, and will also lead to a low-
dimensional embedding. The dimension of the embedding X
is exactly the rank of the matrix G, thus, we would like the
rank of G to be as small as possible. Of course, finding the
matrix of smallest rank that agrees with our constraints is
computationally intractable, but it is now well known (see,
for example, the recent literature on matrix completion [14–
16]) that a good proxy for the rank of a positive semi-definite
matrix G is its trace. This leads to the optimization problem
of

min
G

Trace(G)

subject to gkk − 2gk` + g`` − gii + 2gij − gjj ≥ 1∑
i,j

gij = 0, G � 0.

The optimization problem above would find a Gram matrix G
that agrees with every paired comparison in S. This approach
would likely over-fit the data (and may not even have a
feasible solution in the case where S contains contradictory
inequalities), which would lead to a G having unnecessarily
high rank. To allow for some of these constraints to be
violated, [20] introduces slack variables ξijk`, but also adds
an `1 penalty term to the objective function to ensure that ξ
is relatively sparse, i.e., most of the constraints will still be
enforced. This leads to the optimization problem of

min
G,ξ

Trace(G) + C
∑

(i,j,k,`)∈S

ξijk`

subject to gkk − 2gk` + g`` − gii + 2gij − gjj ≥ 1− ξijk`∑
i,j

gij = 0, G � 0, ξijk` ≥ 0,

where C > 0 controls how strictly the constraints are enforced.
The resulting optimization problem is a semidefinite program
and, at least for relatively small problems, can be solved using
a software package like CVX [25, 26].
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III. NONMETRIC TRIANGULATION

In comparison to nonmetric MDS, the problem of non-
metric triangulation is somewhat simpler. We assume that we
already have some “ground truth” in an embedding X of the
points x1, x2, . . . , xn and are given a new point x∗ and wish
to estimate its location from the comparison data collected in
the form of the set T . We first consider the problem of finding
a single candidate x∗ that agrees with the given constraints. To
begin, note that by squaring and expanding both sides of (2),
we can re-express the inequality as

‖x∗‖22 − 2〈x∗, xi〉+ ‖xi‖22 < ‖x∗‖22 − 2〈x∗, xj〉+ ‖xj‖22,

which we can rearrange to obtain

〈x∗, xi − xj〉 >
‖xi‖22 − ‖xj‖22

2
.

This leads to a total of |T | inequalities. If the inequalities
are self-consistent, then we would likely be satisfied to find
any possible x∗ ∈ Rk that agrees with these inequalities. One
possible choice would be to simply pick the x∗ with smallest
`2-norm by solving the following optimization problem

min
x∗

‖x∗‖22

subject to (xi − xj)Tx∗ >
‖xi‖22 − ‖xj‖22

2
.

Since the x1, x2, . . . , xn are given and we are directly opti-
mizing over a point x∗ ∈ Rk, this problem is simpler than
the nonmetric MDS problem as there is no need for any rank
penalty to control the dimension of x∗. Of course, as in the
case of the GNMDS algorithm, strictly enforcing all possible
constraints will likely over-fit the data and may not be feasible.
Thus, to allow for some of these constraints to be violated, we
again introduce slack variables ξij and add an `1 penalty to
the objective function to ensure that the number of constraint
violations is small. This results in the optimization problem of

min
x∗,ξ

‖x∗‖22 + C
∑

(i,j)∈T

ξij

subject to (xi − xj)Tx∗ ≥
‖xi‖22 − ‖xj‖22

2
− ξij

ξij ≥ 0,

where C > 0 again controls how strictly the constraints are
enforced. This optimization problem is a quadratic program
and can be easily solved using a software package like
CVX [25, 26]. It is also essentially equivalent in structure to
the optimization problem for support vector machines, and so
many of the specialized techniques developed in that context
could be adapted to provide highly optimized methods for
solving this problem.

IV. EXPERIMENTS

We implemented and tested our algorithm for nonmetric
triangulation using CVX [25, 26]. We performed a suite of syn-
thetic simulations to evaluate the performance of the algorithm
as a function of several factors, including the impact of the
number of landmark points, the number of paired comparisons,
and the underlying “noise level” in the comparisons. Specifi-
cally, we began by generating n landmark points uniformly at
random on the unit square. We then generate a random x∗ and

conduct a sequence of paired comparisons by choosing pairs
(i, j) uniformly at random, and testing whether x∗ is closer to
xi or xj . To examine the impact of noise, rather than directly
measuring the distance to xi or xj , we instead measured the
distance to versions of xi and xj that were perturbed by two-
dimensional Gaussian noise with σ = 0.1. The results of a
representative example are shown in Fig. 1(a). The blue circles
represent the landmark points, the green star represents the true
x∗, and the red cross is the result of our algorithm.

In Fig. 1(b) we show the impact of the number of com-
parisons on the localization error for n = 25, 50, 100, setting
C = 10 in our algorithm. We measure localization error by
computing the `2 distance of the estimated x∗ to the true
one and averaging over 100 realizations of landmark points
and x∗. Not surprisingly, we observe that as the number
of comparisons increases, the error goes down, but we also
observe that it initially decays very rapidly and quite quickly
reaches a relatively low error using far fewer comparisons
than the total number possible. The results are broadly similar
for a wide range of the parameter C, suggesting that the
performance is not particularly sensitive to the choice of
C. Our experiments confirm that an increasingly accurate
localization is possible by increasing the number of landmark
points or the number of comparisons, but these factors differ
in importance. In particular, the results in Fig. 1(b) suggest
that having a sufficient number of comparisons is relatively
more important than having a large number of landmark points.
This is fortunate in our context, since it suggests that we can
perform the initial localization via GNMDS on only a small
sampling of points. Initial simulations combining these ideas
are quite promising, but are omitted here due to a lack of space.

V. CONCLUSION

We have presented preliminary simulations that suggest
that our proposed method for nonmetric triangulation can per-
form well even when confronted with a noisy and incomplete
set of paired comparisons. This allows our nonmetric triangu-
lation algorithm to be combined successfully with GNMDS to
provide a framework for nonmetric MDS on relatively large
datasets. While the process of triangulating a single point
using our approach does involve solving a convex optimization
problem, which might seem to be rather computationally
demanding if we plan to apply this to hundreds or thousands
of additional points, this would still be significantly less
demanding (both computationally, and also in terms of memory
requirements), than scaling GNMDS to handle the full dataset.
It would also be interesting to exploit potential connections
between the nonmetric MDS and triangulation problems and
the recently developed theory of 1-bit matrix completion [27].
By exploiting this connection it might be possible to develop
theoretical bounds for these or similar algorithms.

Finally, it would be very interesting to explore connec-
tions between the proposed triangulation algorithm and the
approaches to active nonmetric MDS and active triangulation
in [28, 29]. In this paper we have assumed that the sets S and
T of paired comparisons are simply given to us and are fixed
in advance. In [28, 29] it is demonstrated that by actively and
adaptively selecting which comparisons to obtain/use, dramatic
improvements are often possible. While these papers primarily
deal with a noise-free framework, it should be possible to
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Fig. 1. (a) Example with n = 25 and 50 paired comparisons. (b) Impact of the number of comparisons on localization error for n = 25, 50, 100.

combine the two ideas, leading to potentially more robust
versions of the approaches in [28, 29], and potentially allowing
for dramatic reductions in the computational complexity of
our nonmetric triangulation approach by cleverly removing
unnecessary constraints in our optimization problem.
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