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Abstract—Principal component analysis (PCA) is one of the
most commonly used statistical procedures for dimension reduc-
tion. This paper presents some recent results on the minimax
estimation of principal subspaces in high dimensions. Under
mild technical conditions, we characterize the minimax risk for
estimating the principal subspace under the quadratic loss within
absolute constant factors.

I. INTRODUCTION

Principal component analysis (PCA) is one of the most
commonly used techniques in multivariate analysis for dimen-
sion reduction and feature extraction, and is particularly well
suited for the settings where the data is high-dimensional but
the signal has a low-dimensional structure. PCA has a wide
array of applications, ranging from image recognition to data
compression to clustering. In the conventional setting where
the dimension of the data is relatively small compared with
the sample size, the principal eigenvectors of the covariance
matrix is typically estimated by the leading eigenvectors of
the sample covariance matrix which are consistent when the
dimension p is fixed and the sample size n increases [1].
However, in the high-dimensional setting where p can be much
larger than n, this approach leads to very poor estimates. At
various levels of rigor and generality, a series of papers showed
that the sample principal eigenvectors are no longer consistent
estimates of their population counterparts. For example, [2]
and [3] showed that if p/n→ γ ∈ (0, 1) as n→∞, and the
largest eigenvalue λ1 ≤

√
γ and is of unit multiplicity, then

the leading sample principal eigenvector v̂1 is asymptotically
almost surely orthogonal to the leading population eigenvector
v1, i.e., |v′1v̂1| → 0 almost surely. Thus, in this case, v̂1 is not
useful at all as an estimate of v1. Even when λ1 >

√
γ, the

angle between v1 and v̂1 still does not converge to zero unless
λ1 → ∞. In addition to being inconsistent, sample principal
eigenvectors have nonzero loadings in all the coordinates. This
renders their interpretation difficult when the dimension p is
large.

In view of the above negative results in the high-dimensional
setting, a natural approach to principal component analysis in
high dimensions is to impose certain structural constraint on
the leading eigenvectors. One of the most popular assumptions
is that the leading eigenvectors have a certain type of sparsity.
In this case, the problem is commonly referred to as sparse
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PCA in the literature. The sparsity constraint reduces the
effective number of parameters and facilitates interpretation.

Various regularized estimators of the leading eigenvectors
have been proposed in the literature. Theoretical analysis has
so far mainly focused on the rank-one case, i.e., estimating
the leading principal eigenvector v1. In this case, [4] showed
that the classical PCA performed on a selected subset of
variables with the largest sample variances leads to a consistent
estimator of v1 if the ordered coefficients of v1 have rapid
decay. [5] and [6] proposed other consistent estimators when
v1 has a bounded number of nonzero coefficients. [7] studied
the rates of convergence of estimation under various sparsity
assumptions on v1, and [8] further considers the minimax
rates with missing data. [9] investigated the variable selection
property of the methods by [4] and [10] when v1 has k nonzero
entries of the same magnitude. [11] considered minimax
detection when v1 has a bounded number of non-zeros.

More recently, for estimating a fixed number r ≥ 1 of
leading eigenvectors as n, p → ∞, [12] studied minimax
rates of convergence and adaptive estimation of the individual
leading eigenvectors when the ordered coefficients of each
eigenvector have rapid decay. When r > 1 and some of
the leading eigenvalues have multiplicity great than one, the
individual leading eigenvectors can be unidentifiable. On the
other hand, the principal subspace spanned by them is always
uniquely defined. [13] proposed a new method for estimating
the principal subspace and derived rates of convergence of the
estimator under similar conditions to those in [12].

The focus of this paper is to provide a non-asymptotic
characterization of the minimax risk for principal subspace
estimation within universal constants, without the boundedness
assumption on the rank r. The full details can be found in the
full manuscript [14].

II. STATISTICAL MODEL

Suppose we observe the n× p data matrix

X = UDV′ + Z. (1)

Here U is the n × r random effects matrix with iid N(0, 1)

entries, D = diag(λ
1/2
1 , . . . , λ

1/2
r ) with λ1 ≥ · · · ≥ λr >

0, V is p × r orthonormal, and Z has iid N(0, σ2) entries
which are independent of U. Equivalently, one can think of
X as an n×p matrix with rows independently drawn from the
distribution N(0,Σ), where the covariance matrix Σ is given
by

Σ = VΛV′ + Ip. (2)
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Here Λ = diag(λ1, . . . , λr) and V = [v1, . . . ,vr] is p × r
with orthonormal columns. The r largest eigenvalues of Σ are
λi + 1, i = 1, ..., r, and the rest are all equal to one. The
r leading eigenvectors of Σ are given by the columns of V.
Since the spectrum of Σ has r spikes, the covariance structure
(2) is commonly known as the spiked covariance matrix model
[15] in the literature.

The objective of PCA is to estimate the principal subspace
span(V) based on the observation X. Note that the principal
subspace is uniquely identified with the associated projection
matrix VV′. In addition, any estimator could be regarded as
the subspace spanned by the columns of a matrix V̂ with
orthonormal columns, hence uniquely identified with its pro-
jection matrix V̂V̂′. Thus, estimating span(V) is equivalent
to estimating VV′. Let ‖ · ‖F denote the Frobenius norm. In
this paper we consider optimal estimation of span(V) under
the loss function

L(V, V̂) = ‖VV′ − V̂V̂′‖2F, (3)

which is a commonly used metric to gauge the distance
between linear subspaces. It also coincides with twice the
sum of the squared sines of the principal angles between the
respective linear span.

The difficulty of estimating span(V) depends on the
joint sparsity of the columns of V. Let O(p, r) =
{V ∈ Rp×r : V′V = Ir} denote the collection of p × r ma-
trices with orthonormal columns. We consider the following
parameter spaces for Σ where V is row-sparse:

Θq(s, p, r, λ) = {Σ = VΛV′ + Ip : λ ≤ λr ≤ · · · ≤ λ1 ≤ κλ,
V ∈ O(p, r), |supp(V)| ≤ s}, (4)

where κ > 1 is a fixed constant and supp(V) denotes the row
support of V. More general sparsity model can be defined
via the weak-`q norm of V and treated analogously. For
conciseness we focus on the exact sparse case in this paper
and refer the approximately sparse case to [14]. Row sparsity
is also known as group sparsity, which is useful for high-
dimensional regression, see, e.g., [16].

III. MINIMAX RATES FOR PRINCIPAL SUBSPACE
ESTIMATION

For two sequences of positive numbers an and bn, we write
an & bn when an ≥ cbn for some absolute constant c > 0,
and an . bn when bn & an. Finally, we write an � bn when
both an & bn and an . bn hold.

The minimax rate for principle subspace estimation with
respect to the loss function (3) is given by the following
theorem.

Theorem 1. Suppose we observe data X as in (1). Let λ &√
logn
n , s − r & s ∧ log ep

s and n & s log ep
s ∨ log λ. The

minimax risk for estimating the principal subspace span(V)
under the loss (3) satisfies

inf
V̂

sup
Σ∈Θ0(s,p,r,λ)

EL(V, V̂) � λ+ 1

nλ2

(
r(s− r) + s log

ep

s

)
(5)

as long as the right-hand side of (5) does not exceed some
absolute constant. Otherwise, there exists no consistent esti-
mator.

The minimax rate in (5) depends optimally on all parame-
ters, namely, s, p, r, n and λ. Thus Theorem 1 provides a non-
asymptotic characterization of the difficulty of the principal
subspace estimation problem in terms of the minimax rates
over a wide range of parameter values. In particular, it is
interesting to note that the minimax rate for estimating the
r leading singular vectors depend on the r only through
r(s−r), the dimension of the Grassmannian manifold G(s, r).
Therefore the dependence on r is not monotonic, with the
worst case happening at r = s

2 . However, it should be noted
that in order for Theorem 1 to hold, it is necessary to have
r strictly bounded away from s. Otherwise, in the degenerate
case of r = s, the only uncertainty is in the support of V.
The minimax rate is indeed much faster than (5), because in
this regime the support can be estimated accurately.

A key step in establishing the optimal rates of convergence
is the derivation of rate-sharp minimax lower bounds. It is
highly non-trivial to obtain a lower bound which depends
optimally on all parameters, in particular the eigenvalues and
the rank. Our main technical tool for the lower bounds is
based on local metric entropy [17], [18], [19], instead of the
usual methods based on explicit constructions of packing sets
together with Fano’s Lemma used, for example, in [3], [12],
[7]. Although the method is abstract in nature, the advantage
is that it only relies on the analytical behavior of the metric
entropy of the parameter space, thus allowing us to sidestep
constructing an explicit packing, which can be a challenging
task due to the need of fulfilling both the orthogonality and
the sparsity constraints. See [14, Section 2.1].

IV. OPTIMAL ESTIMATION VIA AGGREGATION

We now show the achievability of the minimax rate given in
Theorem 1. The optimal estimator of V is constructed using
sample splitting and aggregation. This procedure is theoreti-
cally interesting but computationally intensive. A data-driven
and computationally efficient estimator in constructed in [14]
by reducing the sparse PCA problem to linear regression under
group sparsity, which achieves the optimal rate adaptively
under stronger conditions.

We first note that the loss function (3) satisfies

L(V, V̂) = 2r − 2‖V̂′V‖2F = 2‖(I−VV′)V̂V̂′‖2F. (6)

Moreover, the loss function is invariant under orthogo-
nal complement, i.e., L(V, V̂) = L(V⊥, V̂⊥), where
[V,V⊥], [V̂, V̂⊥] are orthogonal matrices. Therefore the loss
(6) admits the following upper bound

L(V, V̂) ≤ 2(r ∧ (p− r)). (7)

For notational simplicity we assume that the sample size is
2n and we split the sample equally according to X =

[
X(1)

X(2)

]
,

where X(i) = U(i)DV′ + Z(i), i = 1, 2. Denote by S(i) =
1
nX′(i)X(i) the corresponding sample covariance matrix. The
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main idea is to construct a family of estimators {V̂B} using
the first sample, indexed by the row support B ⊂ [p], where
V̂B is the optimal estimator one would use if one knew
beforehand that supp(V) = B. Then we aggregate these
estimators by selection using the second sample. Aggregation
methods have been widely used and well studied in statistics
literature (see, e.g., Nemirovski [20]). To the best of our
knowledge, this is the first application of the aggregation
approach to sparse PCA which yields optimality results.

For each B ⊂ [p] such that |B| = s, we define V̂B ∈
O(p, r) as the r leading singular vectors of JBS(1)JB , where
JB is the diagonal matrix given by

(JB)ii = 1{i∈B}. (8)

Given the collection of the V̂B’s, we set

B∗ = argmax
B⊂[p]
|B|=s

Tr(V̂′BS(2)V̂B) (9)

and define the aggregated estimator by

V̂∗ = VB∗ . (10)

It is natural to use the same sample covariance matrix to
construct the V̂B’s and to select B∗. The main advantage of
sample splitting is to decouple the selection of the support
and the computation of the estimator. Thus, conditioning on
the first sample, we can treat the candidate estimators as if they
are deterministic, which greatly simplifies the analysis. Sample
splitting is commonly used in aggregation based estimation,
where a sequence of estimators are constructed from the first
sample and the second sample is used to aggregate these
candidates to produce a final estimator.

The estimator (10) requires knowledge of the sparsity s and
the rank r. Moreover, it can be computationally intensive for
large values of p since in principle one needs to enumerate all(
p
s

)
possible support sets in order to obtain B∗. Nonetheless,

this estimator achieves the minimax rate in Theorem 1. The
proof can be found in [14, Section 6.2]. In the special case of
r = 1, a combinatorial procedure similar to (9)–(10) has been
proposed in [7].
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