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Abstract—Gene prioritization is a class of methods for dis-
covering genes implicated in the onset and progression of a
disease. As candidate genes are ranked based on similarity to
known disease genes according to different set of criteria, the
overall aggregation of these ranked datasets is a vital step
of the prioritization procedure. Aggregation of different lists
of ordered genes is accomplished either via classical order
statistics analysis or via combinatorial ordinal data fusion. We
propose a novel approach to combinatorial gene prioritization
via Linear Programming (LP) optimization and use the recently
introduced weighted Kendall τ distance to assess similarities
between rankings. The weighted Kendall τ distance allows for
constructing aggregates that have higher accuracy at the top
of the ranking, usually tested experimentally, and it can also
accommodate ties in rankings and handle negative outliers. In
addition, the Kendall distance does not use quantitative data
which in many instances may be unreliable. We illustrate the
performance of the prioritization method on a set of test genes
pertaining to the Bardet-Biedl syndrome, schizophrenia, and HIV
and show that the combinatorial method matches or outperforms
state-of-the art algorithms such as ToppGene.

I. INTRODUCTION

It is known that humans have roughly 25, 000 genes, some
of which – when mutated – may lead to a host of dis-
eases, conditions and abnormal phenotypes. Despite decades
of intense research focus, the underlying gene aberrations
that lead to even the most frequently encountered diseases
are not completely known. Usually, the main impediment to
identifying disease genes is the time-consuming and costly
process of testing a working hypothesis, further exacerbated
by alternative splicing and by the fact that typically, multiple
genes have to be jointly mutated to trigger the onset of a
disease. Even for experiments involving only up to three genes,
one would have to test as many as 4 × 1012 combinations of
genes in order to check if they are linked to a given disease.
This is clearly an infeasible experimental endeavor which will
remain difficult to accomplish for decades to come.

One approach to mitigate the problem is to preprocess
available biological side-information about genes and then
reduce the set of test genes accordingly. The problem of
identifying a small subset of genes likely to be causally linked
with a disease is known as the gene prioritization problem, and
the class of algorithmic solutions for solving the problem are
known as prioritization algorithms. Prioritization algorithms
are typically based on using experimentally confirmed disease
genes and identifying different qualitative evidence that asso-
ciates the disease genes with target test genes. For this purpose,
linkage analysis, sequence similarity, functional annotation,

marker and pedigree analysis are all combined. The evidence
obtained establishes the ranking of candidate genes based on
the extent of their relationship – or similarity – to the training
set of disease genes.

In the past few years, a number of sophisticated computa-
tional gene prioritization tools were proposed in [1], [4], [6],
[11]. Most of these methods are statistical and quantitative
in nature. Although offering significant improvements over
random search methods, most such methods suffer from the
fact that they tacitly or implicitly rely on the assumptions
that a) a test gene has to be close to the training genes
under all similarity criteria; in other words, the top-ranked
genes have to be highly ranked in all individual lists reflecting
different criteria for comparison; and b) no distinction is to
be made about the accuracy of ranking genes in any part
of the list; in other words, the aggregate ranking has to be
uniformly accurate at the top, middle and bottom of the list.
Clearly, neither of the two aforementioned assumptions is
justified in the gene prioritization process: there are many
instances where genes similar only under a few criteria (such
as sequence similarity or linkage distance) are involved in the
same disease pathways. Given that the goal of prioritization
is to produce a list of genes to be experimentally tested in
a wet lab, only highly relevant candidate genes are to be
considered, and consequently, such genes have to be ranked
with higher accuracy than other genes on the list. Furthermore,
aggregation of rankings based on statistical methods is often
highly sensitive to outliers and ranking errors.

To overcome the above issues of classical prioritization
approaches, we employ a combinatorial median approach to
ordinal data fusion using the weighted Kendall τ distance, first
introduced by the authors in [9]. The aggregation approach is
henceforth referred to as the generalized Kemeny approach.
The ranking obtained using the weighted Kendall τ distance is
more influenced by top positions in the rankings obtained from
different criteria so it is robust to negative outliers – i.e., a small
number of low rankings of some candidate gene. These prop-
erties are useful for gene prioritization, as weighted Kendall
τ distance does not penalize genes for not being similar to
training genes under every possible similarity criteria, and it
allows for fusing weak orders in which several candidate genes
may be ranked the same, which helps in resolving frequent
scoring ambiguities. Although fundamental results from social
choice theory and political sciences have shown that there
exists no “optimal” rank aggregation method that is consistent,
fair, and impossible-to-manipulate [15], the Kemeny method
is one of the few aggregation solutions that provably offers

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

978-1-4673-3146-3/13/$31.00 ©2013IEEE 184



a large number of performance guarantees. The properties
of the generalized Kemeny method were investigated in our
companion papers [9], [13].

We apply the generalized Kemeny approach to lists of
rankings generated by Endeavour and ToppGene [1], [4], using
criteria such as sequence similarity, CisReg modules, expres-
sion profiles, transcription factor binding sites, annotation in
different databases, pathways, etc. Our sets of test genes
pertain to the Bardet-Biedl syndrome (a genetic condition
affecting cellular cilia and causing obesity, retinal failure
and sometime, mental retardation), schizophrenia, and HIV
(Human Immunodeficiency Virus) infections. Despite the fact
that generalized Kemeny aggregation is purely combinatorial
in nature and hence discards all quantitative information in
data, i.e., it does not make use of the p-values but only
the underlying rankings of genes, it usually outperforms
Endeavour [1] and matches/outperforms ToppGene [4]. In
many instances, it produces ties in the rankings, indicative
of potentially insufficient evidence to accurately discern the
most similar genes (note that ToppGene and Endeavour always
produce complete linear orders).

A. Background

Assume that one is given a set of n genes, ranked
according to N different similarity criteria. For simplicity,
one may assume that the genes are indexed by the positive
integers [n] = {1, 2, . . . , n}. Each ranking without ties may
be viewed as a permutation over [n], i.e., an element of the
symmetric group Sn. Similarly, a ranking with ties may be
viewed as an ordered set partition, i.e., an ordered partition
of the set [n] into classes, where all genes in the same class
are considered to have the same rank. As an example, for
n = 6, σ = (1, 5, 4, 3, 2, 6) is a ranking without ties, while
σ = ({2, 3}, {1}, {4, 5, 6}) = (2− 3, 1, 4− 5− 6) is a ranking
with ties. In the latter case, genes indexed by 2 and 3 share
the first position, i.e. they are the top ranked genes. Usually,
we represent ranking with ties through their median scores,
defined as the average position of an element within a part.
For the previous example, 2 and 3 have a median score of
1.5, given that they occupy the 1st and 2nd position, and
(1 + 2)/2 = 1.5.

The inverse of a permutation σ is denoted by σ−1. For
each i, σ−1(i) denotes the rank of i in σ. In the example
above, σ−1(4) = 3. We use lower-case Greek letters for both
permutations and rankings with ties, although it should be clear
from the context to which entity we are referring to. The set of
all rankings produced by different similarity criteria is denoted
by Σ = {σ1, . . . , σN}.

In distance-based rank aggregation, the goal is to find a
ranking, called the aggregate ranking, that is simultaneously
as “close” as possible to all the votes in Σ. Closeness is
measured via a chosen distance function over Sn. We focus on
aggregation using the Kendall τ distance, since this distance
function has many desirable properties not matched by the
Cayley distance, Spearman’s footrule, and Spearman’s rank
correlation distances [7]. The Kendall τ distance between two
permutations π and σ, denoted by dK(π, σ), equals

dK(π, σ) =
∣∣{(i, j) : π−1(i) < π−1(j), σ−1(j) < σ−1(i)}

∣∣ .

Alternatively, the Kendall distance between two permutations
σ and π equals the smallest number of adjacent swaps of
elements required to convert σ into π or vice versa.

The aggregate ranking π∗ is formally computed as

π∗ = arg min
π∈Sn

∑
σ∈Σ

dK(π, σ). (1)

As already pointed out, a solution to the aforementioned
problem is known as a Kemeny aggregate. It is known that
computing the Kemeny aggregate is NP-hard [2]. To overcome
the challenge of solving an NP-hard problem, a number of
algorithms for approximate aggregation were proposed in the
literature, including PageRank (PR), Weighted Bipartite Graph
Matching (WBGM) [8], and Integer Programming (IP) relax-
ations/Linear Programming (LP) methods [5]. PR methods for
rank aggregation mimic the algorithm used for ranking web-
pages by Google, and they reduce to computing equilibrium
probabilities of Markov chains. WBGM algorithms are based
on the fact that the Kendall distance may be approximated up
to a multiplicative constant by the `1 norm of permutations.

We focus our attention on an alternative formulation of
the Kemeny aggregation rule, described in what follows. Let
σ ∈ Sn, i, j ∈ [n], and let

xij(σ) =

{
1, if σ−1(i) < σ−1(j),
0, otherwise, (2)

denote the set of pairwise preference variables of σ. Note that
there is a one-to-one correspondence between points x of the
form above and permutations π ∈ Sn, since π−1(i) < π−1(j)
if and only if xij = 1. Whenever clear from the context, we
omit the symbol σ from the notation.

Straightforward computations show that the objective func-
tion of the Kemeny optimization procedure may be rewritten
as [5]∑

σ∈Σ

dK(π, σ) =
∑
σ∈Σ

dK(x(π), σ) =
∑
σ∈Σ

∑
i,j

xijσji

=
∑
i,j

cij xij ,
(3)

where cij =
∑
σ∈Σ

σji and were we encoded a permutation π

via its pairwise preference variables x(π) = (xij).

Furthermore, the constraints of Kemeny aggregation may
be captured via the set of pairwise preference variables, x =
(xij), as follows

xij + xji = 1, for distinct i, j ∈ [n],

xij + xjk + xki ≤ 2, for distinct i, j, k ∈ [n],

xij ∈ {0, 1}, for distinct i, j ∈ [n], (4)
xii = 0, for i ∈ [n].

By relaxing the constraint in (4) to xij ∈ [0, 1], we arrive
at a Liner Programming (LP) approximation for a Kemeny
aggregation solution.

In our companion paper [13], we showed how to extend
the LP approximation framework for the weighted Kendall
distance, first introduced in [9]. The main assumption behind
the definition of this distance is that adjacent swaps (i i+ 1)
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are endowed with non-negative weights ρi. The ρ – weighted
Kendall distance, dρ(π, σ), equals the smallest cost of any
sequence of adjacent swaps needed to transform π into σ.

For a linearly decreasing weight function of the form

ρi = 1 +
ε

n− 2
(n− 1− i),

with ε ≥ 0, it can be shown that the LP relaxation of the
corresponding aggregation problem equals

min
w∈W

1

n− 2

∑
i,j,k

αijkwijk, (5)

where W represents the set of points w = (wijk), with i, j, k ∈
[n], satisfying∑

(r,s,t)∈Ti,j,k
wrst = 1, for distinct i, j, k ∈ [n],

wijk + wikj + wkij = xij , for distinct i, j, k ∈ [n],

xij , wijk ∈ [0, 1], for distinct i, j, k ∈ [n],

wijk = 0, for i, j, k not distinct.

Here, the variables xij have the same interpretation as in
the classical Kemeny aggregation framework, Tr,s,t ≡ S3 =
{(r, s, t), (r, t, s), (s, r, t), (s, t, r), (t, r, s), (t, s, r)}, and

αijk =
∑

(r,s,t)∈Ti,j,k

dρ((r, s, t), (i, j, k)) drst,

where drst denotes the number of σ ∈ Σ that rank r higher
than s higher than t. Note that for the given linear choice of
the weight ρ, it suffices to use Tr,s,t on triples of variables
only. Furthermore, this definition easily extends to rankings
with ties, by replacing Tr,s,t with

T (∗)
r,s,t = {(r, s, t), (r, t, s), (s, r, t), (s, t, r), (t, r, s), (t, s, r)}
∪ {(r, s− t), (s, r − t), (t, r − s)}
∪ {(r − s, t), (r − t, s), (s− t, r), (r − s− t)},

and defining dρ(π1, π2), for π1, π2 ∈ T (∗)
r,s,t, as the shortest

path between π1 and π2 in the graph shown in Figure 1. Due
to space limitations, the lengthy description of the constraint
set for the aggregation problem, as well as detailed derivations
and rigorous proofs behind the statements are relegated to the
full version of the paper.

As a final remark, we observe that the LP program for
weighted aggregation with ties of lists of n genes involves
O(n3) constraints and O(n2) variables. Still, the constraints
are sparse, which allows for efficient computational savings.

II. PRIORITIZATION METHODS

One of the earliest gene prioritization software is known
under the name Endeavour [1]. For different criteria, Endeav-
our ranks the candidate test genes based on their similarity to
a set of known training genes. For each similarity criteria,
Endeavour first calculates the average p-value with respect
to the training genes, i.e., the probability of obtaining a test
statistic as extreme as the one observed, under suitably chosen
null hypotheses (the method which Endeavour uses to calculate
the p-values is beyond the scope of this paper). It subsequently
ranks the test genes from lowest to highest p-values. The

Fig. 1: A graph for the weighted Kendall distance between
rankings with ties, involving three elements. The weights of
the edges have to satisfy certain symmetry constraints, as
described in [9,13]. The weights in our example are chosen
to illustrate this symmetry property. To avoid confusion be-
tween the numerical values of the weight and the identity of
candidates, we used the set {a, b, c} to represent the candidates.

rankings are aggregated via the Q-statistic, calculated from
all rank ratios ri, i = 1, . . . , N, using the joint cumulative
distribution of an N – dimensional order statistic,

Q(r1, r2, ..., rN ) = N !

∫ r1

0

∫ r2

s1

. . .

∫ rN

sN−1

dsNdsN−1 . . . ds1.

Here, the indices i refer to data sources, where N is the total
number of data sources. Also, r0 = 0.

ToppGene, a more recent software described in [4], also
ranks candidate genes according to average p-values for dif-
ferent criteria, but the choice of criteria and the aggregation
method differ from that proposed in Endeavour. The main
difference is that ToppGene employs Human and Mouse
phenotypes as one of the criteria, because direct comparison
of human and mouse phenotypes provides vital information
for identifying disease genes [3]. ToppGene aggregates rank-
ings via Fisher’s inverse chi-square method, which aggregates
the p-values of different criteria, pi, i = 1, . . . , N , into
−2
∑N
i=1 log pi. Assuming that the p-values pi, i = 1, . . . , N,

come from independent tests and that the null hypotheses are
all true, one has −2

∑N
i=1 log pi → χ2(2n), where χ2(2n)

denotes a χ2 distribution with 2n degrees for freedom. Despite
the fact that the p-values of gene prioritization criteria may not
be independent, ToppGene currently appears to be the state-
of-the-art prioritization method in terms of accuracy.

One of the most recently developed prioritization meth-
ods, NetworkPrioritizer [11], uses distances between genes
in regulatory networks as additional criteria, and performs
combinatorial aggregation based on Weighted Borda Fuse
(WBF), Weighted AddScore Fuse (WASF), and MaxRank
Fuse. However, these methods have the same drawbacks as the
classical aggregation methods and differ substantially from the
generalized Kemeny approach pursued in this paper.

III. RESULTS

We tested the generalized Kemeny method on three dis-
eases, and compared the overall rankings with those of Topp-
Gene and Endeavour. For each disease, we obtained a list of
phenotype genes on OMIM (Online Mendelian Inheritance in
Man) [10], some of which are labeled as “training genes”
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and some as “test genes”. For example, OMIM lists 14 genes
known to be involved in the Bardet-Biedl syndrome, 11 of
which are listed as “training genes” in table I, and 3 genes, col-
ored in red – TTC8, CEP290, MKS1– are part of the 12 “test
genes”. These phenotype test genes are expected to be ranked
high in the overall aggregate, since there is strong evidence
that they are similar to the training genes. The rest of the test
genes are selected from GeneCards (www.genecards.org) [14]
such that they are not known to be related to the disease.
Although the sets of training and test genes are identical for
Endeavour and ToppGene, the criteria used by Endeavour and
ToppGene are different. For fairness of comparison, we took
the intersection of Endeavour and ToppGene criteria. From the
ToppGene suite, we used GO: Molecular Function, GO: Bio-
logical Process, GO: Cellular Component, Domain, Pathway,
Pubmed, Interaction, Transcription Factor Binding Site, Gene
Family. From the Endeavour suite, we used GeneOntology,
Interpro, Kegg, Motif, Text.

We performed generalized Kemeny aggregation with ties
via the LP method of Section II; the results are shown in
tables I-III. The first two columns label the gene symbols
with numbers, and those “Gene numbers” are used throughout
columns 4-6. Note that column 3 simply indexes the ranking
from 1 to 12, and the numbers are not gene numbers. Columns
4-6 contain rankings of genes according to ToppGene, gener-
alized Kemeny, and Endeavour, respectively. In the case of
the Bardet-Biedl syndrome, the generalized Kemeny method
matches the performance of ToppGene, as it ranked the three
phenotype genes at the top, and it outperforms Endeavour.
A similar result is true for schizophrenia. The HIV results
are interesting in so far that both ToppGene and Endeavour
placed the three phenotype genes between the 2nd and 6th
position, whereas the generalized Kemeny approach ranked all
three phenotype genes at the top, tied along with 3 other non-
phenotype genes.

TABLE I: Results for training genes CCDC28B, BBS5, ARL6,
BBS7, BBS12, TMEM67, TRIM32, BBS1, BBS10, BBS4,
BBS2, implicated with the Bardet-Biedl syndrome.

Gene
#

HGNC
Symbol

Rank # ToppGene Generalized
Kemeny

Endeavour

1 TTC8 1 1 1 1
2 CEP290 2 2 3 2
3 MKS1 3 3 2 9
4 APP 4 4 5 3
5 ASPM 5 5 4 7
6 IL10 6 6 10 - 11 8
7 MYOD1 7 7 5
8 BDNF 8 8 7 11
9 SRY 9 9 9 12
10 CD4 10 10 12 10
11 SDHD 11 11 8 4
12 ZBTB7A 12 12 6 6
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