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Abstract—In this paper, we consider the issue of distributed
computation of tensor decompositions. A central unit observing
a global data tensor assigns different data sub-tensors to several
computing nodes grouped into clusters. The goal is to distribute
the computation of a tensor decomposition across the different
computing nodes of the network, which is particularly useful
when dealing with large-scale data tensors. However, this is only
possible when the data sub-tensors assigned to each computing
node in a cluster satisfies minimum conditions for uniqueness. By
allowing collaboration between computing nodes in a cluster, we
show that average consensus based estimation is useful to yield
unique estimates of the factor matrices of each data sub-tensor.
Moreover, an essentially unique reconstruction of the global factor
matrices at the central unit is possible by allowing the sub-
tensors assigned to different clusters to overlap in one mode.
The proposed approach may be useful to a number of distributed
tensor-based estimation problems in signal processing.

I. INTRODUCTION

In many disciplines, data inherently has more than two axes
of variation and can be arranged as tensors (i.e. multiway ar-
rays). Computing tensor decompositions of multiway datasets
is particularly useful to extract hidden patterns and structure
in data analytics problems. In most of applications in the
literature, batch processing is considered for computing tensor
decompositions. Several algorithms have been proposed in the
literature, which can be classified into three main categories:
alternating algorithms, derivative based algorithms, and non-
iterative algorithms (see e.g. [1], [2]). Considering that the data
tensor can be serially acquired or the underlying process can be
time-varying, adaptive algorithms have been proposed in [3].
These tensor decomposition algorithms are herein refereed to
as “centralized”, in the sense that the estimation of the factor
matrices of the decomposition are accomplished in a unique
central processor. However, when dealing with large-scale
multiway datasets, centralized solutions may be too costly or
even impractical due to the huge number of operations and
memory storage requirements.

In [4], the authors proposed a distributed approach for the
computation of the canonical polyadic decomposition (CPD)
of a third-order tensor across a network of computing nodes.
Distributed alternating least squares (D-ALS) and distributed
Levenberg-Marquardt (D-LM) algorithms based on average
consensus are proposed. A different approach for distributed
computation of tensor decompositions is developed in [5].
Therein, the idea is to divide the large-scale data tensor into

a grid of sub-tensors that are factorized independently at each
computing node. However, a meaningful reconstruction of the
global factor matrices by concatenation requires imposing that
the partially estimated factor matrices obtained at each node
are subject to the same permutation indeterminacy. Moreover,
such a distributed decomposition approach requires that each
sub-tensor have an essentially unique decomposition.

In this paper, we present a new framework that keeps
uniqueness properties of the centralized scheme: The compu-
tation of a tensor decomposition is composed of two tiers.
First, the original tensor is divided into different data sub-
tensors along the third mode (assumed to be the mode with
higher dimensionality) and assigned to different computing
clusters. Within each cluster, the associated sub-tensor is
further divided into a grid of smaller sub-tensors which are
assigned to different computing nodes. Instead of working
independently, the computing nodes are allowed to collaborate
to estimate their factor matrices using a distributed average
consensus algorithm [6]. This is particularly important when
the sub-tensors assigned to the computing nodes does not admit
an essentially unique CPD. In such a situation, distributed
average consensus yields essentially unique estimates of the
factor matrices at each computing node under mild conditions.
Moreover, by allowing the sub-tensors assigned to different
clusters to overlap along the third mode, the reconstruction of
the global factor matrices at the central unit is possible.

Notations: Vectors are written as boldface lower-case letters
(a,b,· · · ), matrices as boldface upper-case letters (A,B,· · · ),
and tensor as calligraphic letters (X ,Y, · · · ). AT stands for the
transpose of A whereas AH stands for its complex conjugate.
The operator ◦ denotes the outer product while ⊙ and ∗ stand
for the Khatri-Rao (columnwise Kronecker) and Hadamard
(elementwise) products, respectively.

II. PROBLEM STATEMENT

A central unit observes a global data tensor X ∈ CI×J×K

following a CPD given by [7], [8]:

X =
R∑

r=1

ar ◦ br ◦ cr , (1)

where A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . ,bR] ∈ CJ×R

and C = [c1, . . . , cR] ∈ CK×R are the factor matrices
associated with the CPD of X . We work under the assumption
that essential uniqueness of this CPD holds, i.e. according to
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[9], A, B and C can be uniquely estimated (up to column
permutation and scaling) if kA + kB + kC ≥ 2R + 2, where
k(·) denotes the Kruskal-rank of its matrix argument. The
global tensor X is subdivided by the central unit in sub-

tensors X (q) ∈ CI×J×K(q)

, q = 1, . . . , Q, which are assigned
to Q computing clusters, where K(q) denotes the third-mode
dimensionality of the q-th sub-tensor1. The CPD of sub-tensor
X (q) is then given by

X (q) =
R∑

r=1

ar ◦ br ◦ c
(q)
r , (2)

where C
(q) = [c

(q)
1 , . . . , c

(q)
R ] ∈ CK(q)

×R.

In practice, the central unit may be a server that gathers
the global (possibly large-scale data tensor, while the com-
puting nodes can be co-located in the same chip, or may
be represented by remote processors that are geographically
distributed. Assume that the q-th cluster is composed by L
computing nodes driven by a “master node” that communicates
directly with the central unit2. Upon reception of the data
sub-tensor X (q), the q-th master node generates a grid of
sub-tensors by partitioning X (q) into multiple sub-tensors

X (ℓ1,ℓ2,q) ∈ CIℓ1×Jℓ2
×K(q)

, where
L1∑

ℓ1=1

Iℓ1 = I ,
L2∑

ℓ2=1

Jℓ2 = J ,

L1 and L2 denote the number of sub-tensors along the
first and second modes, respectively, and ℓ1 = 1, . . . , L1,
ℓ2 = 1, . . . , L2 are the indices of the sub-tensors in the first
and second modes, respectively. Each sub-tensor X (ℓ1,ℓ2,q) is
allocated to a different computing node, so that L = L1L2

corresponds to the number of computing nodes per cluster.
The CPD of sub-tensor X (ℓ1,ℓ2,q) is then given by:

X (ℓ1,ℓ2,q) =

R∑

r=1

a
(ℓ1)
r ◦ b(ℓ2)

r ◦ c(q)r , (3)

where A
(ℓ1) = [a

(ℓ1)
1 , . . . , a

(ℓ1)
R ] ∈ CIℓ1×R, B

(ℓ2) =

[b
(ℓ2)
1 , . . . ,b

(ℓ2)
R ] ∈ CJℓ2

×R in addition to C
(q) are the factor

matrices associated with this CPD. Although the CPD of
each sub-tensor X (q) is assumed to be essentially unique, i.e.
kA+kB+kC(q) ≥ 2R+2, q = 1, . . . , Q, we are interested in
a situation where the identifiability conditions are not locally
fulfilled at each computing node.

Let X
(ℓ1,ℓ2,q)
1 ∈ CJℓ2

K(q)
×Iℓ1 , X

(ℓ1,ℓ2,q)
2 ∈ CIℓ1K

(q)
×Jℓ2 ,

and X
(ℓ1,ℓ2,q)
3 ∈ CIℓ1Jℓ2

×K(q)

be matrix unfoldings of the

sub-tensor X (ℓ1,ℓ2,q). The matrix unfoldings of the sub-tensor

X (q) ∈ CI×J×K(q)

assigned to q-th cluster can be defined by
concatenating the L = L1L2 matrix unfoldings of the sub-

tensors X (ℓ1,ℓ2,q) ∈ CIℓ1×Jℓ2
×K(q)

, as:

X
(q)
1

.
= [X

(1,1,q)T
1 , . . . ,X

(1,L2,q)T
1 , . . . ,X

(L1,L2,q)T
1 ]T ∈ C

JK(q)
×I

X
(q)
2

.
= [X

(1,1,q)T
2 , . . . ,X

(1,L2,q)T
2 , . . . ,X

(L1,L2,q)T
2 ]T ∈ C

K(q)I×J

X
(q)
3

.
= [X

(1,q)T
3 , . . . ,X

(1,L2,q)T
3 , . . . ,X

(L1,L2,q)T
3 ]T ∈ C

IJ×K(q)

1Although we have assumed that the sub-tensors are generated by partition-
ing along the third mode, partitions along the first or second modes would be
equally possible. The mode having higher dimensionality can be choosen for
this purpose. Herein, we assume that K >> I and K >> J .

2We have assumed the same number L of computing nodes for all clusters
to aleviate notation. The following developments are equally valid when the
clusters have different number of nodes.

If the q-th master node were able to concentrate the whole
computational load of the L = L1L2 computing nodes avail-
able in the q-th cluster, the factor matrices A, B, and C

(q)

could be estimated directly from the sub-tensor X (q). Various
algorithms could be used for this purpose, the alternating least
squares (ALS) being the most popular one. By exploiting the
three matrix unfoldings of X (q), the ALS algorithm acts by
alternately minimizing the following cost functions

J1 =
∥∥∥X(q)

1 −
(
B⊙C

(q)
)
A

T
∥∥∥
2

F
, (4)

J2 =
∥∥∥X(q)

2 −
(
C

(q) ⊙A

)
B

T
∥∥∥
2

F
, (5)

J3 =
∥∥∥X(q)

3 − (A⊙B)C(q)T
∥∥∥
2

F
. (6)

In our context, however, instead of directly estimating the
triplet (A,B,C(q)), each node should carry out the estimation

of its own triplet (A(ℓ1),B(ℓ2),C(q)). However, since essential
uniqueness is not necessary fulfilled at each computing node,
running independent ALS do not guarantee to preserve the
overall CPD uniqueness property. By allowing collaboration
between computing nodes in a cluster, we propose the use
of average consensus based estimation to ensure essentially
uniqueness at each computing node. The consensus-based ap-
proach also ensures the L computing nodes reach an agreement
on the estimation of the third mode factor matrix C

(q), which is
a common parameter of the CPD of all sub-tensors X (ℓ1,ℓ2,q),
ℓ1 = 1, . . . , L1, ℓ2 = 1, . . . , L2, as shown in (3).

III. DISTRIBUTED COMPUTATION

The communication links between computing nodes of
each cluster are modeled by means of an undirected graph
G(N,E). The node set and the edge set are denoted by
N = {1, · · · , L} and E, respectively. Each edge is an un-
ordered pair of distinct nodes. We assume that G is a connected
graph, meaning that it exists a path between any two pair of
computing nodes within a cluster. In other words, information
can be exchanged by any pair of nodes of the same cluster
through direct or multi-hop links.

A. Consensus-based estimation of C(q)

Define the ordered pair ℓ
.
= (ℓ1, ℓ2), where ℓ is a super-

index satisfying ℓ = (ℓ1 − 1)L2 + ℓ2, ℓ1 = 1, . . . , L1, ℓ2 =
1, . . . , L2, ℓ = 1, . . . , L. By concatenating L = L1L2 matrix
unfoldings of each type according to this convention, we can
define the matrix

Z
(q) = A⊙B =

[
Z(1,q)T · · · Z(ℓ,q)T · · · Z(L,q)T

]T
.

From the definition of X
(q)
3 , we have:

J3 =

∥∥∥∥∥∥∥∥∥∥∥




X
(1,q)
3
...

X
(ℓ,q)
3
...

X
(L,q)
3



−




Z
(1,q)

...
Z
(ℓ,q)

...
Z
(L,q)



C

(q)T

∥∥∥∥∥∥∥∥∥∥∥

2

F

. (7)
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The solution for C
(q) that minimizes J3 can be written as a

sum of L contributions

Ĉ
(q)T =

(
1

L

L∑

ℓ=1

Γ
(ℓ,q)

)−1(
1

L

L∑

ℓ=1

Ψ
(ℓ,q)

)
= (Γ

(q)
)−1

Ψ
(q)

(8)
where

Γ
(ℓ,q) = Z

(ℓ,q)H
Z

(ℓ,q) = (A(ℓ1)HA
(ℓ1)) ∗ (B(ℓ2)HB

(ℓ2)), (9)

Ψ
(ℓ,q) = Z

(ℓ,q)H
X

(ℓ,q)
3 = (A(ℓ1)

⊙B
(ℓ2))HX

(ℓ,q)
3 . (10)

Note that the computation of (8) results on averaging the
L = L1L2 matrices Γ

(ℓ,q) and Ψ
(ℓ,q) associated with the

different nodes. Such an averaging can be computed locally at
every node via local communication and computation within
the cluster by means of the consensus algorithm, which is a
well-known solution to distributed computing problems [6],
[10]. By examining (8), one can note that averaging over

a sufficient number L of independent terms so that Γ
(q)

is
nonsingular ensures the identifiability of C

(q) in the least
squares sense. This could not be possible if nodes do not
collaborate. Without nodes’ collaboration, the solution (8)

reduces to Ĉ
(q)T = (Γ(ℓ,q))−1

Ψ
(ℓ,q). A limiting situation is

the one where k
A(ℓ1) = 1 and/or k

B(ℓ2) = 1 for a particular

node. In this case, Γ
(q)

is singular, and essential uniqueness
is not locally fulfilled. Such a lack of uniqueness will affect
a proper reconstruction of the global factor matrices at the
central unit, even if uniqueness hold for the remaining nodes.

Let Γ
(ℓ,q)
(0) and Ψ

(ℓ,q)
(0) be matrices initially computed at

node ℓ = (ℓ1, ℓ2) at time t = 0. By allowing these matrices
to be exchanged across the network of nodes of the q-th
cluster, at each iteration t, each computing node updates the

values of Γ
(ℓ,q)
(t) and Ψ

(ℓ,q)
(t) by adding a weighted sum of local

discrepancies, i.e. differences between its own value and those
obtained from its neighbors ℓ′ ∈ Nℓ =

{
ℓ′|(ℓ, ℓ′) ∈ E

}
. The

updating equation for Ψ
(ℓ,q)
(t) is given by [4]:

Ψ
(ℓ,q)
(t+1) = Ψ

(ℓ,q)
(t) +

∑

ℓ′∈Nℓ

wℓ,ℓ′

(

Ψ
(ℓ′,q)
(t) −Ψ

(ℓ,q)
(t)

)

. (11)

where wℓ,ℓ′ is a weight associated with the edge {ℓ, ℓ′}, which
is a typical element of the weight matrix W ∈ CL×L. This
matrix is doubly stochastic, i.e. 1T

W = 1
T and W1 = 1,

where 1 ∈ CL×1 is a vector of ones. Several weights fulfilling
the previous conditions have been proposed in the literature.
For further details, see [11], [12] and references therein. The

update equation for Γ
(ℓ,q)
(t) is similar.

B. Collaborative estimation of A(ℓ1) and B
(ℓ2)

The factor matrices A
(ℓ1) and B

(ℓ2) associated with the
CPD of X (ℓ,q) are common to computing nodes sharing the
same indices l1 or l2. A collaboration is needed for estimating
these matrices. From the definition of the matrix unfoldings

X
(q)
1 and X

(q)
2 , we have:

J1 =

L1
∑

ℓ1=1

L2
∑

ℓ2=1

∥

∥

∥X
(ℓ1,ℓ2,q)
1 − (B(ℓ2)

⊙C
(q))A(ℓ1)T

∥

∥

∥

2

F
,

J2 =

L1
∑

ℓ1=1

L2
∑

ℓ2=1

∥

∥

∥
X

(ℓ1,ℓ2,q)
2 − (C(q)

⊙A
(ℓ1))B(ℓ2)T

∥

∥

∥

2

F
,

By minimizing J1 and J2 with respect to A
(ℓ1) and B

(ℓ2),
respectively, each cluster yields

Â
(ℓ1)T =

(
1

L2

L2∑

ℓ2=1

Γ
(ℓ2,q)
A

)−1(
1

L2

L2∑

ℓ2=1

Ψ
(ℓ2,q)
A

)
(12)

where
Γ

(ℓ2,q)
A = (B(ℓ2)HB

(ℓ2)) ∗ (C(q)H
C

(q)), (13)

Ψ
(ℓ2,q)
A = (B(ℓ2)

⊙C
(q))HX

(ℓ1,ℓ2,q)
1 , (14)

and

B̂
(ℓ2)T =

(
1

L1

L1∑

ℓ1=1

Γ
(ℓ1,q)
B

)−1(
1

L1

L1∑

ℓ1=1

Ψ
(ℓ1,q)
B

)
(15)

where

Γ
(ℓ1,q)
B = (C(q)H

C
(q)) ∗ (A(ℓ1)HA

(ℓ1)), (16)

Ψ
(ℓ1,q)
B = (C(q)

⊙A
(ℓ1))HX

(ℓ1,ℓ2,q)
2 . (17)

As for the C
(q) matrix, the two other matrices can also

be estimated through a consensus scheme. Therefore, the
proposed algorithm consists of interlacing average consensus
steps with three ALS estimation steps.The detailed description
of the algorithm is not provided here due to space limitation.

C. Reconstruction of the global factor matrices

Let Â
(ℓ1,q), B̂

(ℓ2,q) and Ĉ
(q)) be the factor matrices

estimated at the node (ℓ1, ℓ2) of the q-th cluster. Define Â(q) =
[Â(1,q), . . . , Â(L1,q)] and B̂

(q) = [B̂(1,q), . . . , B̂(L2,q)]. Due
to the parallel processing performed independently at the Q

computing clusters, the estimated triplets (Â(q), B̂(q), Ĉ(q))
are subject to unknown and different permutation and scal-

ing indeterminacies, i.e. Â
(q) = A

(q)
∆

(q)
1 Π

(q), B̂
(q) =

B
(q)

∆
(q)
2 Π

(q), Ĉ(q) = C
(q)

∆
(q)
3 Π

(q). An essentially unique
reconstruction of the global factor matrices at the central unit
is possible by allowing the sub-tensors assigned to different
clusters to overlap in the third mode. We assume that X (q)

and X (q+1), q = 1, . . . , Q − 1, share a set of M third mode
slices, such that the following relation holds

X
(q)

. . (K(q)−M+m)
= X

(q+1)
. .m , m = 1, . . . ,M, (18)

where M < min(K(1), . . . ,K(Q)) is assumed. Let C
(q)
last ∈

CM×R be a sub-matrix formed from the last M rows of C(q)

and C
(q+1)
first ∈ CM×R be a sub-matrix formed from the first

M rows of C(q+1), q = 1, . . . , Q− 1. Condition (18) ensures
that if the CPD’s of X (q) and X (q+1) are essentially unique,

then there exists a scaling ∆
(q)

and a permutation matrix Π
(q)

such that

Ĉ
(q+1)
first = Ĉ

(q)
last∆

(q)
Π

(q)
, q = 1, . . . , Q− 1.

The permutation matrix Π
(q)

can be determined by a greedy
pairwise column matching procedure applied on the matrix pair

(C
(q)
last ,C

(q+1)
first ), q = 1, . . . , Q − 1, after proper normalization

of their columns. By increasing the overlapping factor M , this
permutation matrix can be determined more efficiently.

After “aligning” the columns of the Ĉ
(1), . . . , Ĉ(Q) (resp.

Â
(1), . . . , Â(Q) and B̂

(1), . . . , B̂(Q)), the central unit can build
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Fig. 1. NMSE for each cluster compared to the standard ALS algorithm
(dotted lines)

a global estimate of the third factor matrix by concatena-

tion, i.e. Ĉ = [Ĉ(1)T , . . . , Ĉ(Q)T ]T satisfying the essential
uniqueness property. Since the first and second mode factor
matrices should be common to all clusters (c.f. (3)), the central
unit can obtain final estimates of these matrices by taking

weighted averages Â =
Q∑

q=1
wqÂ

(q), and B̂ =
Q∑

q=1
wqB̂

(q),

with properly chosen weights. Th normalized mean square
error can be used for computing such weights.

IV. SIMULATION RESULTS

In this section we illustrate the efficiency of the proposed
method by simulating a 20×20×100 tensor admitting a CPD
with rank 6. The 6 sources describing the third matrix C are
given in Fig. 2 (left). The central node partitions the tensor in 9
sub-tensors of dimensions 20×20×20, meaning that we have 9
clusters. The number of overlapped slices is M = 10. In each
cluster, the two remaining modes are subdivided so that each
computing node processes a 5× 5× 20 tensor. The computing
nodes in a cluster collaborate through a communication policy
represented by a Hamming graph H(2, L1) [13]. Using the
finite-time average consensus protocol in [12], two consensus
iterations are required for obtaining the exact averages while
exact summation for estimating A and B is obtained in a single
step. Fig. 1 depicts the averaged Normalized Mean square error
(NMSE) for each cluster. We can note that two clusters (q = 8
and q = 9) require much more iterations to converge. This is
due to collinearity occurring in the corresponding sub-factor
matrices. As a consequence the last rows of C are not well
estimated. The central node can fix this problem by using the
factor matrices A and B reconstructed with the 7 other clusters
to estimate the last rows of C. In Fig. 2, we can note that the
sources in C are correctly reconstructed.

V. CONCLUSION AND PERSPECTIVES

We have proposed a distributed approach to compute the
CPD of a third-order tensor across a network of collaborative
nodes. Our solution allows to parallelize the computation of the
decomposition across independent computing clusters while
benefiting from some level of collaboration and coordination
between neighboring computing nodes to ensure essential
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Fig. 2. Sources reconstruction: Actual (left), Standard PARAFAC (middle),
Proposed method (right)

uniqueness of the factor matrices. Although we have restricted
ourselves to third-order tensors with a particular partitioning,
the proposed framework can be generalized to N -th order ten-
sors and to different sub-tensor partitioning schemes. The case
of sub-tensors that share multiple factor matrices and overlap
in more than one mode is currently under investigation. The
proposed approach may be useful to a number of distributed
estimation problems in signal processing.
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