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Abstract—Applications such as broadband angle of arrival
estimation require the implementation of accurate broadband
steering vectors, which generally rely on fractional delay filter
designs. These designs commonly exhibit a rapidly decreasing
performance as the Nyquist rate is approached. To overcome
this, we propose a filter bank based approach, where standard
fractional delay filters operate on a series of frequency-shifted
oversampled subband signals, such that they appear in the
filter’s lowpass region. Simulations demonstrate the appeal of
this approach.

I. INTRODUCTION

In broadband sensor array signal processing, time delays

that arise from wave fronts propagating across the array at

finite speed require to be addressed as lags rather than be

represented by phase shifts as in the narrowband case. Nor-

mally non-integer multiples of the sampling period, fractional

delay filters need to be employed [1], [2]. Since sensor array

applications potentially operate across several octaves, the

accuracy of such fractional delays is crucial to the precision

of broadband angle of arrival estimation or the performance

of any other subsequent processing [3].

To implement fractional delays, a sinc function can be

appropriately sampled [4], [5] and restricted to finite support

by truncation. This leads to discrete prolate spheroidal se-

quences [6], which suffer from a ripple in the group delay and

a degradation in performance that increases with frequency.

This restricted accuracy of fractional delay filters [5] often

limits their application to lowpass-type signals.

In order to enhance the fractional delay filters’ performance,

tapered instead of rectangular windows have been proposed

to truncate the sinc function [4], [7], leading to a lower

group delay ripple. A polynomial approximation approach was

introduced by Farrow [8], which, at a modest filter order, pro-

vides relatively good accuracy. However, both Farrow structure

and windowed sinc still perform best a low frequencies,

with a significant performance degradation towards higher

frequencies.

Subbands created by decimated filter banks have previously

been used in the context of fractional delays, since decimation

can shorten long impulse responses such as sinc functions [9].

Recognising that recent fractional delay approaches are fairly

accurate at low frequencies and only degrade towards higher

frequencies, this paper proposes to modulate undecimated

subbands as created by filter banks to acquire lowpass charac-

teristics. After applying fractional delay filters in the lowpass

domain, a frequency shift to the original band is performed,

and a synthesis filter bank operation completes the proposed

accurate broadband fractional delay filter approach.

Below, Sec. II motivates the requirement of highly accurate

fractional delay filters by reviewing the construction of broad-

band steering vectors. Sec. III reviews different approaches

for designing fractional delay filters followed by the proposed

filter bank approach outlined in Sec. IV. Simulation results are

presented in Sec. V to compare and characterise the accuracy

of the proposed approach to various benchmarks. Conclusions

are drawn in Sec. VI.

II. BROADBAND STEERING VECTORS

An M-element array of omnidirectional sensors located at

positions rm, m = 1 . . .M collects a signal vector x(t) ∈ CM ,

with the continuous time variable t. If a far field source

illuminates the array such that the signal at the origin r = 0

is s(t) and we neglect attenuation, then

x(t) =











s(t −T1)
s(t −T2)

...

s(t −TM)


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∗ s(t) (1)

with ∗ denoting convolution, and delays Tm = 1
c
kTrm, m =

1 . . .M, where k is the normal vector of the source’s wave

front, and k/c is known as the slowness vector of the source.

Sampling x(t) with a period Ts yields x[n], with discrete

time index n such that t = nTs. Under the assumption of a

perfectly bandlimited signal s(t), the interpolator underlying

the sampling process is a sinc function. With

x[n] =











δ [n− τ1]
δ [n− τ2]

...

δ [n− τM]











∗ s[n] = a[n]∗ s[n] , (2)

and normalised delays τm = Tm/Ts, the ideal fractional delays

δ [n− τm],

δ [n− τ] =

{

sin(π(n−τ))
π(n−τ) , n 6= τ

1 , n = τ
(3)
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are now sinc functions which not necessarily remain sampled

in the sinc’s zero crossing, and therefore generally possess

infinite support. The quantity a[n] in (2) is referred to as broad-

band steering vector, and consists of a number of different

fractional delays of the type in (3).

A signal model for a scenario with L independent far field

broadband sources sl [n], l = 1 . . .L, each characterised by a

broadband steering vector al [n], therefore becomes

x[n] =
L

∑
l=1

∞

∑
ν=0

al [ν]sl [n−ν] + v[n] , (4)

with v[n] representing spatially and temporally uncorrelated

noise with covariance E
{

v[n]vH[n]
}

= σ2
v I. To capture infor-

mation contained in the data vector x[n] requires a space-

time covariance matrix R[ν] = E
{

x[n]xH[n−ν]
}

with lag

parameter ν . Its Fourier pair, the cross-spectral density matrix

R(z) = ∑ν R[ν]z−ν or short R[ν] ◦—• R(z),

R(z) =
L

∑
l=1

a(z)aH(z−1)Rl(z)+σ2
v I (5)

with Rl(z) the power spectral density of the lth source, forms

a polynomial matrix.

A number of broadband array methods directly utilise the

broadband steering vector. For example, in [3] broadband

steering vectors are used to presteer array data. The parametric

covariance matrix approach in [2], [10] presteers the data prior

to scanning for maximised eigenvalues in the resulting covari-

ance matrix. For the polynomial MUSIC algorithm in [1], a

polynomial eigenvalue decomposition [11] of the space-time

covariance matrix in (5) identifies the noise-only subspace,

which can then be scanned using broadband steering vectors,

in analogy to the narrowband MUSIC algorithm [12]. Thus,

the accuracy of the broadband steering vector implementation

impacts crucially on all of these applications.

III. FRACTIONAL DELAY FILTERS

With the definition of the ideal fractional delay and an

error metric defined in Sec. III-A, this section reviews various

implementation methods for fractional delay filters, including

windowed sinc functions in Sec. III-B and the Farrow struc-

ture [8] in Sec. III-C.

A. Ideal Delay and Performance Metric

Based on the definition of the ideal fractional delay in (3),

fideal[n] = δ [n− τ] , (6)

and the Fourier pair δ [n] ◦—• 1, the Fourier transform of the

fractional delay yields

Fideal(e
jΩ) = 1 · e− jΩτ (7)

with a group delay γideal = τ . Using this ideal delay, an error

metric for an arbitrary fractional delay filter approximation

f [n] can be defined as

See(e
jΩ) =

∣

∣

∣
Fideal(e

jΩ)−F(e jΩ)
∣

∣

∣

2

, (8)

with F(e jΩ) •—◦ f [n], such that See(e
jΩ) is a quadratic error

metric for the approximation of fideal[n] by f [n].

+×

τ

X(z)

CM (z) C1(z)

×

τ

×

τ

. . .

Y (z)

C0(z)

+

Fig. 1: Farrow structure with M + 1 subsystems of order L

approximating a fractional delay τ between input X(z) and

output Y (z).

B. Windowed Sinc Methods

Since the ideal fractional delay in (6) possesses infinite

support, in general a window wN [n] and time delay is applied

to create a causal filter of length 2N,

f [n] = fideal[n− τ −N]wN [n− τ −N] . (9)

In the simplest case, a rectangular window wN [n] = pN [n]
performs a truncation according to

pN [n] =

{

1 , |n| ≤ N

0 , |n|> N .
(10)

The resulting discrete prolate spheroidal sequence f [n] pro-

vides an approximation of fideal[n] that generally improves

with N at lower frequencies. However, independent from

N, the performance degrades due Gibbs phenomena as the

Nyquist frequency is approached [13].

The approximation of an ideal fractional delay can be

improved by introducing a tapered winod [4], [7], such as

a Hann window

wN,Hann[n] = cos2
( πn

2N

)

pN [n] . (11)

Such windowing techniques can reduce the ripple in the

frequency response, lowering the error metric in (8) at lower

frequencies.

C. Farrow Structure

The Farrow structure [8] implements a polynomial interpo-

lation between input samples. Consisting of M + 1 sections

of Lth-order FIR filters Cm(z), m = 0 . . .M, which provide an

interpolation between input samples, Fig. 1 shows the diagram

of the Farrow structure. The fractional delay of the structure

is given by the single fractional delay parameter τ , leading to

a transfer function

F(z) =
M

∑
m=0

Cm(z)τ
m . (12)

For a given fractional delay τ , F(z) is fixed. The magnitude

response of the Farrow structure is flat at low frequencies

only, thus limiting its applicability to broadband problems that

extend beyond lowpass-type signals.

IV. FILTER BANK APPROACH

Noting tha various fractional delay filters reviewed in

Sec. III perform best at low frequencies, the filter bank based

structure in Fig. 2 is proposed as an implementation framework

for fractional delay filters. In this structure, the input signal is
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Fig. 2: Proposed subband-based fractional delay filter with

analysis filter bank stage with analysis filters hk[n] ◦—• Hk(z),
a modulation stage, the fractional delay filters f [n], a demodu-

lation stage, followed by a synthesis filter bank with synthesis

filters gk[n] ◦—• Gk(z).

split into K different frequency bands using an analysis filter

bank with filters Hk(z), k = 1 . . .K. Undecimated, the subband

signals are frequency shifted by Ωk such that the fractional

delay filters are applied to lowpass signals in every branch.

After fractionally delaying the subband signals, the frequency

shifts are reversed, and signal are combined using a suitable

bank of synthesis filters Gk(z).
To reduce memory and computational requirements, the

analysis filter can be derived from a common lowpass pro-

totype filter by means of a modulating transform. We here

use generalised discrete Fourier transform (GDFT) modulated

filter banks, which offer advantages over other modulations

in terms of subband uniformity and the ability to implement

a near-perfect paraunitary system, where the synthesis filters

Gk(z) can be derived by time reversal from the analysis

filters [14]. The prototype filter can be designed using a least-

squares approach [14], whereby the reconstruction error of the

filter bank is a design criterion that is optimised. Therefore,

depending on the quality of the prototype filter, and therefore

its length and complexity, different levels of reconstruction

errors can be achieved for the filter bank.

A sample filter bank characteristic with K = 16 subbands is

shown in Fig. 3. The bandpass nature of the subband signals

motivates the modulation by

Ωk =
(2k− 1)π

K
k ∈ Z, k = 1 · · ·K , (13)

which translates every subband in frequency to sit symmetri-

cally around Ω = 0.

V. SIMULATIONS AND NUMERICAL RESULTS

Fig. 4 shows the approximation error for a truncated sinc

function with N = 100, where a maximum error is reached

for a fractional delay of τ = 1
2

and frequencies approaching

the Nyquist rate. The degradation towards the Nyquist rate

is shared by the Hann-windowed sinc function in Fig. 5,

also with window N = 100, and a Farrow structure with

polynomial order M = 3 in Fig. 6. While the Farrow structure

for a low polynomial degree does not perform well for higher
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Fig. 3: Characteristic of the lower K/2 analysis filters

Hk(e
jΩ) •—◦ hk[n] of a K channel filter bank.
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Fig. 4: Approximation error for truncated sinc function with

N = 100.

frequencies, it significantly exceeds both the rectangular and

Hann-windowed sinc approach, whereby the Hann-window

offers advantages over the rectangular window at almost no

cost.

For the proposed filter bank approach to a fractional delay

implementation, Fig. 7 shows the combination of a K = 16

channel filter bank with an M = 3 order Farrow structure

to implement the fractional delay in the frequency-shifted

subbands. As the results in Fig. 7, the error is uniformly low
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Fig. 5: Approximation error for Hann windowed sinc function

with N = 100.
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Fig. 6: Approximation error for Farrow structure for M = 3.

with a maximum error See(e
jΩ) of -55dB across all frequencies

Ω and fractional delays τ . Here, See(e
jΩ) consists of two

contributions — (i) an error due to inaccuracies on the Farrow

structure, and (ii) a reconstruction error within the filter bank.

Here, with a reconstruction error of -55dB [14], the latter

dominates. This is underlined by the same error of -55dB

that is obtained in combination with a Hann windowed sinc

function, and a Farrow structure of order M = 9. In contrast,

embedding the sinc function characterised in Fig. 4 into the

subbands yields an approximation error of approximately -

37dB; i.e. for this case, the fractional delay filter is sufficiently

crude to dominate the overall error of the system.

Since an undecimated filter bank is costly in terms of

computations, the filter bank design can be selected such that

it is just sufficiently good to match the desired approximation

error for the fractional delay filter f [n]. This ensures that the

system is not over-designed, and that the cost of the filter bank

can be kept as low as possible.

VI. CONCLUSIONS

Accurate broadband steering vector requirements for appli-

cations such as broadband angle of arrival estimation have

motivated the implementation of fractional delay filters that

can approach the ideal fractional delay over a large bandwidth.

Since state-of-the-art fractional delays such as windowed sinc

and Farrow filters perform best at low frequencies only,

we have combined these filters with a modified filter bank,

whereby undecimated subband signals are modulated such that

only a small lowpass region is active in each subband. The

subband signals can then be accurately delayed by any of the

established methods.

As demonstrated in simulations, uniform accuracy can be

achieved across the entire bandwidth, whereby the approxima-

tion error w.r.t. an ideal delay is either limited by the fractional

delay filter or the reconstruction error of the filter bank.
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Fig. 7: Approximation error for filter bank approach with with

K = 16, and an L = 3 order Farrow filter as subband fractional

delay f [n].

REFERENCES

[1] M. Alrmah, S. Weiss, and S. Lambotharan, “An extension of the music
algorithm to broadband scenarios using polynomial eigenvalue decom-
position,” in 19th European Signal Processing Conference, Barcelona,
Spain, August 2011, pp. 629–633.

[2] J. Dmochowski, J. Benesty, and S. Affes, “Direction of arrival estimation
using the parameterized spatial correlation matrix,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1327–
1339, May 2007.

[3] P. Murphy, A. Krukowski, and A. Tarczynski, “An efficient fractional
sample delayer for digital beam steering,” in IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, vol. 3, Munich,
Germany, April 1997, pp. 2245–2248.

[4] A. Yardim, G. Cain, and P. Henry, “Optimal two-term offset windowing
for fractional delay,” Electronics Letters, vol. 32, no. 6, pp. 526–527,
March 1996.
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