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Abstract—This paper considers broadband extraction of multiple

strong/weak borehole acoustic modes in acoustic array waveforms by
processing the data from multiple frequency points. We first formulate

it as basis selection in a multiple measurement vector (MMV) model

with varying overcomplete dictionaries and then, propose a generalized
sparse Bayesian learning (SBL) method for the application-specified

MMV model. The SBL method results in an iterative, hyperparameter-

free algorithm to estimate the mode spectrum and update prior param-
eters. Specifically, the iteration can be implemented in either the fixed-

point or expectation-maximization mechanism. Numerical validation with

synthetic and field datasets confirms the effectiveness of the proposed
method and its advantages over the narrowband (modified matrix pencil)

approach.

I. INTRODUCTION

Acoustic waves in fluid-filled boreholes are excited and recorded

with sonic logging tools. These are dominated by waveguided bore-

hole modes whose propagation is characterized by dispersion, i.e.,

frequency dependence of slowness, that in turn is affected by the

surrounding rock properties. Therefore, analysis and estimation of

the dispersion provide important information for geophysical and

geomechanical interpretation. In this paper, we present a novel

broadband approach to estimate the dispersion of various borehole

modes.

Over the past two decades, both narrowband and broadband

approaches have been proposed to estimate the slowness for the non-

dispersive and dispersive modes. These frequency-based methods first

convert the discrete time waveforms to the frequency domain, and

then process the frequency-domain waveforms for the estimation of

slowness and its dispersion. Within the narrowband framework, the

slowness is estimated independently from one frequency to another,

i.e., it processes the frequency-domain array waveforms to estimate

the wavenumber at each frequency point. The Prony’s method [1], the

modified matrix pencil (MP, also referred to as the TKO method in the

industry) method [2], and the narrowband maximum-likelihood (ML)

method [3] belong to this category. These methods do not exploit

the continuity of dispersion with frequency and outputs scattered

estimates that need labeling. Moreover, they are sensitive to model

number and can either suppress weak modes or output spurious ones.

On the other hand, the broadband approach collects the array

data from a chosen frequency band, instead of a single frequency

point, and simultaneously estimates the phase and group slownesses

from the broadband array data [4], [5]. As the first attempt along this

direction, the broadband ML method was proposed in [4] but it has to

solve a 2P -dimensional nonlinear optimization for P acoustic modes.

The two-dimensional broadband Capon method was introduced in [6],

but has robustness issues with small receiver arrays. A broadband

approach exploits the time-frequency localization was proposed in

[7], but cannot deal with overlapping modes. A promising broadband

technique applicable to multiple overlapping modes was recently

proposed in [5], which uses the `1 norm, together with the `2
fitting criterion, to regularize the slowness estimates towards a sparse

solution. Specifically, the group LASSO method was used to solve the

hybrid `1/`2 optimization problem. However, its use for the acoustic

mode extraction may be limited due to the demanding computational

complexity, compounded by the need to select a proper regularization

parameter.

In this paper, we reformulate the broadband dispersion extraction

from a Bayesian framework where a multiple measurement vector

(MMV) model with varying overcomplete dictionaries is introduced,

and then propose a generalized sparse Bayesian learning (SBL)

method exploiting the mode sparsity for our application-specified

MMV model. For a given broad frequency band, the resulting SBL

method is able to extract the phase and group slownesses in a fully

automatic, user-parameter free fashion. To obtain the global dispersion

analysis, an integrated workflow is proposed with configuration pa-

rameters such as the number of frequency points in a frequency band,

the overlapping ratio between two consecutive frequency bands and

the peak number. It is seen that, by exploiting the mode sparsity, the

proposed workflow produces smoother slowness estimates with less

fluctuation, less spurious estimates, and better capability to extract

weak modes. The proposed SBL method is significantly better than

the broadband ML method and the the group LASSO method in terms

of the computational complexity. For example, with the same set of

configuration parameter, the proposed SBL method is about ten times

faster than the group LASSO method with a given regularization

parameter. The need to search for an optimal regularization parameter

in the latter method makes the comparison even more favorable.

II. PROBLEM FORMULATION

To begin with our signal model, we use the conventional space-

frequency model of the recorded array waveform from L receivers in

an acoustic logging tool, i.e., [1]:

yl(ω) =

P
∑

p=1

āp(ω)e
jk̄p(ω)zl + vn(ω), l = 1, 2, · · · , L (1)

where yl(ω) is the frequency spectrum of the recorded waveform at

the l-th receiver at a given angular frequency ω, P is the number of

modes at frequency ω, āp(ω) and k̄p(ω) are the true but unknown

spectrum amplitude and wavenumber of the p-th mode, zl is the

distance from the source (or a reference point) to the l-th receiver,

and vn(ω) is the complex white Gaussian noise with zero mean and

variance σ2.

The broadband approach usually divides the whole frequency do-

main into successive (overlapping and/or non-overlapping) frequency
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bands and estimates the slowness for one frequency band by jointly

processing the frequency-domain waveforms within that frequency

band. In the following, we reformulate the slowness estimation

over a particular frequency band as the MMV model with varying

overcomplete dictionaries; see (6).

For any given frequency band Ω centered at ω0 with bandwidth

ωB , e.g., Ω = {ω0 −ωB ≤ ω ≤ ω0 +ωB}, a local representation of

the wavenumber dispersion for jointly processing the array waveforms

{yl(ω)}
L
l=1, ω ∈ Ω, is given by a first-order Taylor series expansion

k̄p(ω) ≈ k̄p(ω0) + k̄′

p(ω0)(ω − ω0), for all ω ∈ Ω, (2)

where k̄p(ω0) and k̄′

p(ω0) denote the wavenumber and, respectively,

its first-order derivative of the p-th mode at the center frequency ω0.

Taking (2) to (1) yields

yl(ω) =

P
∑

p=1

āp(ω)e
js̄p(ω0)ω0zlejḡp(ω0)(ω−ω0)zl + vn(ω), (3)

where, by convention, k̄p(ω0) and k̄′

p(ω0) are one-to-one mapped

to the pair of the phase and group slownesses, (s̄p(ω0), ḡp(ω0)),
at the center frequency ω0: s̄p = k̄p/ω0 and ḡp = k̄′

p. 1 With

this mapping, (2) and (3) imply that each dispersion curve can be

locally approximated by the phase and group slownesses (s̄p, ḡp) in

the slowness-frequency domain.

Stacking the frequency data from all L receivers at a given

frequency ω ∈ Ω into a column vector gives

y(ω) ∈ C
L×1 = [y1(ω), y2(ω), · · · , yL(ω)]

T , ω ∈ Ω. (4)

Defining an overcomplete dictionary of N bases spanning a grid of

Np phase slownesses and Ng group slownesses, each parametrized by

a pre-determined pair {si}
Np

i=1, {gj}
Ng

j=1, where N = Np ·Ng � P ,

and assuming the true s̄p and ḡp of P acoustic modes align with some

pre-determined {si, gj} pairs, (3) can be expanded as an MMV model

with overcomplete dictionaries

y(ω) = Φ(ω)a(ω) + v(ω), ω ∈ Ω (5)

where the varying dictionaries Φ(ω) are frequency-dependent:

Φ(ω) ∈ C
L×N = [φ1(ω),φ2(ω), · · · ,φN (ω)], (6)

with the n-th basis defined as

φn(ω) ∈ C
L×1 =











ej[ω0si+(ω−ω0)gj ]z1

ej[ω0si+(ω−ω0)gj ]z2

...

ej[ω0si+(ω−ω0)gj ]zL











. (7)

with i = dn/Nge and j = n− (i− 1)Ng . The (spectrum) coefficient

vector a(ω) = [a1(ω), a2(ω), · · · , aN (ω)]T has a few non-zero

values only when the pre-determined {si, gj} coincides with the true

{s̄p, ḡp}. Denoting F as the number of frequency points in Ω, the

coefficient matrix is formed by F coefficient vectors a(ω) in Ω

A ∈ C
N×F = [a(ω1),a(ω2), · · · ,a(ωF )], {ωf}

F
f=1 ∈ Ω. (8)

Considering the fact that each row of A determines the pres-

ence/absence of the corresponding mode in the recorded array wave-

forms and there are only a few excited acoustic modes, the mode

sparsity naturally appears as the row sparsity in the MMV model

of (5) with varying overcomplete dictionaries Φ(ω) over a chosen

frequency band.

1Henceforth the dependence of s̄p and ḡp on ω0 is skipped for notation
simplicity.

III. PROPOSED SPARSE BAYESIAN LEARNING

FOR BROADBAND DISPERSION EXTRACTION

In this section, instead of treating the coefficient matrix A as an

unknown deterministic parameter, we consider A as a random matrix

and propose to recover the sparse coefficient vectors from the SBL

framework [8]–[10].

A. Sparse Bayesian Model

Specifically, we assume the n-th row of A is complex Gaussian

distributed with zero mean and covariance matrix γnIF , i.e.,

A
n; γn ∼ CN (0, γnIF ) (9)

where γn denotes the prior variance and IF is the identity matrix

of dimension F . It is noted that, if γn = 0, we have An = 0. In

addition, the noise vector v(ω) is distributed as

v(ω) ∼ CN (0, σ2
IL). (10)

with an unknown noise variance σ2. Given the above sparse Bayesian

model and conditioned on A and σ2, the likelihood function is shown

as

y(ω)|a(ω);σ2 ∼ CN (Φ(ω)a(ω), σ2
IL). (11)

By applying the Bayes’ rule, the posterior distribution of a(ω)
and the marginal distribution of y(ω) are obtained as

a(ω)|y(ω);γ, σ2 ∼ CN
(

u(ω),Σa(ω)

)

(12)

y(ω);γ, σ2 ∼ CN
(

0,Σy(ω)

)

, ω ∈ Ω. (13)

where

u(ω) = σ−2
Σa(ω)Φ

H(ω)y(ω) (14)

Σa(ω) =
(

σ−2
Φ

H(ω)Φ(ω) + Γ
−1

)

−1

(15)

Σy(ω) =
[

σ−2
IL − σ−4

Φ(ω)Σa(ω)Φ
H(ω)

]

−1

= σ2
IL +Φ(ω)ΓΦH(ω) (16)

with new notations defined as γ = [γ1, γ2, · · · , γN ]T and Γ =
diag{γ}. We note that the model order P

B. The MMSE Estimate of The Coefficient a(ω)

The optimal Bayesian minimum mean-square error (MMSE)

estimate of the coefficient vector a(ω), ω ∈ Ω can be obtained by

minimizing the Bayesian MSE

E
(

‖a(ω)− â(ω)‖2 |γ, σ2)

=

∫ ∫

‖a(ω)− â(ω)‖2 p(a(ω),y(ω)|γ, σ2)da(ω)dy(ω). (17)

Given the Gaussian posterior of a(ω) in (12) and conditioned on σ2

and Γ, it is known that the MMSE estimate of a(ω) is given by the

posterior mean of a(ω), i.e., u(ω) in (14),

â(ω) = u(ω) = σ−2
Σa(ω)Φ

H(ω)y(ω),

Â = [â(ω1), â(ω2), · · · , â(ωF )] (18)

Several comments on the MMSE estimate of a(ω) are in order. First,

the proposed MMSE estimate generalizes existing Bayesian estimates

in the single measurement vector (SMV) case and the MMV case with

a fixed dictionary. In the former case, F = 1, (18) reduces to

â =
(

Φ
H
Φ+ σ2

Γ
−1

)

−1

Φ
H
y, (19)
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which is the same as (11) in [9]. In the latter case, F > 1 and

the dictionaries are identical over different frequency points, i.e.,

Φ(ω1) = · · · = Φ(ωF ) = Φ, (18) reduces to

Â =
(

Φ
H
Φ+ σ2

Γ
−1

)

−1

Φ
H
Y (20)

which is given by (16) of [10]. Second, the row sparsity is enforced by

pushing the hyperparameters γi, i = 1, · · · , N into zeros. As γi → 0,

from (18), we have the i-th element of â(ω) approaches to zeros as

well. Combining all coefficient vectors â(ω), ω ∈ Ω, we have the

i-th row of Â is zeros, i.e., Âi = 0 if γi = 0 with probability one.

Therefore, the row sparsity of the coefficient matrix A is naturally

transferred to the sparsity in the hyperparameter vector γ. Once the

sparse hyperparameter γ and the noise variance σ2 are estimated, we

can then recover the amplitude â(ω) from (18).

C. Estimation of Hyperparameter γ and Noise Variance σ2

The above MMSE estimate of a(ω) is derived based on a given γi
and σ2. In the following, the hyperparameters and the noise variance

are estimated and updated from the type-II ML estimates [8] by

maximizing the joint marginal likelihood function of y(ω), ω ∈ Ω
with respect to (γ, σ2). Using (13), this is equivalent to minimizing

the negative logarithm of the joint marginal likelihood function which

is proportional to

L(γ, σ2) =

F
∑

f=1

L(ωf ), {ωf}
F
f=1 ∈ Ω

=

F
∑

f=1

[

ln |Σy(ωf )|+ y
H(ωf )Σ

−1
y(ωf )y(ωf )

]

, (21)

where L(ωf ) is the negative log-likelihood function at ωf , and

the marginal covariance matrix Σy(ω) is given by (16). Using the

second line of (16) for ln
∣

∣Σy(ω)

∣

∣ and the first line of of (16) for

yH(ω)Σ−1
y(ω)y(ω), L(ωf ) can be expressed as

L(ω) =
(

L lnσ2 + ln |Γ|+ ln
∣

∣

∣
Σ

−1
a(ω)

∣

∣

∣

)

+ σ−2
y
H(ω)y(ω)

− σ−4
y
H(ω)Φ(ω)Σa(ω)Φ

H(ω)y(ω). (22)

Unfortunately, the direct maximization of L(γ, σ2) in (21) with

respect to (γ, σ2) yields no closed-form solution to the type-II

ML estimates. Alternatively, we resort to iterative implementation to

update (γ, σ2).

1) The Fixed-Point Algorithm: The fixed-point algorithm takes

the derivative of the joint marginal distribution L(γ, σ2) with respect

to (γ, σ2) and, then, forms a fixed-point equation by setting the

derivatives to zeros. The fixed-point updates for γ and σ2 can be

found as (the detailed derivation can be found in [11])

γ̂new
i =

F
∑

f=1

|ui(ωf )|
2

∑

ωf

ζi(ωf )
(23)

(

σ̂2)new
=

F
∑

f=1

‖y(ωf )−Φ(ωf )u(ωf )‖
2

FL−
∑

ωf

N
∑

i=1

ζi(ωf )

. (24)

where ζi(ω) = 1− γ−1
i Σii

a(ω), and the posterior mean u(ω) and the

posterior covariance matrix Σa(ω) are obtained from (14) and (15)

with γ̂old and
(

σ̂2
)old

in the previous iteration.

2) The Expectation-Maximization Algorithm: The EM algorithm,

on the other hand, is an alternative to maximize the marginal

likelihood function in (21) by treating a(ω), ω ∈ Ω, as the hidden

(unobservable) variable [12]. In particular, the EM algorithm is a

two-step iterative algorithm by first, in the E-step, computing the ex-

pectation of log-likelihood of the complete data (the observation y(ω)
and the hidden variable a(ω)), given the old parameter estimates and

then, in the M-step, updating the estimates of unknown parameters by

maximizing this expectation with respect to unknown parameters. The

EM updates for (γ, σ2) can be obtained as (the detailed derivation

can be found in [11])

γ̂new
i =

∑

f

(

Σii
a(ωf ) + |ui(ωf )|

2
)

F
, (25)

(σ̂2)new =

∑

f

[

(σ2)old
∑N

i=1 ζi(ωf ) + ‖y(ω)−Φ(ωf )u(ωf )‖
2
]

FL
,

(26)

where u(ω) and Σa(ω) are computed from (14) and (15) with γ̂old

and (σ̂2)old in the previous iteration. Compared with the FP iteration,

it is observed that the EM iteration converges at a slower rate.

D. The Overall Workflow

The above procedure can be applied for dispersion extraction

for a given frequency band. For a global dispersion extraction of

borehole acoustic modes, one needs to split the array measurements

into successive blocks and apply the SBL algorithm to each block. For

each data block over the chosen frequency band, the workflow first

uses the generalized SBL method to estimate the coefficient matrix Â,

and then forms the one-dimensional spectrum A(si) over the phase

slowness by the following step

A(si) =

Ng
∑

j=1

‖Â(i−1)Ng+j‖2 (27)

where An denotes the n-th row of A and ‖ · ‖2 is the Euclidean

norm of a (row) vector. This step essentially sums the (squared

root) coefficient energy along the group slowness domain. Applying

the one-dimensional peak finding algorithm to the one-dimensional

spectrum A(si) gives the phase slowness estimates at the center fre-

quency. By stacking the estimated phase slowness from all frequency

bands together, the dispersion of slowness for various modes can be

obtained.

Even though the overall workflow involves several configuration

parameters such as the frequency bandwidth, the overlapping ratio

between successive frequency bands, and the number of peaks ex-

tracted, we note that the proposed broadband SBL approach is much

less sensitive to the preset number of peaks; see Figures. 1 and 2.

IV. SIMULATION RESULTS

In this section, we present simulation results to verify the effec-

tiveness of the proposed SBL method for dispersion extraction of

borehole acoustic modes. The performance is numerically evaluated

by using one synthetic dataset and one field dataset. We compare the

proposed SBL method with the industry benchmark MP method [2].
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Fig. 1. Extracted dispersion curves from a synthetic dataset.

A. Synthetic Dataset

The synthetic borehole acoustic array data are generated accord-

ing to a semi-analytic (RZX) method with L = 20 receivers at

SNR = 0 dB. In Fig. 1 (a), the MP method is applied to the noisy

synthetic RZX data with a preset mode number P = 4 and a tolerance

level tol = 40%. It is seen that the MP method can estimate the

slowness for stronger modes (i.e., the tool flexural mode) but is unable

to deliver the slowness estimates when the signal energy is small

(i.e., the formation flexural mode). Fig. 1 (b) gives the slowness

estimates by the proposed SBL-FP workflow with a preset mode

number P = 4 2. The algorithm parameters for the SBL-FP method

include the number of frequency points included in a data block

F = 7 and the overlapping ratio η = 0.8333. These parameters give

the bandwidth of each frequency band 2ωB = 1.1070 kHz since the

frequency resolution for this dataset is ∆f = 0.1845 kHz. The result

in Fig. 1 (b) shows a better capability to estimate the slowness for

the flexural mode at a broader frequency range, better recovery of the

low-frequency slowness of the higher-order formation flexural mode,

robustness against the spurious estimates (even though the preset peak

number P = 4 is larger than the detected modes) due to the exploiting

of sparsity, and the smooth dispersion extraction with less variation.

Moreover, the extracted slownesses of the flexural mode and higher-

order flexural mode at the low frequency range agree well with the

true shear slowness at 105 us/ft.

B. Field Dataset

In this section we present the dispersion extraction results for a

logging-while-drilling (LWD) field dataset. The frame we extracted

from the field dataset corresponds to the depth 12, 9647 ft. For this

experiment, we process the dipole inline (DIIN) waveforms recorded

from 12 receivers during the second dipole firing (D2).

The MP method with P = 4 and tol = 40% is first applied

to the dipole inline field data and the result is shown in Fig. 2 (a).

For the proposed SBL-FP method, the configuration parameters are

set to F = 9, η = 0.8889 and P = 4. These parameters give

the bandwidth of each frequency band 2ωB = 1.0417 kHz and the

extracted dispersion curves are shown in Fig. 2 (b). Comparing Fig. 2

(a) with Fig. 2 (b) reveals that the proposed SBL method deliveries

more robust slowness estimates of the two formation flexural modes

with less fluctuation from one frequency to another. Particularly, the

SBL method provides consistent slowness estimates of the higher-

order flexural mode at the high frequency region.

2The SBL-EM method gives similar performance with more computation
time and, hence, it is skipped here. Results are superior with respect to the
Capon and LASSO methods. Details will be reported in [11].
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Fig. 2. Extracted dispersion curves from a field dataset (dipole inline)

V. CONCLUSION

In this paper, we reformulated the broadband dispersion extraction

of borehole acoustic modes as the sparse signal recovery under a

unique multiple measurement vectors model with varying overcom-

plete dictionary matrices. Accordingly, the generalized SBL method

has been proposed to take into account the dictionary propagation

over the frequency. Two iterative implementation of the generalized

SBL method have also been developed based on the Type-II maximum

likelihood estimation. Finally, simulation results are provided to show

the effectiveness of the proposed SBL method for the dispersion

extraction of borehole acoustic modes.
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