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Sync: An old problem!

EINSTEIN'S CLOCKS.
POINCARE'S HARS

Empirey of lime

ftaven Sirogats

Poincare: 1909 Broadcast radio sync

1884 — World Time Conference SAM 2008



Sync: An old problem! b
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Sync: An older solved problem? 21

Kaempfer, 1680; Kuaramato, 1984; Mirollo-Strogtaz, 1990

- ~10K male Southeast Asian fireflies congregate in trees and flash

in near perfect unison *

— flash every 800 to 1600
ms

— Sync to within 30 ms

— Only local interaction:
leaves, limited
perception etc.

— flash every ~1s, without
external stimulus.

- Knowledge of distributed
mechanism used to
synchronize flashes can
be used to develop better

- i = i !
Wa y S to Sy n Ch r On 1z e On a Photo from presentation by: Ibiso Wokoma, loannis Liabotis, Ogngen Prnjat,
Lionel Sacks, lan Marshall — University College of London
network

SAM 2008 4

Source: Talk by Dr. John Parmentla, Director for Research and Laboratory Management, US Army, at USMA Network Science Workshop,
on 22 Oct 2007.




Sync: An older solved problem? 21

Source: Talk by Dr. John Parmentla, Director for Research and Laboratory Management, US Army, at USMA Network Science Workshop,

Z

Clock Neurons in the Suprachiasmatic Nucleus (SCN)

For clarity, separate PER1 o702 ‘—-\
=7 D

and PER2 genes, and
saeparate CRY1 and CRY2
genes are not shown

[Forger & Peskin, 2003]

Gene networks » Organs (~10,000 cells) —— Organism

Individual neurons are sloppy timekeepers -
but synchronized neurons are precise clocks

102207_Parmentola_WestPoint_Final Source: Frank Doyle, ICB, University of CA at Santa Barbara



Example =R

<+ Experiment
— 3 watches placed next to each other
— Left for 140 days, time recorded each day

Uncorrected Time Time With Frequency Correction
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Source: From a CTA talk by Prof Xiaoli Ma, Georgia Tech,;
taken from "The Science of Timekeeping’, HP Application Note 1289
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Clock Accuracy &1

Accuracy Power Lifetime with
(PPM) AAA battery Notes
1250 mAh
Watch clock 200 x 10°® 1 micro W 142 yrs Temperature,
aging
TCXO 6 x 10 6 mW 208 hours >1 PPM
MCXO 3x108 75 mW 17 hours large, aging
drift
GPS 108 -- 101 180 mW 7 hours Outdoors, cost
(o]
DARPA CSAC 10-4 30 mW 42 hours Target
125 mW 10 hours prototype

Caveats:

- Battery lifetime depends upon discharge current

- Energy storage depends upon medium

 Drift to temperature, aging = must resync

« Resync time ~ (Tolerable offset) / (relative accuracy) sam 2008 3




Motivation

Time-Sync Crucial for
— Target tracking, ranging, localization
— Distributed MIMO, Collaborative signal processing
— Data fusion
— Feedback control
— Network probing and monitoring
— Cooperative communications
— Energy efficient MAC (e.g., with duty cycling)

Local information

— But need to estimate "global’ state
Constraints

— Resource constraints (batteries, BW)

— Application constraints (timeliness, desired accuracy)
Robustness

— Link and node failures; asymmetric comms; variable delays

Exemplar for distributed inference SAM 2008



Metrics & Tradeoffs b

Accuracy: Worst case (or avg case) pair wise error between one-
hop neighbors. Performance bounds?

Resource efficiency: The number of broadcasts necessary to
achieve sync and the rate and frequency of messages that need to
be exchanged to maintain sync.

Convergence time: The time taken for all nodes (or a high
percentage of nodes) to sync to their neighbors.

Fault-tolerance: Robustness to failure of critical nodes and/or links,
clock jitter and drift, congestion, mobility.

Scalability with network size: Does the sync-error increase with
size? Does the convergence time increase with the diameter of the
network? Node density? Clock parameters?

Complexity

Impact of variable delays (queue, processing ...)

SAM 2008 10



Some (recent) surveys on synchronization 3 !

Lindsey et al, Proc. IEEE, 1985
Bregni, IEEE Comm Mag, 1998

Anceaume, Puaut; INRIA, 1998

Sivrikaya, Yener, IEEE Network 2004
Johannessen, IEEE Contr. Sys Mag, 2004
Sundararaman et al, AHN, 2005

Sadler, Swami, MILCOM 2006
Faizulkhakov, PCS, 2007

SAM 2008 11



Slot Synchronization

R

Motivation: Enabling energy
conserving duty cycling MAC

— Oscillator drifts and duty

cycling
« => misalignment of slot
boundaries

* =>]oss in throughput

Pair wise slot sync and re-sync

— Requires guard times in each
slot; and re-sync
— Strong correlation between
» worst case oscillator drift
* re-sync period
* slot utilization
* energy consumption

(source: Dr. P. Basu BBN) (C&N CTA)

AN

4 das
OFF ON . OFF _
>times
lost k’/ received
OFF ON OFF
s p ~ times
Ang y(1+6pp)

Transmission from node A to B with loss.
B has a slower clock than A ( AB >0 )

Qinit Jend

W = ginit +S+ gend

U™ =s/y

o
o

Onc <0

y 3

No Data Loss

—————————— -

Data Loss without re-sync

Transmission from node Ato B and Ato C

SAM 2008
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Slot-sync Schemes: Tradeoffs

R

Dimensions: Sync accuracy, Energy efficiency, Convergence Time,
Fault tolerance, Scalability, Engineering Simplicity

Slot-sync Scheme

Advantages

Disadvantages

Tree based — BFS
(driven by periodic Heartbeats)

Fast convergence after tree computation (can
be reused or amortized);

Low #local broadcasts for sync maintenance;
Provably low worst-case sync-error

Fault-tolerance hard to achieve in duty-cycle
mode (tree needs to be recomputed);

If root fails, then re-election is hard;

Tree maintenance could costs energy

Tree based — BFS
(driven by Link State Updates)

Sync-trees with better properties hence lower
energy for maintaining sync

Repairs may take a long time because of the
dependence on LSUs (low frequency)

Root based — MinDelay
(driven by periodic Heartbeats)

Faster convergence because the tree structure
is only implicit after root election;

Better fault-tolerance than other tree based
schemes

Worst-case sync-error may be worse than other
tree based schemes;

Also energy consumption (#broadcasts) for
maintenance may be high

Peer-to-peer based on
aggregation/filtering
(driven by periodic Heartbeats)

No root election or sync-tree computation step,
hence highly fault-tolerant;

Sync maintenance is very efficient;

Friendly to network dynamics (join/leave/move);
Potentially better scaling properties

Slower convergence than tree-based schemes;
Potentially lower accuracy;

Determining optimal aggregation function
(median? mean? other?) may be hard

Hybrid (tree-based and
peer-to-peer)

Best of both worlds: achieve fast convergence
by tree-based protocol followed by fault-tolerant
maintenance of sync in low-energy mode

Two phase protocol — hence may be harder to
analyze and implement

(source: Dr. P. Basu BBN) (C&N CTA)

SAM 20038 135




Time Sync Protocol Taxonomy

« Broadcast Protocols
RBS Elson, Girod, Estrin, 2002: Beacon-aided
TPSN, Ganeriwal et al, 2003, Broadcast with hierarchy

- Distributed Synchronization Protocols
Diffusion-based: Li, Rus, 2004
Spatial smoothing: Solis et al, 2006
Bio-inspired Hong, Scaglione, 2005
Average consensus: Xiao, Boyd 2003
Jacobi iterations:  Barooah et al, 2007
Advection-diffusion Barbarossa, 2008 (here!)

Other taxonomies:
— Single-hop vs. multi-hop
— Server initiated vs. client initiated vs. always-on

SAM 2008
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Clock Models b

= t = “true” time, local node time is T(t)
= Clock drift po(t) =dT(t) /dt —1

= Bounded drift, and clocks not running backwal

|p(t)| < Po -1< p(t) -nn‘
. . s N J"‘
= Taylor expansion at the i'" node
Tl(t) = O + ﬂlt + 7/|t2 + ... ﬁrlﬁl

offset skew models time variations
* Could model skew as AR process

= Time Sync problem: Estimate o, [3, v,
and adjust clock

SAM 2008 16



Pair-wise synchronization 3 !

me—en
Esti ive ti —
stimate relatlve.tlme offsets R=t+a,+5,, .y
— Exchange time-stamped packets
_ Extonds to skow sstmation AN
S,=t+a,
m
t

R.,=u+a,+o0,,

Z(mn=Rn_Sm+Sn_Rm=2(an_am)+(6mn'6nm)
(mn= (an_am)'l'smn

Use multiple measurements.

\/ ™~ Linear least-squares problem:
Time shifts from 6160 mean error » Pair-wise sync easy
reference clock v Can easily compute variance

CRB, robust estimators
confidence intervals etc.

v Test fordrift f#0 7?

SAM 2008 18

Same formulation in estimating
heading, position, skew




Pair-wise estimation of skew and offset b

» Node u transmits a pair of packets spaced by p

Ralk) = abSi(k)4+ 34 das 4+ ealk)
Measurements  S:(k) = —aRy(k)+ 75— dag + ey (k)
E'gli k) = alp+ S1ik)) + 3+ dag + Eal k)
. _ - Ry
. ||'_:'
Estimates , O S
1 = —Ehfh—l—-bﬂ—l—ﬁlk}?g—l—-bg]
— i |
ceod = EIZRI — 510+ 5{}?2 — &)
C I o 4
ovariance = | (S1+ Ri+p)? — p(Ri + 51)

Y A2
20 | (S1— R+ p)* + p(Ri — S1)
« Extends to multiple measurements.

- Usual techniques to deal with NG noise , . ... 20



Example: Localization

A
-

u - |

Cuy = (Ku - Xt;r) + €uw

/ ~

Noisy Mode position Zero mean
measurement vectors random vector
Reference Relative

nodes — —* position
| measurement

!

[ source Dr. Prabir Barooah, U. Florida (ICB) ]

= Every sensor can measurs the
relative positions of its neighboring
sensors (dz and dy from r and t).

= one or more node location(s) known.

« Local coordinatas frames are aligned
(nodes have compasses).

Problem: determine node positions
(w.rt. reference)

Traditional localization
- Only range measurements
- Only angle measurements

Recent interest in using both types of
measurements

- “Ad-hoc localization using ranging and
secloring” Chinlalpaudi, Dhariwal,
Govindan and Sukhatme Infocom’'04

SAM 2008

R
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Example: Motion coordination =R

* Every agent measures the
difference in the heading between
itself and nearby agents.

= One (or more) agent’s heading 1s
known (reference).

Problem: determine headings (w.r.t.
reference headings)

'C:mr — (Eu — 91:) —+ eyw

Headings with
respect to
reference heading

Z2ero mean error

_ , SAM 2008 22
[ source Dr. Prabir Barooah, U. Florida (ICB) ]



Network time synchronization 3 !

(mn = (an - Cfm) + smn Relative time-shift

measurement

Same formulation in ~

skew-offset estimation
heading estimation

position estimation

How to go from pair-wise to network-wide sync?
Incorporate info from 'r’ reference nodes?
Additive ambiguity : r> 0

SAM 2008 24



Graph Representation b

Measurements Graph
Relative Measurements Communications Graph
z;m,n =, —d, &, G = (V,E)

\ \ / l c =Aa+eg
Measurements Offsets Errors Q = [Au, Ar,] [Gu Gr] T &
Edge Vars Node vars = L au =b

Estimators:

L=A, P'A} is invertible iff every
weakly connected component in G
has a reference node

Optimal estimate computed by FC

with error-free links from all nodes
SAM 2008 25




Performance

Covariance of optimal estimator depends on

- distance from reference node (' # hops’)
- structure of the network
X, =L L=A,PTAT
Distributed algorithms

- Converges? To optimal ?

- Convergence rate

- Robustness to link failures ?

- Asymmetric communications ?
- With dynamics in topology ?

SAM 2008

26



Distributed Algorithms: Assumptions 3 &

Assumptions

O Every weakly connected component
of G = (V,E) has at least one
reference node.

O Communication graph G¢ = (V,E°) :
(u,v) in E = (u,v) and/or (v,u) in E°

O No edge in E°is directed towards a
reference node

O Measurement errors uncorrelated,
known variances

O Ateveryt, each node may fail with
prob g, and every link with prob q.

Jacobi iteration for everv node ucV'\V.

. . Convergence?
( Z _) i*E..:k—i_lJ — Z 9 ["-E.E,k] ‘|‘ fLut:Cuv]

. 2
vENy Jut: vENY Juv

SAM 2008 27



(Zox)et -2 o

. 2
vENy Jut:l vENG lli.'l-*.‘..',t:l

Weighted in-degree
Weighted adjacency
Submatrices of C & D
lteration:

Fixed point

exists & is unique if
L. is invertible

Convergence Results

R

[iik:l + Gy Cut:]

1
Dy = Z Y
vENy "'thw
L
Cyw = —, if (v,u) € E°
o2

TETR

M, N € R™*mu

MxFD — Nx® L,

Le=M-—N=AP 1Al

SAM 2008
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Convergence Results - 2 =R

Synchronous update, no node/link failures:

Matrix L, is invertible iff there is a directed path in G, from
at least one reference node to every non-ref node.

Asvnchronous case, with iid failures:

If G(t) satisfies AS1; there is a directed path in G
least one ref. node to every non-ref node; no
communication edge in G, fails permanently; no edge
outside G, remains active infinitely often. Then the
algorithm converges a.s.

Proof follows Frommer & Syzld, On asynchronous iterations, Journal of
computation & applied math, 2000; also Tsitsiklis and Bertsekas

.~ from at

Barooah, Hespanha, Swami, CDC 2007 SAM 2008 29



Convergence Results — 3 =R

There is a penalty in the asymmetric case:
asymptotic covariances:

Zs= (A, PS1AT)!
2, = (A PIA) (A2 PSTALT) (A2 PSTAT)T

where A 2is obtained from A, by setting appropriate

elements to zero.

(u,e) = 0if uis a reference node or the comm link e is not directed
to u.

SAM 2008 30



Simulation Results

R

10°

10°

107

10

107"

Sl

i

||l’~"'°'||

Link failures p=0.2
No node failures q=0

Estimate is unbiased
Converges rapidly

But with large variance
compared with
centralized BLUE

SAM 2008 31



One link can be worth a lot!

G,

0.625 0.375 0.5

0.375 0.625 0.5
1 A 0.5 0.5 1

1. 0.75 1.25

A 0.75 1 1.25

1 a

1.25 1.25 2.5

SAM 2008
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Do more measurements help?

R

-[%

Var (G1)
Var (G2)

= [1, 1, 2.5]
= [2/3, 2/3, 5.3]

.

SAM 2008

33



With dynamic topology changes =R

lterations x(t+1) = [ 1 + D]"" [A, + 1] x(t) = F, x(t)
AS1 F.(i,iy>=a >0, F.(i,j) =0 orin [a,1]; unity row sums
AS2 Graph G(t) = (N, E(t))

Graph (N, U, E(s) ) is strongly connected for all t >= 0
AS3 Bounded inter-communication interval or symmetry

Then, the iteration converges to a common value

AS4. Bounded delays
ASS5 With positive probability, some updates do not occur

Then, asymptotic consensus is achieved

Bondel et al (CDC 2005) / Tsitsiklis 1984
SAM 2008 34
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Recursive Jacobi Algorithm | B

But Nodes can obtain 'new measurements’ during the iterations.

S
* Avg. relative offset with node v Cuwli) = TZ G, v (2)

- Update estimate wrt node v i) = i +Euuld) Yo e N(u)
. A2 7 voali—1] 1 w(i—=10 ¢
- Overall updated estimate &' = (1 — S )&, + J’? Z Wy,ply (V)
H vEMN Y
- In matrix form, for all nodes %(i) = J%{i — 1) 4+ B&(i — 1)
where
J=1—3M1L,, B(i) = gM 14, W
) == &9 —alx,, =g, )
SAM 2008 37

Barooah & Swami: MILCOM 2008 (submitted)



RJA — Convergence Results X

i) = pli-1) 4 .-j'di > wuw (), Ly == AWAT
Y veN.,
M = diag (L)

1) If mitial estimates :E.ELD:'. u e 'V for the rterative update J=al +3M7IN,
algorithm (8) are unbiased, the estimates x'¥) w € ¥ B =MW,
are unbiased at every iteration ¢.

2) If the measurement notse {e').i = 1,...} 15 a wide 2% Y. :
sense stationary white noise sequence with F(i) = ol - p(fr]mj I oo
Fp.i=1..... then P{i) — F as i — o0, where the
steady state covanance matrix Pl 1s the unique positive 15} 10.98
definite solution of the Lyapunov equation: . .

JPyJ" — P+ BRgB' =0, (12) A

3) The spectra gap, assuming weak connectivity, is: ot ﬂfz — - — — lo.s5

" " p — I — 3
=1- = BAmin (M ~V2Ly M2 | o | |
Jy=1 J FA M2 L
' Fiz. 1. The tradeoff in choosing larger 7 - it decreases the spectral radius
ifaster convergence rate) but increases the trace of the steady state covariance

mamix oo (poorer estimation accuracy).

Barooah & Swami : Milcom 2008 (submitted) SAM 2008 38



RJA - Simulation Example

=0.3

Fig. 1. The measurement graph for the 25 node simulation. All communi

ab 3
4 . o2 old
«10 a8 sl Y]
'l
el5 ald A1 wll
al2
wlf
eld ol
l2|:| '1T
e w2
widl ..24 .
-0.3 0 0.3

cations are bidirectional.

Fig. 2. The trace of the estimation emror covariance matrix FP({) as a function
of the eration counter i for the network shown i Figure 1. The covanance
Fii) 13 computed from the recursmve relafionship (12}, with minial condition
chosen as the identity matmx. Time evolufion of the vananees for two values
of 3 are shown.

SAM 2008

39



RJA — Simulation Example (2) i

l 5 T T T ll:l T T T T
1_ -
0.5 7 _'|_.:|':' -.;— ————————————————————————————————————
|:|' T .
e optimal
H:Ei 1 empiricall
=10 "F ;
3 S
= Jacobi
107
-2.51 .
10_3 1 1 1 1
-3 1 L 1 o 1aa 200 300 400 Eao
a 50 1o B 150 B 200 !
iteration counter, ?

_ . . _ Fiz. 4 The temporal evolutton of the variance of the estimation at node
Fig. 3. Five sample mns of the estimates at node 13 (upper right hand comer #13 (shown in Figure 1). The legend “empirical” refers to the empirically
node in Figure 1) as a finction of time, with G = 0.9, The solid line shows estimated emor vanance of the node’s estimates obtammed by the proposed
the true value of node 13°s tme offset with respect to the reference. algorithm, with 3 = 0.3. The estimates were averaged over 100 sample mms.

“Jacobi” refers to the steady-state vanance the estimates produced by the
Jacobi algonithm in [8] and its vanants m [3], [10]

SAM 2008 40



RJA — Simulation Example (3) i

-3.5 1 1 1

o =3 200

100 . 150 .
iteration counter, ¢
Fiz. 3. Five sample runs of the estimates at node 13 (upper right hand
comer node i Figure 1) as & finction of time in the presence of random

commumication faults (probability of fatlure 1s 0.3), with 3 = 0.9. The solid
line shows the true value of node 137s time offset with respect to the reference.

10t . . :
——optimal
——ampirical]
---Jacobi ]
lDD ——————————————————————————————————————
—,
=3
=]
— -1
FloTy e
P} -
-2 - —_ B
10 F —_ S
lD_3 1 1 1
o =1] 100 1540 200
(]

Fig. 6. Evolution of nede 13's estimation error vartance with random com-
mumnication faults. At every iteration, every commumication fails independently
of all other edzes, with a probability of 0.3, The legend “empincal” refers to
the empirically estimated (from 100 sample nns) error variance of the node’s
estimates produced by the proposed algenthm. “Jacobi™ refers to the varance
the estimates produced by the Jacebi algorithm in [8] and its vardants i [3],
[10] aclieve upon convergence without communication fanlts.

SAM 2008 41



Convergence for grid graphs

-

Theorem 2: When all the edge weights are chosenas 1 (1.2
wy, » = 1 for every (u, ») € £) and there 15 a single reference
node o = 1/, the following statements hold.

1)

2)

3)

In a 1-D gnd of nyoea nodes, we have
i
(rm —1)(n —3)

g(J) =

In a N7 = Na 2-D gnd with a bounded aspect ratio
(1e.. one in which there exist positive constants ¢, ©
independent of Ny and No such that ¢ < % = ),

il
Miotalll0g Nigtar + T+ 2+ 6)

glJ) =

where nioiar = N1 = No.

In a N =« Ngx Ny 3-D gnid. where there exists positive
scalars ¢.7.d.d such that eNy < Ns < TNy and
dlog N3 < N3 < dN3. we have that

ald) =~

" Niotal

where + 15 a constant independent of the number of
nodes o000 = N1 = No = Nq. O

—optimal
i ——empirical

——predicted

------ ateady-atate

10 , - -- Jacob1 |

walues

10: 7]

25 20

0 5 10 15 .2%
iteration index

Fiz. 3. The trend of several estimation emmor varances of the upper right
hand corder node in the graph shown in Figure 2. The legend “empirical”
refers to the empincally estimated (by Monte Carlo methods) error variance
of the node’s estimates produced by the propesad algorithm. “predicted” refers
to the same vanance, but that computed from the weration (11). The legend
“steady state” refers to the diagonal entry (corresponding to the node) of the
steady state covarance matnx Foo described in Theorem 1. The trend of the
variances corroborate the claims made m the Theorem. “Jacobi” refers to the
variance the the estimates produced by the Jacobi algorithm i [6] and its
variants m [4, 8] achieve upon convergence.

SAM 2008 42
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Summary

Studied convergence of distributed (consensus)
algorithms with asynchronous updates, iid failures, and
asymmetric links.

« There is a performance penalty in the asymmetric case

« Variations on consensus algorithms to incorporate new
measurements

« Adding measurements may be harmful:

» Collaborative decision on which measurements
should be added

» Appropriate protocols
> When reference nodes disagree?

SAM 2008 43



Anna Scaglione’s Sync Video X

The video clip was created by Prof. Anna Scaglione
(Cornell / UC-Davis) and her group; see:
http://www.youtube.com/watch?v=5F7Qhdf9ZJg

SAM 2008 44



QUESTIONS?

SAM 2008

45



