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A General Model for Wireless Systems
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e The continuous-time channel H is random, dispersive in both time
and frequency, and correlated in space

e Neither TX nor RX know the realizations of H but the channel law is
known to both TX and RX (noncoherent setting)

e Peak and average power of the TX signal are constrained




Fundamental Tradeoffs

Noncoherent capacity is the ultimate limit on the rate of reliable
communication over fading channels

e It reveals a fundamental tradeoff between degrees of freedom (i.e,
dimensions) in signal space and channel uncertainty

e |t sheds light on relevant design questions/issues:

— How much bandwidth and how many antennas to use?

— Impact of propagation conditions (e.g., delay spread, Doppler
spread, spatial correlation) on system performance?

— Difference between coherent (i.e., genie-aided) and noncoherent
capacity




A Brief Literature Survey

Many (mostly asymptotic) results are available in the literature

e for discretized and/or discrete-time channel models

e under different assumptions on

— the channel model: block-fading, time-selective only,
frequency-selective only, basis expansion model

— the input signal: average power constraint, peak constraint in time,
in time & frequency, in time & frequency & space




A Brief Literature Survey (Cont’d)

SISO case:

e The capacity of WSSUS Rayleigh fading channels equals the AWGN
capacity in the wideband limit [Gallager, 1968; Kennedy, 1969

e Peaky signals are needed to achieve the wideband AWGN capacity
|Gallager, 1968; Telatar & Tse, 2000; Verdu, 2002]

e Under peak constraints, AWGN capacity cannot be achieved [ Viterbi,
1967; Médard & Gallager, 2002; Subramanian & Hajek, 2002]




A Brief Literature Survey (Cont’d)

MIMO case:

e Low-SNR bounds on capacity can be found in [Liang & Veeravalli,
2004; Borgmann & HB, 2005; Srinivasan & Varanasi, 2007;
Sethuraman et al., 2008]

e Spatial correlation is beneficial in the noncoherent setting [Jafar &
Goldsmith, 2005; Srinivasan & Varanasi, 2007; Zhang & Laneman,
2007




Transfer Function Calculus for LTV Channels
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WSSUS and Underspread Assumptions

e \We model the channel as a WSSUS Gaussian random process
E[Su(r,v)] =0
E[Su(T,v)Si(T', V)] = Cu(r,v)é(r — 7)o (v — V')

Cu(r, v): scattering function

e His said to be underspread if Cy(7, v) is highly concentrated in the
7-v plane

e We assume Cy(T, ) to be supported within the
rectangle [—7g, 7] X [—1p, Vo] Of area Ay = 4oy < 1

e Wireless channels are highly underspread, with Ay € [10™7,1079]
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Results for the General Continuous-Time WSSUS Model

When the peak power of the TX signal is constrained in time and
frequency:

e Noncoherent capacity approaches zero as bandwidth becomes large
(Médard & Gallager, 2002; Subramanian & Hajek, 2002]

e A nonasymptotic upper bound on the rate achievable with constant
modulus constellations over underspread channels was obtained in
[Schafthuber et al., 2004]

e The upper bound in [Schafhuber et al., 2004] is explicit in the
channel’s scattering function and hints at the existence of a
capacity-maximizing bandwidth




Scope of This Talk

e We analyze the general class of continuous-time underspread (MIMO)
channels under a peak constraint in time & frequency

e Contributions:

— Upper and lower bounds on capacity, explicit in the channel’s
scattering function and the number of antennas

— Possible to identify the capacity-optimal combination of bandwidth
and antennas

— Exact expression for the first-order Taylor series expansion of
capacity in the infinite-bandwidth limit

— Spatial correlation is beneficial in the wideband regime




Discretization Through Eigenvalue Decomposition

y(1) = / Bt 7)a(t — )dr + (1)

T

e Almost all tools for information-theoretic analysis require a
discretized representation of the I/0 relation

e Aclassicapproach isto transmit and receive on the channel’s
eigenfunctions = countable set of scalar I/0O relations

e This approach has been successfully used to compute:

— The capacity of a bandlimited AWGN channel [Wyner, 1966]

— The capacity of a deterministic LTI channel [Gallager, 1968]
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Eigenfunctions of Random Channels

e The eigenfunctions of random LTI channels are complex sinusoids,
irrespectively of the realization of the impulse response h(t)

e Inthe LTV case, the eigenfunctions are, in general, random and not
known to TX and RX in the noncoherent setting

e The eigenfunctions of underspread LTV channels can be well
approximated by a set of deterministic functions [Kozek, 1997]

e The calculus for underspread LTV channels is essentially identical to
that for LTl channels
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Diagonalization of Underspread Channels

e Underspread channels can be approximately diagonalized as:

tt—1t') Z Z L (KT, nF) gk (t) gk n (')

k=—oc0o n=—0o0

o {gin(t) = g(t—kT)e’*™ '} is an orthonormal Weyl-Heisenberg set
e The prototype function g(t) is well localized in time and frequency
e The grid parameters T and F' satisfy 1 < TF < 1/Ag

e Projection of y(¢) and z(t) onto {gx »(t)} yields discretized 1/0 relation

ylk,n] = {/H(kT, nle[k,n] + z[k,n]
h[k,n)
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Transmission on Channel’s Eigenfunctions:
Pulse-Shaped OFDM

OFDM Symbol

Subcarrier

8557 (B985 55 59 (55 5 nan

Implemented as pulse-shaped OFDM: x(t) = Zk,n x[k, n]g(t — kT)ej%”Ft




The Inventor of OFDM

D. Gabor, 1900-1979
Nobel Prize in Physics (1971) for inventing holography
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Power Constraints

e One channel use takes place over K OFDM symbols and N subcarriers
e The vector of symbols transmitted in a channel use is denoted as x
e Average-power constraint:

El||x|*] /T < KP

e Peak constraint in time and frequency:

1 2<6_P

T x|k, n]| a.s., forall k,n

e (3 > 1isthe nominal peak- to average-power ratio
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Capacity Bounds

e Capacity as a function of bandwidth W = N F'is defined as

1
C(W) = Kli_r)nooﬁsgp I(y;x) [bit/s]

e C(W) is difficult to compute for general W

e We obtain upper and lower bounds that are explicit in the channel’s
scattering function
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Upper Bound

Theorem [Durisi et al., 2008]: The capacity of an underspread WSSUS
Rayleigh fading channel is upper-bounded as

COW) < U(W) = %log(l + a(W)P%) — a(W)A(W)
with
) =minf 7 (7 7) |
and

AW) = %// log (1 + ﬁWPCH(T, V)) dvdT
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Remarks on the Upper Bound

e For all wireless channels and SNR values of practical interest
PTF
UW) = %log< > // log <1 + —CH(T V)) dvdr

e The first term is the capacity of an AWGN channel with power P and
W/TF degrees of freedom

e The second term is a penalty term due to channel uncertainty

e UW)—-0asW — ¢
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Lower Bound

Theorem [Durisi et al., 2008]: The capacity of an underspread WSSUS
Rayleigh fading channel is lower-bounded as C(W') > L(W), where

1/2

LOW) = max {Wl(y;aﬂh)’y],f / 1ogdet<1N+7P o C(e)>d9}

1<~<B | YT'F %4
~1/2

e /(y;x|h): coherent mutual information of the scalar
channel y = hx + z, where h, z ~ CN(0, 1)

e z: zero mean, constant modulus, with |z|* = yPT/N

e C(0): matrix-valued spectral density of the multivariate random

process {h[k] = |h[k,0] hk,1] --- hlk,N — 1HT}kez
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Remarks on the Lower Bound

e Standard results on the asymptotic equivalence between circulant

and Toeplitz matrices [Pearl, 1973] lead to a looser lower bound that is
explicit in Cy(7,v)

e For large bandwidth the lower bound takes a simple form

P2TF
= max {P,y W//log( Cu(T ,V)) dVdT}
1<~y<pB
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Key Elements of the Proofs

Use the chain rule for mutual information to obtain
I(y;x) = I(y;x,h) = I(y;h|x)

e Forthe upper bound also use

— First term: Gaussian distribution is differential-entropy maximizer

— Second term: relation between mutual information and MMSE
according to [Guo et al., 2005]

e For the lower bound
— Firstterm: I(y;x,h) > I(y;x | h)

— Second term: a generalization of Szego’s theorem to block-Toeplitz
matrices with Toeplitz blocks [Miranda & Tilli, 2000]
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Numerical Evaluation of the Bounds for System Parameters
Relevant to IEEE802.11a, Ay = 1073
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Bounds Shed Light on Relevant Design Issues

e U(W)and L(W) take on their maximum at large but finite
bandwidth W

e Beyond this critical bandwidth, the use of additional bandwidth is
detrimental

e Many current wireless systems operate well below the critical
bandwidth
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The Large-Bandwidth Regime

Theorem [Durisi et al., 2008]: The capacity of an underspread WSSUS
Rayleigh fading channel satisfies

)
P? 2T'F
lim WC(W) = < ;
| ST'F ’ Ry
where 5
K = //CH(T, v)dvdT

e First-order Taylor series expansion of C'(W) around 1/W = 0 fully
characterized

e 5 > 2T F/ky holds for virtually all channels of practical interest
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Proof Technique

e U(W)and L(W) do not have the same first-order Taylor series
expansion around 1/W =0

e We find a new lower bound with same asymptotic behavior as U(W)

e To get this lower bound, we use signals with
— uniformly distributed i.i.d. phase

— block-constant magnitude randomly toggled on and off

and apply a result from [Prelov and Verdu, 2004]

e Information is encoded in both phase and magnitude
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The MIMO Setting: A Numerical Example for a 3 x 3 System

U(W) and L(W) for spatially correlated MIMO channels
[Schuster et al., 2008]
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Remarks on the MIMO Results

e Possible to identify the optimal combination of bandwidth and
number of transmit antennas

e Inthe wideband regime:
— Itis optimal to use only one transmit antenna for spatially
uncorrelated channels

— For spatially correlated channels, rank-one statistical beamforming
along the strongest transmit eigenmode is optimal

— Both transmit and receive correlation are beneficial in the
wideband regime

e Multiple antennas at the transmitter are not beneficial for
ultra-wideband systems
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Further Results & Open Problems

e The impact of the approximation error in the discretization v/

e Capacity (bounds) for scattering functions that are not compactly
supported v/

e The high-SNR regime v/

e The overspread case

e Peak constraints on the continuous-time transmit signal x(t)
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Thank You

Sincerely yours
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