Label-Free Estimation and Tracking

by Peter Willett UConn ECE Department

with lots of help from (and most of the ideas and work by) Lennart & Daniel Svensson, Marco Guerriero, Marcus Baum and David Crouse

June $24^{th},\,\mathbf{2014}$

- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)

• MFA

Emerging methods:

- PMHT
- PHD
- MLPDA
- JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)

• MFA

Emerging methods:

- PMHT
- PHD
- MLPDA
- JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)

• MFA

Emerging methods:

- PMHT
- PHD
- MLPDA
- JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)MFA

• Emerging methods:

- PMHT
- PHD
- MLPDA
- JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 - MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 - MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 - MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 - MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

- Which measurements come from which targets?
- How many targets are there?
- Commonly accepted methods:
 - (J)PDAF
 - GNN
 - MHT (HO-MHT or TO-MHT)
 - MFA
- Emerging methods:
 - PMHT
 - PHD
 - MLPDA
 - JMPD

The Probabilistic Data Association Filter

The PDAF is perhaps the only consistent tracker.

Joint (J)PDAF: for multiple targets, weights are computed from joint association events, and tracks are updated individually. Here the key here is that the surviving estimates are the MMSEEs.

Lennart Svensson: Peter, how about a **Set** JPDAF?

Lennart Svensson: Peter, how about a **Set** JPDAF?

The usual intelligent reaction from me.

Marco Guerriero: Professor,

you are wrong!

Marco Guerriero: Professor, you are wrong!

Most folks seemed to agree that I was wrong.

Outline

- Label-Free Estimation
 - Motivation
 - OSPA, RFS & MMOSPA
- Tracking Closely-Spaced Objects
 - Soft Association: Track Merging
 - Hard Association: Track Repulsion
- Label-Free Tracking
 - SJPDAF
- Labeled label-free tracking

Rockets & torpedoes

There are some circumstances in which multi-object estimation ought to be "label-free". One wants to track all objects, but one is not especially concerned which one is which.

MMSE Estimation

Assuming that MMSE estimation is the goal

$$\{\hat{x}_i\}_{i=1}^n = \arg\min\left\{\int\sum_{i=1}^n |x_i - \hat{x}_i|^2 p(x_1, \dots, x_n) dx_1 \dots dx_n\right\}$$

This will be a shorthand notation: in fact, for estimation, we would really have

$$\{\hat{x}_{i}(z)\}_{i=1}^{n} = \arg\min\left\{\int\sum_{i=1}^{n}|x_{i}-\hat{x}_{i}(z)|^{2}p(x_{1},\ldots,x_{n}|z)dx_{1}\ldots dx_{n}\right\}$$

in which z is an observation – that is, we are doing a-posteriori estimation.

Label-Constrained MMSE Estimation¹

One does not usually write this, but when one estimates in the multi-object situation, one usually has the "labeling" constraints

 $x_1 \sim p_1, \quad x_2 \sim p_2, \quad \dots \quad x_n \sim p_n$

as opposed to, say

 $x_3 \sim p_1, \quad x_n \sim p_2, \quad \dots \quad x_1 \sim p_n$

Recalling that this is a minimization problem, the constraints can be doing no good as regards our minimization criterion (MSE). Are they doing any harm?

¹ Redner and Walker, "Mixture densities, maximum likelihood and the em algorithm," *SIAM Review*, 1984.

No Labeling? OK, so we need Random Finite Sets

RFS²: When permutation-symmetry holds (i.e., objects are exchangeable), Janossy densities³ have the following interpretation:

 $j_{k|k}^n(x_1, x_2, \dots, x_n)$

 $\stackrel{\Delta}{=} \text{Probability that there are exactly } n \text{ unlabeled objects}$ one in each of the *n* distinct infinitesimal regions $(x_i, x_i + dx_i)$, divided by $dx_1 dx_2 \dots dx_n$

The Probability Hypothesis Density⁴ (PHD) is

$$\begin{split} \mathsf{PHD}_{k|k}(x) &= \mathsf{P}\{\mathsf{There\ exists\ a\ target\ in\ }(x,x+dx)\} \cdot \frac{1}{dx} \\ &\triangleq \sum_{n=0}^{\infty} \frac{1}{n!} \int j_{k|k}^{n+1}(x,y_1,\ldots,y_n) dy_1 dy_2 \ldots dy_n \end{split}$$

²R. Mahler, "Statistics 101 for Multisensor, Multitarget Data Fusion," *IEEE AES Magazine*, 2004.

³Daley and Vere-Jones, *An Introduction to the Theory of Point Processes*, 2002.

⁴R. Mahler, Statistical Multisource Multitarget Information Fusion, Artech House, 2007.

More genuflection toward RFS

Janossy densities have been used for multi-target tracking⁵. The multi-target set posterior

$$\begin{aligned} \tilde{f}_{k|k}(\{x_1, x_2, \dots, x_n\}) \\ &= j_{k|k}^n(x_1, x_2, \dots, x_n) \\ &= n! \, p_{k|k}(n) \, f_{k|k}^n(x_1, x_2, \dots, x_n) \\ &= p_{k|k}(n) \, f_{k|k}^{jmp,n}(x_1, x_2, \dots, x_n) \end{aligned}$$

where $f_{k|k}^n(x_1, x_2, ..., x_n)$ is the posterior of the *n* labeled objects, $p_{k|k}(n)$ is the posterior that there *are n* objects and $f_{k|k}^{jmp,n}(x_1, x_2, ..., x_n)$ is the joint multitarget posterior⁶.

⁵S. Mori, C. Chong, "Tracking of Groups of Targets Using Generalized Janossy Measure Density Function", Proc. International Conference on Information Fusion, 2006.

⁶K. Kastella, "Joint Multitarget Probabilities for Detection and Tracking", *Proc. International Conference on Information Fusion*, 2005.

Back to MMSE: What's wrong with it?

The problem, of course, is that the MMSE criterion

$$\{\hat{x}_i\}_{i=1}^n = \arg\min\left\{\int\sum_{i=1}^n |x_i - \hat{x}_i|^2 p(x_1, \dots, x_n) dx_1 \dots dx_n\right\}$$

has little meaning without labeling. What can one do?

Multi-Object Estimation Criteria

Pretty good estimation?

Multi-Object Estimation Criteria

Multi-Object Estimation Criteria

Drummond⁷ discussed measures that do not overly penalize labeling mistakes by calculating the SE of the best assignment.

⁷ Drummond & Fridling, "Ambiguities in evaluating performance of multiple target tracking algorithms," SPIE Conference on Signal and Data Processing of Small Targets, 1992.

The OSPA Metric

The Optimal Mass Transfer (OMAT⁸) *metric* is less ad-hoc than assignment, but there are weaknesses. Here we'll refer to Optimal Subpattern Assignment (OSPA⁹) that is more general and encompassing.

$$\tilde{d}_p^{(c)}(\widehat{\mathbf{X}}, \mathbf{X}) = \left(\frac{1}{n} \left(\min_{\pi \in \Pi_n} \sum_{i=1}^n d^{(c)}(\mathbf{x}^{(i)}, \hat{\mathbf{x}}^{\pi(i)})^p\right)\right)^{1/p}$$

Here, $d^{(c)}(\mathbf{x}, \hat{\mathbf{x}}) \triangleq \min(c, d(\mathbf{x}, \hat{\mathbf{x}}))$ is the distance d between \mathbf{x} and $\hat{\mathbf{x}}$, cut-off at c, and $\hat{\mathbf{x}}^{\pi(i)}$ describes the i^{th} permutation (target-reordering) of the vector $\hat{\mathbf{x}}$.

For now, we will make $c = \infty$, p = 2 and assume that object cardinality is known.

⁸Hoffman & Mahler, "Multitarget Miss Distance via Optimal Assignment," *IEEE T-SMC:A*, 2000.

⁹Schuhmacher, Vo & Vo, "A Consistent Metric for Evaluation of Multi-Object Filters," *IEEE T-SP*, 2008.

MMOSPA

 Since one can calculate the squared error (SE), and then minimize its mean value (MSE) to derive the MMSE, in obvious parallel here we are interested in minimizing the *mean* OSPA (MOSPA) measure (the MMOSPA estimate):

$$\mathsf{MOSPA}_p^{(c)}(\widehat{\mathbf{X}}, p(\mathbf{X})) \triangleq \mathbb{E}_{p(\mathbf{X})}\{\widetilde{d}_p^{(c)}\}.$$

 Nice theory about the combination of MMOSPA and RFS¹⁰ and nice algorithms to find the approximate¹¹ and exact¹² MMOSPA estimates too.

 $^{^{10}}$ Guerriero, Svensson, Svensson and Willett, "Shooting Two Birds with Two Bullets: How to Find Minimum Mean OSPA," FUSION 2010.

¹¹Crouse, Willett, Guerriero and Svensson, "An Approximate Miminum MOSPA Estimator," ICASSP 2011.

¹²Baum, Willett and Hanebeck, "Calculating Some Exact MMOSPA Estimates for Particle Densities," FUSION 2012.

Since this isn't going to be easy ...

Applications where MOSPA is reasonable

- two threats are attacking
- radar cueing: there is no interest in which target is which, but where there are targets is very important
- collision avoidance: it is not of interest to know which car is which, the goal is to avoid all cars
- maritime surveillance: send helicopters as close as possible to a set of vessels with anomalous behavior

But it will turn out that MMOSPA has application in a wider context, even in situations where target labeling is very much desired. MMOSPA Estimation

Simple Gaussian Example, 2 Objects in 1-Space

MMOSPA is Difficult Even with Known Cardinality

 Except in the scalar case, MMOSPA estimation requires optimization over a difficult integral.

$$\hat{\mathbf{x}}^{\mathsf{MMOSPA}} = \arg\min_{\hat{\mathbf{x}}} \frac{1}{N_T} \int \min_{\mathbf{a}} \|\mathbf{x}_{\mathbf{a}} - \hat{\mathbf{x}}\|^n p(\mathbf{x}) \, d\mathbf{x}$$

(2010) Guerriero, Svensson, Svensson, Willett: Shooting Two Birds with Two Bullets: How to Find Minimum Mean OSPA Estimates

Proved that the MMOSPA estimate is the mean of a specific RFS density.

-MMOSPA Estimation

Which Specific RFS density?

Theorem

For any given $\hat{\mathbf{x}}$, there exists exactly one ordered density $\tilde{p}(\mathbf{x})$ within the RFS family, such that

 $\textit{MSE}(\hat{\mathbf{x}}, \tilde{p}(\mathbf{x})) = \textit{MOSPA}(\hat{\mathbf{x}})$

It turns out that

$$\tilde{p}(\mathbf{x}) = \begin{cases} f(\{\mathbf{x}_1, \dots, \mathbf{x}_n\}) & \text{if } \mathbf{x} \in \mathcal{A}(\hat{\mathbf{x}}) \\ 0 & \text{otherwise} \end{cases}$$

where

$$\mathcal{A}(\hat{\mathbf{x}}) = \left\{ \mathbf{x} : \frac{1}{n} \sum_{i=1}^{n} d(\hat{\mathbf{x}}_{i}, \mathbf{x}_{i}) = \tilde{d}_{p}(\hat{\mathbf{x}}, \mathbf{x}) \right\}$$

and, unfortunately, \hat{x} is the MMSEE of \tilde{p} – the MMOSPA estimate for p. An iterative solution does seem to work, though.

- Iterative Solution

Cartoon of Iterated Algorithm in Scalar Case

- Iterative Solution

... and after it is done

- Iterative Solution

Iterative Scheme for 2 Objects in 2-Space, Particle pdf

Iterative Solution

Focus on 10 Particles to Watch Them Switch
- Iterative Solution

Iterative Scheme for 3 Objects in 2-Space, Particle pdf

Iterative Solution

Focus on 10 Particles to Watch Them Switch

Exact (Non-Iterative) Algorithms for Particle pdfs

$$p(x) = \sum_{i=1}^{N_p} w_i \delta(x = x^{(i)})$$

Number of targets n

Scalar Case

MMOSPA and Order Statistics

MMOSPA estimate = mean of the order statistics

$$x^{\text{MMOSPA}} = \int \operatorname{sort}(x) p(x) dx$$

where sort(x) sorts the single target states

Scalar Case: Particles

Basic Algorithm

MMOSPA estimate for $p(x) = \sum_{i=1}^{N} w_i \cdot \delta(x - x^{(i)})$

· Sort the single target states in each particle

$$\hat{x}^{\text{MMOSPA}} := \sum_{i=1}^{N} w_i \operatorname{sort}(x^{(i)})$$

Runtime Complexity

Linear in the number of particles, i.e., $\mathcal{O}(N \ n \log n)$

Two-Target Case

Two-Target Case: the Regions that Need Checking

 h_1 h_2 h_3

It's easy in 2-space.

It's a little harder in 3-space.

Example of Exact Calculation

- Approximate Method for Two Objects

The MMSEE Suffers at the Hands of MOU

- Left: full PDF. Right: marginal RFS Density.
- The mean is located between the estimates, a general area of low likelihood.

- Approximate Method for Two Objects

The MMOSPA Estimate Does Not

- marks the MMOSPA estimate¹³ with n = 2. marks the MMOSPA estimate with n = 4.
- *n* is the exponent in the OSPA metric.
- Left: full PDF. Right: marginal RFS Density.

¹³Guess why this MMOSPA estimate is offset *away* from the middle?

- Approximate Method for Two Objects

The Chernov Bound Approximation

For two targets, the Chernov Bound tells us that

$$\begin{split} &\frac{1}{N_T} \int_{\mathbf{x} \in \mathbb{R}^{2d}} \min\left[\|\mathbf{x} - \hat{\mathbf{x}}\|^n, \|\mathbf{x} - \chi \hat{\mathbf{x}}\|^n \right] p(\mathbf{x}) \, d\mathbf{x} \\ &\leq \frac{1}{N_T} \int_{\mathbf{x} \in \mathbb{R}^{2d}} \|\mathbf{x} - \hat{\mathbf{x}}\|^{n\beta} \|\mathbf{x} - \chi \hat{\mathbf{x}}\|^{n(1-\beta)} p(\mathbf{x}) \, d\mathbf{x} \end{split}$$

Normally, $\beta \in (0,1)$ is chosen to minimize the bound.

- Approximate Method for Two Objects

An Instantiation of the Bound

For n = 4 and $\beta = \frac{1}{2}$ – that is, Bhattacharyya – we have

$$\arg\min_{\hat{\mathbf{x}}} \frac{1}{N_T} \int_{\mathbf{x} \in \mathbb{R}^{2d}} \|\mathbf{x} - \hat{\mathbf{x}}\|^2 \|\mathbf{x} - \chi \hat{\mathbf{x}}\|^2 p(\mathbf{x}) \, d\mathbf{x}$$

=
$$\arg\min_{\hat{\mathbf{x}}} \mathbb{E} \Big[(\mathbf{x}^T \mathbf{x})^2 - 2 (\mathbf{x}^T \mathbf{x}) \, \mathbf{x}^T A \hat{\mathbf{x}} + 2(\mathbf{x}^T \mathbf{x}) (\hat{\mathbf{x}}^T \hat{\mathbf{x}}) - 2(\hat{\mathbf{x}}^T \hat{\mathbf{x}}) (\mathbf{x}^T A \hat{\mathbf{x}}) + 4 (\mathbf{x}^T \hat{\mathbf{x}}) (\mathbf{x}^T \chi \hat{\mathbf{x}}) + (\hat{\mathbf{x}}^T \hat{\mathbf{x}})^2 \Big]$$

•
$$A \triangleq \chi + \mathbf{I}$$

- χ is the skew-identity matrix
- We can minimize the bound for any PDF with explicit moments.
 - We have explicit solutions for Gaussian mixtures.
 - The optimization over x̂ can be performed using Newton's method; the mean can be used as the initial estimate.

- Approximate Method for Two Objects

The Chernov Bound Minimization Can Work Well

marks the estimate from minimizing the Chernov bound.
marks the MMOSPA estimate with exponent n = 2.
marks the MMOSPA estimate with exponent n = 4.
Left: full PDF. Right: marginal RFS PDF.

- Approximate Method for Two Objects

Example

Two Gaussian-prior targets, ballistic trajectory, separated by unit distance. We assume $P_d = 1 -$ two unlabeled hits and Gaussian observation noise at each scan:

Big deal, Willett. You're the fastest horse in your own race.

- Approximate Method for Two Objects

Does President Obama care about MOSPA?

Probably not ... yet.

So let us define the kill probability as the probability that the estimates of the target locations are within a ball of radius ϵ centered around the true target locations

 $P_{kill}(\hat{\mathbf{x}},\epsilon) = P(\|\hat{\mathbf{x}} - \mathbf{x}\| \le \epsilon)$

- Approximate Method for Two Objects

Another Example: CS versus MAP versus MMOSPA for Multiple AOAs

The element-level observations z with complex Gaussian amplitudes b and noise. This is the usual conversion of a direction finding problem to one of frequency estimation.

$$z = Ab + w$$

- Approximate Method for Two Objects

The PDFs

The prior distribution on the complex amplitudes will be complex Gaussian (Swerling 1, 2). An uninformative (uniform) prior will be used on the directions of arrival.

$$p(\mathbf{U}, \mathbf{b} | \mathbf{z}) = \frac{p(\mathbf{z} | \mathbf{U}, \mathbf{b}) p(\mathbf{U}, \mathbf{b})}{p(\mathbf{z})}$$

$$p(\mathbf{z} | \mathbf{U}, \mathbf{b}) = \pi^{-N_{\mathsf{el}}} |\mathbf{Q}|^{-1} e^{-(\mathbf{z} - \mathbf{A}\mathbf{b})^{H} \mathbf{Q}^{-1}(\mathbf{z} - \mathbf{A}\mathbf{b})}$$

$$p(\mathbf{b}) = \pi^{-M} |\mathbf{Q}_{b}|^{-1} e^{-\mathbf{b}^{H} \mathbf{Q}_{b}^{-1} \mathbf{b}}$$

$$p(\mathbf{U}) = \prod_{m=1}^{M} p(\mathbf{u}_{m})$$

- Approximate Method for Two Objects

Solutions

- The MMSE solution is between the two peaks.
- Compressed sensing.
- MAP (or ML).
- MMOSPA?

- Approximate Method for Two Objects

A Simulation

5-element linear array. One target was fixed at the boresight (0°) and the other was moved across the array. SNR $\approx 20 \text{ dB}$.

- Approximate Method for Two Objects

Same Thing in Two Dimensions

- 9 antennas arranged in a 3 × 3 grid
- Two targets
- Posterior density for DOAs: Particle approximation using importance sampling (2000 samples)
- Exact algorithm for MMOSPA estimate³

Radiation pattern and trajectory of target 2.

- Approximate Method for Two Objects

The Planar Array Results

2

- Tracking Closely-Spaced Objects

The Problem with Closely-Spaced Objects

Top: two targets being tracked by the JPDAF – and believe it or not the *coupled* JPDAF is worse!

Close tracks tend to merge with soft-association trackers and to repel in hard-association ones. - Tracking Closely-Spaced Objects

Soft Assignment Trackers (PDA, JPDA) Merge CSOs

- MMSE target state update
- It is fairly well-known¹⁴ that soft association trackers tend to "coalesce" (merge) nearby targets.

Two targets' pdf contours are notionally represented in red & green. For the "true posterior," the thickness of the lines indicates the posterior weight in the Gaussian-mixture mode. The MMSE estimates are the soft-association trackers' updated pdfs – note that due to the association uncertainty they have tended toward one another.

¹⁴ R. Fitzgerald, "Track Biases and Coalescence with Probabilistic Data Association," IEEE T-AES, 1985.

- Tracking Closely-Spaced Objects

Hard-Association Trackers (GNN, MHT) Repel CSOs!

- Choose only the association that fits best
- It is less well-known¹⁵ that with hard association trackers nearby targets have difficulty crossing.
- Below: right happens more often than left.

¹⁵S. Coraluppi, C. Carthel, P. Willett, M. Dingboe, O. O'Neill, and T. Luginbuhl, "The Track Repulsion Effect in Automatic Tracking," *FUSION 2009.*

- Tracking Closely-Spaced Objects

Intuition Behind Track Repulsion with Hard Association Trackers

Although with high probability the association is correct, there is an *unbalanced* probability that the update is in the opposite direction from the other target.

The SJPDA

- With a multimodal pdf the MMSEE "hedges its bets" and produces an estimate somewhere among the modes
 - This is track coalescence.
- MMOSPA estimation eliminates some of the extra pdf modes, the ones that correspond to re-orderings of the items being estimated
- Since its genesis was in random finite set (RFS) theory, this was given the monicker *Set Joint Probabilistic Data Association*, or SJPDA

The SJPDA and MMOSPA

In the SJPDA context (Gaussian priors, Gaussian measurement noise, measurement-origin uncertainty) the MOSPA error is proportional to the trace of an *unordered* joint covariance matrix,

$$\begin{aligned} \mathbf{P}(k) &\equiv \mathbf{E} \left[\left. \min_{\mathbf{a}} \left(\mathbf{x}_{\mathbf{a}}(k) - \hat{\mathbf{x}}(k|k) \right) \left(\mathbf{x}_{\mathbf{a}}(k) - \hat{\mathbf{x}}(k|k) \right)^{T} \right| Z^{k} \right] \\ &= \sum_{i=1}^{N_{H}} \Pr\{\theta_{i}\} \mathbf{E} \left[\min_{\mathbf{a}} \left(\mathbf{x}_{\mathbf{a}}(k) - \hat{\mathbf{x}}(k|k) \right) \left(\mathbf{x}_{\mathbf{a}}(k) - \hat{\mathbf{x}}(k|k) \right)^{T} \left| \theta_{i}, Z^{k} \right] \\ &\approx \sum_{i=1}^{N_{H}} \Pr\{\theta_{i}\} \min_{\mathbf{a}_{i}} \mathbf{E} \left[\left(\mathbf{x}_{\mathbf{a}_{i}}(k) - \hat{\mathbf{x}}(k|k) \right) \left(\mathbf{x}_{\mathbf{a}_{i}}(k) - \hat{\mathbf{x}}(k|k) \right)^{T} \left| \theta_{i}, Z^{k} \right] \end{aligned}$$

The SJPDAF uses the a_i 's chosen to minimize this (approximation's) trace, and then updates the covariance in

$$\sum_{i=1}^{N_H} \Pr\{\theta_i\} \left(\mathbf{P}_{\mathbf{a}_i}(k|k) + (\hat{\mathbf{x}}_{i,\mathbf{a}_i}(k|k) - \hat{\mathbf{x}}(k|k)) (\hat{\mathbf{x}}_{i,\mathbf{a}_i}(k|k) - \hat{\mathbf{x}}(k|k))^T \right)$$

The SJPDA Intuition

setup Gaussian prior, 2 targets, $P_d = 0.7, 2$ measurements top left true posterior top right MMOSPA posterior bottom left JPDA posterior (the MMSE estimate) bottom right SJPDA posterior (the approximate MMOSPA estimate)

The SJPDA Solution

Top: two targets being tracked by the JPDAF – and believe it or not the *coupled* JPDAF is worse!

Below: the label-free SJPDAF.

-Labeling a Label-Free Tracker

But Prime Minister Rajoy Wants Labels ...

An operator might want to:

- Know how many targets there are.
- Know the states of the targets.
- Know what the targets are. This could mean knowing:
 - Their identity relative to a specific time designated by the operator.
 - Their physical nature according to classification (feature) information.
- Have a probabilistic model for the uncertainties.
 - Localization accuracy (covariance)
 - Identity accuracy

-Labeling a Label-Free Tracker

The SJPDA With Identity Information

In a particle filter, each particle might represent a probability and a stacked set of states for each target.

$$p_i = \{w_i, \mathbf{x}_i\}$$

For this exposition, consider that a "particle" can be the same as a Gaussian mode in the SJPDAF.

Suppose that we want to be able to change the ordering of the states for the targets without losing or corrupting any information. We can do this by adding an extra component:

$$\tilde{p}_i = \{w_i, \mathbf{x}_i, \mathbf{o}_i\}$$

The vector \mathbf{o} can be an $N_T! \times 1$ vector that lists the probability of a particular ordering of states, initially all zeros and a single 1.

- Suppose that the ordering is known exactly (i.e. o_i contains a single one and all zeros.
- Then we can represent o_i as a N_T × N_T permutation matrix, χ_i (containing exactly one 1 in each row and column).
- If we mix the permutation matrices, the result can be interpreted as a matrix of marginal probabilities, e.g.,

$$\chi_M = \begin{bmatrix} & \text{State 1} & \text{State 2} & \text{State 3} \\ \text{Track 1} & 2/3 & 1/6 & 1/6 \\ \text{Track 2} & 1/3 & 1/3 & 1/3 \\ \text{Track 3} & 0 & 1/2 & 1/2 \end{bmatrix}$$

SO

 $\Pr{\text{State 1 is Track 1}} = 2/3$

If we make an independence assumption, then we can say

$$\frac{\Pr\{\text{State 1 is Track 1} \cap \text{State 2 is Track 2} \cap \text{State 3 is Track 3}\} \approx}{\Pr\{\text{State 1 is Track 1}\} \Pr\{\text{State 2 is Track 2}\} \Pr\{\text{State 2 is Track 2}\}}}_{\text{perm}[\chi_M]}$$

This formulation makes mixing simpler than using the full o_i . Note that a label-free tracker with labeling is not the same as a labeled tracker. The difference is that target locations are estimated without a labeling constraint; and the labeling identity is an "overlay".

It is worth reiterating that traditional (labeled) trackers *do* have uncertain labels, but keep quiet about them and deliver estimates as if there were no uncertainty.

- Labeling a Label-Free Tracker

Simulation: Crossing & Recrossing Targets

Separation cases 1.5 unit (upper) and 1.0 unit (lower). Left: JPDAF. Middle: SJPDAF. Right: identity probabilities.

-Labeling a Label-Free Tracker

Monte Carlo Performance

Cross	min.	SJPDA			JPDA	
?	sep.	% Track loss	P_{label}^{act}	P_{label}^{est}	% Track loss	P_{label}^{act}
No	0.5	0	48	50	73	73
	1.0	0.1	54	54	0	56
	1.5	0	97	93	0	86
Yes	0.5	0	46	50	97	26
	1.0	0.1	60	51	3	38
	1.5	0.1	84	60	0.1	94

 P_{label}^{act} is probability that both tracks have the same identity at the end as at the beginning. P_{label}^{est} is SJPDA's (averaged) estimated probability that that both tracks have the same identity at the end as at the beginning.

-Labeling a Label-Free Tracker

Unknown Object Cardinality

Recall that

$$\tilde{d}_p^{(c)}(\widehat{\mathbf{X}}, \mathbf{X}) = \left(\frac{1}{n} \left(\min_{\pi \in \Pi_n} \sum_{i=1}^n d^{(c)}(\mathbf{x}^{(i)}, \hat{\mathbf{x}}^{\pi(i)})^p\right)\right)^{1/p}$$

where $d^{(c)}(\mathbf{x}, \hat{\mathbf{x}}) \triangleq \min(c, d(\mathbf{x}, \hat{\mathbf{x}}))$ is the distance *d* between \mathbf{x} and $\hat{\mathbf{x}}$, cut-off at *c* and $\hat{\mathbf{x}}^{\pi(i)}$ describes the *i*th permutation (target-reordered) of the vector $\hat{\mathbf{x}}$.

- Results so far show that minimizing this over target number as well as (unlabeled) location works just fine.
- Reason is that cardinality errors decrease exponentially in number of observations, whereas "distance" errors decrease inversely: not knowing the number of objects is (asymptotically) a non-event.
-Summary

I hope I have planted the seed of the idea that we can track better than with what we had previously thought "best".

- Multi-object estimation without labels is unconstrained, and hence can be better
- MMOSPA estimation (useful and interesting in its own right)
- Label-free tracking: the SJPDA
- Labeling the label-free tracker via an overlay