Distributed Optimization over Network

Wotao Yin (UCLA, Math Department)

2014 IEEE SAM

Goal of this talk

Build optimization algorithms that run on networks from basic operators:

- forward operator: $\mathrm{fwd}_{f}:=(I-\nabla f)$
- backward operator: prox_{f} (define later)
- reflection operator: $\mathbf{r e f f}_{f}:=\operatorname{prox}_{f}+\left(\mathbf{p r o x}_{f}-I\right)$
- averaging operator: W where $W \mathbf{1}=\mathbf{1}$.

Goal of this talk

Build optimization algorithms that run on networks from basic operators:

- forward operator: $\mathrm{fwd}_{f}:=(I-\nabla f)$
- backward operator: prox_{f} (define later)
- reflection operator: $\mathbf{r e f f}_{f}:=\mathbf{p r o x}_{f}+\left(\mathbf{p r o x}_{f}-I\right)$
- averaging operator: W where $W \mathbf{1}=\mathbf{1}$.

We do not cover

- Nonconvex optimization
- Asynchronous computation or communication
- Dynamic topology, control problem.

Roughly speaking

- first-order algorithms are simple
- convergence requires very few conditions
- convergence rates can be derived
- combined with duality and splitting, they are very versatile:
- as simple as gradient descent and alternating projection
- but also handles complicated objective terms and constraints
- give rise to parallel, distributed, decentralized algorithms
- focus: decentralized consensus

Consensus optimization

- A connected network of n agents

- Each agent i has function f_{i}
- Find a consensus solution $x^{*} \in \mathbb{R}^{p}$ to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{p}} f(x):=\sum_{i=1}^{n} f_{i}(x)
$$

For analysis, define $\bar{f}(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)$.

Existing decentralized approaches

- (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13

Existing decentralized approaches

- (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13
- Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et al'08, linear convergence Shi-Ling-Y.'13

Existing decentralized approaches

- (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13
- Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et al'08, linear convergence Shi-Ling-Y.'13
- Related to gossip algorithms (Tsitsiklis et al'86, Boyd et al'06) and diffusion algorithms (Lopes-Sayed'08, Tkahashi-Yamada'10)

Existing decentralized approaches

- (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13
- Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et al'08, linear convergence Shi-Ling-Y.'13
- Related to gossip algorithms (Tsitsiklis et al'86, Boyd et al'06) and diffusion algorithms (Lopes-Sayed'08, Tkahashi-Yamada'10)
- Belief propagation (Cetin et al'06)
- Incremental optimization (Rabbat et al'04)
- ... more ...

Compact notation

- Each node i has variable $x_{(i)} \in \mathbb{R}^{p}$, placed on the i th row of \mathbf{x}.

$$
\mathbf{x} \triangleq\left(\begin{array}{ccc}
- & x_{(1)}^{\mathrm{T}} & - \\
- & x_{(2)}^{\mathrm{T}} & - \\
& \vdots & \\
- & x_{(n)}^{\mathrm{T}} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

- \mathbf{x} is consensus if all rows are equal: $x_{(i)}^{T}=x_{(j)}^{T}, \forall i \neq j$.

Compact notation

- Each node i has variable $x_{(i)} \in \mathbb{R}^{p}$, placed on the i th row of \mathbf{x}.

$$
\mathbf{x} \triangleq\left(\begin{array}{ccc}
- & x_{(1)}^{\mathrm{T}} & - \\
- & x_{(2)}^{\mathrm{T}} & - \\
& \vdots & \\
- & x_{(n)}^{\mathrm{T}} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

- \mathbf{x} is consensus if all rows are equal: $x_{(i)}^{T}=x_{(j)}^{T}, \forall i \neq j$.

$$
\mathbf{f}(\mathbf{x}) \triangleq\left(\begin{array}{c}
f\left(x_{(1)}\right) \\
f\left(x_{(2)}\right) \\
\vdots \\
f\left(x_{(n)}\right)
\end{array}\right) \in \mathbb{R}^{n}, \quad \nabla \mathbf{f}(\mathbf{x}) \triangleq\left(\begin{array}{ccc}
- & \nabla f_{1}\left(x_{(1)}\right)^{\mathrm{T}} & - \\
- & \nabla f_{2}\left(x_{(2)}\right)^{\mathrm{T}} & - \\
\vdots & \\
- & \nabla f_{n}\left(x_{(n)}\right)^{\mathrm{T}} & -
\end{array}\right) \in \mathbb{R}^{n \times p} .
$$

- original problem

$$
\operatorname{minimize} \mathbf{1}^{T} \mathbf{f}(\mathbf{x}), \text { subject to } x_{(i)}=x_{(j)}, \forall i \neq j
$$

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

- average in a neighborhood
- apply an individual gradient descent

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

- average in a neighborhood
- apply an individual gradient descent

$$
x_{(i)}^{k+1}=\sum_{j} w_{i j} x_{(j)}^{k}-\alpha \nabla f_{i}\left(x_{(i)}^{k}\right), \quad \text { by agents } i=1,2, \ldots, n .
$$

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

- average in a neighborhood
- apply an individual gradient descent

$$
x_{(i)}^{k+1}=\sum_{j} w_{i j} x_{(j)}^{k}-\alpha \nabla f_{i}\left(x_{(i)}^{k}\right), \quad \text { by agents } i=1,2, \ldots, n .
$$

Compact form: $\quad \mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)$

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

- average in a neighborhood
- apply an individual gradient descent

$$
x_{(i)}^{k+1}=\sum_{j} w_{i j} x_{(j)}^{k}-\alpha \nabla f_{i}\left(x_{(i)}^{k}\right), \quad \text { by agents } i=1,2, \ldots, n .
$$

$$
\text { Compact form: } \mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

This talk assumes synchronous and fixed topology, relaxed in practice.
Matrix $W=\left[w_{i j}\right]$ is the mixing matrix:

- $w_{i j}=0, i \neq j$, if nodes i and j are not neighbors
- assumption: symmetric, doubly stochastic

$$
W=W^{T}, W \mathbf{1}=\mathbf{1}, \mathbf{1}^{T} W=\mathbf{1}^{T}
$$

Example: decentralized least-squares

fixed v.s. diminishing step size

Fixed step size: quick but will stall; too large α causes divergence Diminishing step size: slower but converges to consensus solution x^{*}

- $\alpha / k^{1 / 3}$: Jakovetic-Xavier-Moura'14
- $\alpha / k^{1 / 2}:$ I-An Chen'12

DGD:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

DGD:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Interpretation 1: unit-step gradient descent iteration

$$
\mathbf{x}^{k+1}=\left(I-\nabla \xi_{\alpha}\right)\left(\mathbf{x}^{k}\right)
$$

DGD:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Interpretation 1: unit-step gradient descent iteration

$$
\mathbf{x}^{k+1}=\left(I-\nabla \xi_{\alpha}\right)\left(\mathbf{x}^{k}\right)
$$

applied to the Lyapunov function

$$
\xi_{\alpha}(\mathbf{x}):=\frac{1}{2} \operatorname{tr}\left(\mathbf{x}^{T}(I-W) \mathbf{x}\right)+\alpha \mathbf{1}^{T} \mathbf{f}(\mathbf{x})
$$

DGD:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Interpretation 1: unit-step gradient descent iteration

$$
\mathbf{x}^{k+1}=\left(I-\nabla \xi_{\alpha}\right)\left(\mathbf{x}^{k}\right)
$$

applied to the Lyapunov function

$$
\xi_{\alpha}(\mathbf{x}):=\frac{1}{2} \operatorname{tr}\left(\mathbf{x}^{T}(I-W) \mathbf{x}\right)+\alpha \mathbf{1}^{T} \mathbf{f}(\mathbf{x})
$$

Interpretation 2: inexact gradient descent applied to

$$
\min _{\bar{x}} \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\bar{x})
$$

DGD:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Interpretation 1: unit-step gradient descent iteration

$$
\mathbf{x}^{k+1}=\left(I-\nabla \xi_{\alpha}\right)\left(\mathbf{x}^{k}\right)
$$

applied to the Lyapunov function

$$
\xi_{\alpha}(\mathbf{x}):=\frac{1}{2} \operatorname{tr}\left(\mathbf{x}^{T}(I-W) \mathbf{x}\right)+\alpha \mathbf{1}^{T} \mathbf{f}(\mathbf{x})
$$

Interpretation 2: inexact gradient descent applied to

$$
\min _{\bar{x}} \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\bar{x})
$$

Reason: multiply $\frac{1}{n} \mathbf{1}^{T} \times$ (DGD formula):

$$
\bar{x}^{k+1}=\bar{x}^{k}-\alpha\left[\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(x_{(i)}^{k}\right)\right] .
$$

New results (with K.Yuan and Q.Ling)

- Assume ∇f_{i} is L_{i}-Lipschitz, and $\alpha \leq\left(1+\lambda_{n}(W)\right) / \max _{i} L_{i}$
- Proved boundedness of everything and convergence (not to right solution) (the bound is tight; counterexamples exist if it is voided) (dropped boundedness assumptions on ∇f_{i} from previous work)
- Bounded deviation from mean $\sim O\left(\frac{\alpha}{1-\beta}\right)$, where β is 2nd largest absolute eigenvalue of W
- Objective error $\sim O\left(\frac{1}{\alpha k}\right)$ until reaching $O\left(\frac{\alpha}{1-\beta}\right)$
- If all f_{i} are strongly convex, objective and point errors converge linearly until reaching $O\left(\frac{\alpha}{1-\beta}\right)$

New results (with K.Yuan and Q.Ling)

- Assume ∇f_{i} is L_{i}-Lipschitz, and $\alpha \leq\left(1+\lambda_{n}(W)\right) / \max _{i} L_{i}$
- Proved boundedness of everything and convergence (not to right solution) (the bound is tight; counterexamples exist if it is voided) (dropped boundedness assumptions on ∇f_{i} from previous work)
- Bounded deviation from mean $\sim O\left(\frac{\alpha}{1-\beta}\right)$, where β is 2 nd largest absolute eigenvalue of W
- Objective error $\sim O\left(\frac{1}{\alpha k}\right)$ until reaching $O\left(\frac{\alpha}{1-\beta}\right)$
- If all f_{i} are strongly convex, objective and point errors converge linearly until reaching $O\left(\frac{\alpha}{1-\beta}\right)$

Take-home: DGD performs just like (centralized) gradient descent, except

- spectra of W affects speed and final accuracy
- small α : slow and accurate
- large α : fast and inaccurate
- decreasing α : even slower but exact

Speed-exactness dilemma

DGD iteration:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Limit:

$$
\hat{\mathbf{x}}:=\lim _{k \rightarrow \infty} \mathbf{x}^{k}
$$

$\lim _{k}$ (DGD iteration):

$$
(W-I) \hat{\mathbf{x}}+\alpha \nabla \mathbf{f}(\hat{\mathbf{x}})=0 .
$$

Since $\hat{\mathbf{x}}$ is consensual $\Longleftrightarrow(W-I) \hat{\mathbf{x}}=0 \Longleftrightarrow \nabla \mathbf{f}(\hat{\mathbf{x}})=0$, we have

Speed-exactness dilemma

DGD iteration:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

Limit:

$$
\hat{\mathbf{x}}:=\lim _{k \rightarrow \infty} \mathbf{x}^{k}
$$

$\lim _{k}$ (DGD iteration):

$$
(W-I) \hat{\mathbf{x}}+\alpha \nabla \mathbf{f}(\hat{\mathbf{x}})=0
$$

Since $\hat{\mathbf{x}}$ is consensual $\Longleftrightarrow(W-I) \hat{\mathbf{x}}=0 \Longleftrightarrow \nabla \mathbf{f}(\hat{\mathbf{x}})=0$, we have

Proposition

$D G D$ is exact with a fixed α only if a single x minimizes all f_{i} 's.

However, the original problem only minimizes the sum.

Develop new algorithm: EXTRA

Assume:

- convergence $\mathbf{x}^{k} \rightarrow \overline{\mathbf{x}}$;
- same assumptions on W and, $W \mathbf{y}=\mathbf{y} \Longleftrightarrow \mathbf{y}=\mathbf{1}$

Goal: obtain

- $\overline{\mathbf{x}}$ is consensual $\Longleftrightarrow W \overline{\mathbf{x}}=\overline{\mathbf{x}}$;
- $\overline{\mathbf{x}}$ is optimal $\Longleftrightarrow \mathbf{1}^{\mathrm{T}} \nabla \mathbf{f}(\overline{\mathbf{x}})=0$.

Develop new algorithm: EXTRA

Assume:

- convergence $\mathbf{x}^{k} \rightarrow \overline{\mathbf{x}}$;
- same assumptions on W and, $W \mathbf{y}=\mathbf{y} \Longleftrightarrow \mathbf{y}=\mathbf{1}$

Goal: obtain

- $\overline{\mathbf{x}}$ is consensual $\Longleftrightarrow W \overline{\mathbf{x}}=\overline{\mathbf{x}}$;
- $\overline{\mathbf{x}}$ is optimal $\Longleftrightarrow \mathbf{1}^{\mathrm{T}} \nabla \mathbf{f}(\overline{\mathbf{x}})=0$.

Reason: original problem $\min _{x \in \mathbb{R}^{p}} \sum_{i=1}^{n} f_{(i)}(x)$ is equivalent to

$$
\underset{\mathbf{x} \in \mathbb{R}^{n \times p}}{\operatorname{minimize}} \mathbf{1}^{\mathrm{T}} \mathbf{f}(\mathbf{x}), \text { subject to } W \mathbf{x}=\mathbf{x} .
$$

Introduce

$$
\bar{W}:=(W+I) / 2
$$

Take the difference between two DGD iterations

$$
\begin{align*}
\mathbf{x}^{k+1} & =\bar{W} \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \tag{1}\\
\mathbf{x}^{k+2} & =W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right) \tag{2}
\end{align*}
$$

Introduce

$$
\bar{W}:=(W+I) / 2
$$

Take the difference between two DGD iterations

$$
\begin{align*}
& \mathbf{x}^{k+1}=\bar{W} \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \tag{1}\\
& \mathbf{x}^{k+2}=W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right) \tag{2}
\end{align*}
$$

we get the new iteration: "EXTRA"

$$
\begin{equation*}
\mathbf{x}^{k+2}-\mathbf{x}^{k+1}=W \mathbf{x}^{k+1}-\bar{W} \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right)+\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \tag{3}
\end{equation*}
$$

Introduce

$$
\bar{W}:=(W+I) / 2
$$

Take the difference between two DGD iterations

$$
\begin{align*}
& \mathbf{x}^{k+1}=\bar{W} \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \tag{1}\\
& \mathbf{x}^{k+2}=W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right) \tag{2}
\end{align*}
$$

we get the new iteration: "EXTRA"

$$
\begin{equation*}
\mathbf{x}^{k+2}-\mathbf{x}^{k+1}=W \mathbf{x}^{k+1}-\bar{W} \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right)+\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \tag{3}
\end{equation*}
$$

Letting $k \rightarrow \infty$ and canceling terms give us:

$$
0=(W-\bar{W}) \overline{\mathbf{x}}=\frac{1}{2}(W \overline{\mathbf{x}}-\overline{\mathbf{x}})
$$

$\Longrightarrow W \overline{\mathbf{x}}=\overline{\mathbf{x}} \Longrightarrow \overline{\mathbf{x}}$ is consensual.

Adding 1st iteration (still DGD)

$$
\mathbf{x}^{1}=W \mathbf{x}^{0}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{0}\right)
$$

to iterations $2, \ldots, k$ in box gives

$$
\mathbf{x}^{k+2}=W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right)+\sum_{i=0}^{k}(W-\bar{W}) \mathbf{x}^{i}
$$

Adding 1st iteration (still DGD)

$$
\mathbf{x}^{1}=W \mathbf{x}^{0}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{0}\right)
$$

to iterations $2, \ldots, k$ in box gives

$$
\mathbf{x}^{k+2}=W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right)+\sum_{i=0}^{k}(W-\bar{W}) \mathbf{x}^{i}
$$

Letting $k \rightarrow \infty$ and using $W \overline{\mathbf{x}}=\overline{\mathbf{x}}$ yield

$$
\alpha \nabla \mathbf{f}(\overline{\mathbf{x}})=\sum_{i=1}^{\infty}(W-\bar{W}) \mathbf{x}^{i}
$$

Adding 1st iteration (still DGD)

$$
\mathbf{x}^{1}=W \mathbf{x}^{0}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{0}\right)
$$

to iterations $2, \ldots, k$ in box gives

$$
\mathbf{x}^{k+2}=W \mathbf{x}^{k+1}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k+1}\right)+\sum_{i=0}^{k}(W-\bar{W}) \mathbf{x}^{i}
$$

Letting $k \rightarrow \infty$ and using $W \overline{\mathbf{x}}=\overline{\mathbf{x}}$ yield

$$
\alpha \nabla \mathbf{f}(\overline{\mathbf{x}})=\sum_{i=1}^{\infty}(W-\bar{W}) \mathbf{x}^{i}
$$

Using left-stochasticity $\mathbf{1}^{T}(W-\bar{W})=0$, we have

$$
\mathbf{1}^{T} \nabla \mathbf{f}(\overline{\mathbf{x}})=0
$$

$\Longrightarrow \overline{\mathrm{x}}$ is also optimal.

Proposition

Assuming convergence and $\mathbf{x}^{k} \rightarrow \overline{\mathbf{x}}$, then $\overline{\mathbf{x}}$ is an optimal consensus solution.

Explanation

New iteration:

$$
\mathbf{x}^{k+1}=W \mathbf{x}^{k}-\alpha \nabla \mathbf{f}\left(\mathbf{x}^{k}\right)+\underbrace{\sum_{i=0}^{k-1}(W-\bar{W}) \mathbf{x}^{i}}_{\text {correction }}
$$

- Assuming \mathbf{x}^{k} is asymptotically consensual, so $\mathbf{x}^{k+1}-W \mathbf{x}^{k}$ is vanishing.
- need $\mathbf{1}^{T} \nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \rightarrow 0$ (optimality). So, $\nabla \mathbf{f}\left(\mathbf{x}^{k}\right)$ needs to be neutralized over $\operatorname{span}\{\mathbf{1}\}^{\perp}$.
- $\sum_{i=0}^{k-1}(W-\bar{W}) \mathbf{x}^{i}$ is the simplest term we found for this purpose.

Convergence results

Theorem (sublinear $1 / k$ convergence)

Assume (i) convex objectives with Lipschitz gradients, (ii) consensus solution x^{*} exists, (iii) symmetric doubly stochastic W and \bar{W} obeying

$$
\bar{W} \succ 0 \quad \text { and } \quad \frac{I+W}{2} \succeq \bar{W} \succeq W
$$

If step size $\alpha<2 \lambda_{\min }(\bar{W}) / \max L_{i}$, then EXTRA has $O(1 / k)$ ergodic convergence.

Theorem (linear convergence)
In addition, if

$$
\sum_{i=1}^{n} f_{i}(x)
$$

is (restrict) strongly convex, then $\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|_{W}$ converges to 0 with a global R-linear rate.

Example: decentralized least squares

Example: decentralized sum of Huber functions

Other numerical results

In our paper (Shi-Ling-Wu-Yin, arXiv:1404.6264)

- Results with hand-optimized parameters for all solvers
- Logistic regression example
- Some discussions on different mixing matrices W, such as general symmetric doubly stochastic (Tsitisklis'84), Laplacian-based $W=I-L / \tau$ (Xiao-Boyd'04, Sayed'12), Mestropolis (Xiao-Boyd-Lall'06), symmetric fastest distributed linear averaging (FDLA, Xiao-Boyd'-04).

Limitations and future work

Asymmetric mixing matrix W :

- $\mathbf{1}^{T} W \neq \mathbf{1}^{T}$: I may forget to send to neighbors, easier case
- $W 1 \neq 1$: neighbors may not receive my messages, more difficult case (Macua, Leon, and co-authors can ensure $\mathbf{1}^{T} W=\mathbf{1}^{T}$ and $W \mathbf{1}=\mathbf{1}$)

Limitations and future work

Asymmetric mixing matrix W :

- $\mathbf{1}^{T} W \neq 1^{T}$: I may forget to send to neighbors, easier case
- $W 1 \neq 1$: neighbors may not receive my messages, more difficult case (Macua, Leon, and co-authors can ensure $\mathbf{1}^{T} W=\mathbf{1}^{T}$ and $W \mathbf{1}=\mathbf{1}$)

Convergence improvement:

- optimal $O\left(1 / k^{2}\right)$ convergence
- better constants by optimizing W

Limitations and future work

Asymmetric mixing matrix W :

- $\mathbf{1}^{T} W \neq \mathbf{1}^{T}$: I may forget to send to neighbors, easier case
- $W 1 \neq 1$: neighbors may not receive my messages, more difficult case (Macua, Leon, and co-authors can ensure $\mathbf{1}^{T} W=\mathbf{1}^{T}$ and $W \mathbf{1}=\mathbf{1}$)

Convergence improvement:

- optimal $O\left(1 / k^{2}\right)$ convergence
- better constants by optimizing W

Dynamic

- network topology varies over time
- f varies over time

Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

- forward (gradient desc.) operator: $\mathrm{fwd}_{f}:=(I-\nabla f)$
- backward (proximal) operator: prox $_{f}$ (define later)
- reflection operator: $\operatorname{refl}_{f}:=\operatorname{prox}_{f}+\left(\operatorname{prox}_{f}-I\right)$
- averaging operator: W where $W \mathbf{1}=\mathbf{1}$.

Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

- forward (gradient desc.) operator: $\mathrm{fwd}_{f}:=(I-\nabla f)$
- backward (proximal) operator: prox $_{f}$ (define later)
- reflection operator: $\operatorname{ref}_{f}:=\operatorname{prox}_{f}+\left(\operatorname{prox}_{f}-I\right)$
- averaging operator: W where $W \mathbf{1}=\mathbf{1}$.

Main references for distributed and decentralized ADMM:

- Bertsekas-Tsitsiklas'89 (distributed ADMM)
- Palomar-Chiang'06 (dual decomposition, network utility)
- Schizas-Ribeiro-Giannakis'08 (decentralized ADMM)

Proximal (backward) operator

- Definition: for a proper closed convex f (possibly nonsmooth), $\gamma>0$,

$$
\operatorname{prox}_{\gamma f}(y):=\underset{x}{\arg \min } \gamma f(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- Equivalently, $x=\operatorname{prox}_{\gamma f}(y)$ if and only if

$$
\gamma \widetilde{\nabla} f(x)+(x-y)=0, \quad \widetilde{\nabla} f(x) \in \partial f(x)
$$

Proximal (backward) operator

- Definition: for a proper closed convex f (possibly nonsmooth), $\gamma>0$,

$$
\operatorname{prox}_{\gamma f}(y):=\underset{x}{\arg \min } \gamma f(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- Equivalently, $x=\operatorname{prox}_{\gamma f}(y)$ if and only if

$$
\gamma \widetilde{\nabla} f(x)+(x-y)=0, \quad \widetilde{\nabla} f(x) \in \partial f(x)
$$

- Generalization to projection: Let C be a closed, nonempty set. Let $f:=\chi_{C}$, which returns 0 if $x \in C$; ∞ if $x \notin C$.

$$
\operatorname{prox}_{\chi_{C}} \equiv P_{C}
$$

Proximal (backward) operator

- Definition: for a proper closed convex f (possibly nonsmooth), $\gamma>0$,

$$
\operatorname{prox}_{\gamma f}(y):=\underset{x}{\arg \min } \gamma f(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- Equivalently, $x=\operatorname{prox}_{\gamma f}(y)$ if and only if

$$
\gamma \widetilde{\nabla} f(x)+(x-y)=0, \quad \widetilde{\nabla} f(x) \in \partial f(x)
$$

- Generalization to projection: Let C be a closed, nonempty set. Let $f:=\chi_{C}$, which returns 0 if $x \in C$; ∞ if $x \notin C$.

$$
\operatorname{prox}_{\chi_{C}} \equiv P_{C}
$$

- Reflection:

$$
\operatorname{refl}_{\gamma f}:=\operatorname{prox}_{\gamma f}+\left(\operatorname{prox}_{\gamma f}-I\right)=2 \mathbf{p r o x}_{\gamma h}-I
$$

Forward vs backward

- Forward: explicit, easier to compute, γ must be small enough

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(z^{k}\right)
$$

- Backward: implicit, difficult to compute except for few, $\gamma>0$ is ok

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(z^{k+1}\right)
$$

What is splitting?

- Use basic operators (forward, proximal, reflection) of f and g to solve

$$
\underset{x \in \mathcal{H}}{\operatorname{minimize}} f(x)+g(x)
$$

and

$$
\underset{x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}}{\operatorname{minimize}} f(x)+g(y) \quad \text { subject to } A x+B y=b
$$

Assumptions:

- $\mathcal{H}, \mathcal{H}_{1}, \mathcal{H}_{2}$ are Hilbert spaces, may be finite dimensional
- All functions are proper, closed, convex; may or may not be differentiable
- Saddle point must exist when duality is used

Examples

$$
\underset{x}{\operatorname{minimize}} f(x)+g(x)
$$

- point in the intersection: $f=\chi_{C_{1}}$ and $g=\chi_{C_{2}}$.

$$
\text { Find } x \in C_{1} \cap C_{2} \Longleftrightarrow \text { minimize } f(x)+g(x)
$$

- constrained optimization: $f=\chi_{C}$, general g.

$$
\text { minimize } g(x), \text { subject to } x \in C \Longleftrightarrow \operatorname{minimize} f(x)+g(x)
$$

- regularized regression: f is data fitting, g enforces prior knowledge

Examples

$$
\underset{x}{\operatorname{minimize}} f(x)+g(x)
$$

- point in the intersection: $f=\chi_{C_{1}}$ and $g=\chi_{C_{2}}$.

$$
\text { Find } x \in C_{1} \cap C_{2} \Longleftrightarrow \text { minimize } f(x)+g(x)
$$

- constrained optimization: $f=\chi_{C}$, general g.

$$
\text { minimize } g(x), \text { subject to } x \in C \Longleftrightarrow \text { minimize } f(x)+g(x)
$$

- regularized regression: f is data fitting, g enforces prior knowledge
- consensus optimization:

$$
\operatorname{minimize} \sum_{i=1}^{m} h_{i}(x) \Longleftrightarrow \operatorname{minimize} f(\mathbf{x})+g(\mathbf{x})
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right), f(\mathbf{x})=\sum_{i=1}^{m} h_{i}\left(x_{i}\right), g(x)=\chi_{\left\{\mathbf{x} \mid x_{1}=\cdots=x_{m}\right\}}(\mathbf{x})$

Forward-backward splitting (FBS)

- assumption: g is differentiable

$$
z^{k+1}=\operatorname{prox}_{\gamma f} \circ \mathbf{f w d}_{\gamma g}\left(z^{k}\right)=\operatorname{prox}_{\gamma f}\left(z^{k}-\gamma \nabla g\left(z^{k}\right)\right)
$$

- extends the gradient-projection iteration (when $f=\chi_{C}$)
- traces back to 1970s: Bruck ${ }^{1}$, Lions and Mercier ${ }^{2}$
- converge if step size $\gamma \in(0,2 / L)$, where L is the Lip. constant of ∇g

[^0]
Douglas-Rachford splitting (DRS)

- y is differentiable
- DRS algorithm:

$$
z^{k+1}=\left(\frac{1}{2} I+\frac{1}{2} \mathbf{r e f l}_{\gamma f} \mathbf{r e f l}_{\gamma g}\right) z^{k}
$$

- $z^{k} \rightharpoonup$ to a fixed point, given existence; unbounded, otherwise ${ }^{3}$
- fixed points $\not \equiv$ minimizers of $f+g$.
- however, $\operatorname{prox}_{\gamma g}\left(z^{k}\right) \rightharpoonup$ a minimizer (first proof in 2011). ${ }^{4}$
- early history:
- proposed by Douglas and Rachford (1956) to solve matrix equations.
- analyzed for monotone operator by Lions and Mercier (1979) ${ }^{5}$.

[^1]
DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

DRS special case: "reflect, reflect, average"

C_{1} and C_{2} are closed convex sets. Find $x \in C_{1} \cap C_{2}$, assumed to exist.

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 P_{C_{1}}-I\right)\left(2 P_{C_{2}}-I\right)\left(z^{k}\right)
$$

- $P_{C_{2}} z^{k}$

Peaceman-Rachford splitting (PRS)

- DRS without averaging:

$$
z^{k+1}=\operatorname{refl}_{\gamma f} \mathbf{r e f l}_{\gamma g}\left(z^{k}\right)
$$

- may not converge (may orbit with a fixed distance to the solution set)
- when it does converge, often faster than DRS

First-order algorithms: subgradient form

- (Sub)gradient descent:

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(z^{k}\right)-\gamma \widetilde{\nabla} g\left(z^{k}\right)
$$

- Proximal point algorithm (PPA):

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(z^{k+1}\right)-\gamma \widetilde{\nabla} g\left(z^{k+1}\right)
$$

- Forward backward splitting (FBS):

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(z^{k+1}\right)-\gamma \widetilde{\nabla} g\left(z^{k}\right)
$$

- Douglas Rachford splitting (DRS):

$$
z^{k+1}=z^{k}-\gamma \widetilde{\nabla} f\left(x_{f}^{k}\right)-\gamma \widetilde{\nabla} g\left(x_{g}^{k}\right)
$$

- Douglas Rachford splitting (PRS):

$$
z^{k+1}=z^{k}-2 \gamma \widetilde{\nabla} f\left(x_{f}^{k}\right)-2 \gamma \widetilde{\nabla} g\left(x_{g}^{k}\right)
$$

Example: consensus optimization

$$
\underset{x}{\operatorname{minimize}} \sum_{i=1}^{m} h_{i}(x)
$$

- variable splitting: introduce
- $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$,
- $f(\mathbf{x})=\sum_{i=1}^{m} h_{i}\left(x_{i}\right)$,
- $g(x)=\chi_{\left\{\mathbf{x} \mid x_{1}=\cdots=x_{m}\right\}}(\mathbf{x})$
- reduce to two splitting problem:

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})+g(\mathbf{x})
$$

- DRS iteration: for $k=0,1,2, \ldots$, iteration

$$
\begin{aligned}
& \text { consensus average } \bar{z}^{k}=\frac{1}{m} \sum_{i=1}^{m} z_{i}^{k} \\
& \text { for all } i \text { in parallel }\left\{\begin{array}{l}
x_{i}^{k}=\operatorname{prox}_{\gamma f_{i}}\left(2 \bar{z}^{k}-z_{i}^{k}\right) \\
z_{i}^{k+1}=\frac{1}{2} z_{i}^{k}+\frac{1}{2}\left(2 x_{i}^{k}-\left(2 \bar{z}^{k}-z_{i}^{k}\right)\right)
\end{array}\right.
\end{aligned}
$$

Linearly constrained splitting problem

- Formulation:

$$
\begin{array}{ll}
\underset{x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}}{\operatorname{minimize}} & f(x)+g(y) \\
\text { subject to } & A x+B y=b
\end{array}
$$

where $A: \mathcal{H}_{1} \rightarrow \mathcal{G}$ and $B: \mathcal{H}_{2} \rightarrow \mathcal{G}$ are linear

- Function: split awkward combinations of f and g
- Main problems can be turned into this form by operator/variable splitting

ADMM $=$ DRS applied to the dual

- Lagrangian:

$$
\mathcal{L}(x, y ; w):=f(x)+g(y)-w^{T}(A x+B y-b)
$$

- Lagrange dual:

$$
\max _{w}\left(\min _{x, y} \mathcal{L}(x, y ; w)\right) \Longleftrightarrow \underset{w}{\operatorname{minimize}} f^{*}\left(A^{T} w\right)+g^{*}\left(B^{T} w\right)-b^{T} w
$$

where * denotes the convex conjugate (i.e., Legendar transform)

ADMM $=$ DRS applied to the dual

- Lagrangian:

$$
\mathcal{L}(x, y ; w):=f(x)+g(y)-w^{T}(A x+B y-b)
$$

- Lagrange dual:

$$
\max _{w}\left(\min _{x, y} \mathcal{L}(x, y ; w)\right) \Longleftrightarrow \underset{w}{\operatorname{minimize}} f^{*}\left(A^{T} w\right)+g^{*}\left(B^{T} w\right)-b^{T} w
$$

where * denotes the convex conjugate (i.e., Legendar transform)

- Introduce

$$
d_{f}(w):=f^{*}\left(A^{T} w\right) \quad \text { and } \quad d_{g}(w):=g^{*}\left(B^{T} w\right)-b^{T} w
$$

- Apply DRS algorithm to

$$
\underset{w \in \mathcal{G}}{\operatorname{minimize}} d_{f}(w)+d_{g}(w)
$$

- Obtain the simplified dual DRS iteration:

$$
\begin{aligned}
y^{k+1} & =\underset{y}{\arg \min } \mathcal{L}\left(x^{k}, y ; w^{k}\right) \\
w^{k+1} & =w^{k}-\gamma\left(A x^{k}+B y^{k}-b\right) \\
x^{k+1} & =\underset{x}{\arg \min } \mathcal{L}\left(x, y^{k+1} ; w^{k+1}\right)
\end{aligned}
$$

(sequence z^{k} is hidden)

- It is exactly equivalent to ADMM (alternating direction method of multipliers)

Example: consensus optimization

- Consensus problem can be turned to

$$
\begin{aligned}
\underset{\mathbf{x}, \mathbf{y}}{\operatorname{minimize}} & \sum_{i \in \mathcal{V}} f_{i}\left(x_{(i)}\right) \\
\text { subject to } & x_{(i)}=y_{i j}, x_{(j)}=y_{i j}, \forall(i, j) \in \mathcal{E}
\end{aligned}
$$

where \mathcal{V} and \mathcal{E} is the set of network nodes and edges, respectively.

Example: consensus optimization

- Consensus problem can be turned to

$$
\begin{array}{ll}
\underset{\mathbf{x}, \mathbf{y}}{\operatorname{minimize}} & \sum_{i \in \mathcal{V}} f_{i}\left(x_{(i)}\right) \\
\text { subject to } & x_{(i)}=y_{i j}, x_{(j)}=y_{i j}, \forall(i, j) \in \mathcal{E}
\end{array}
$$

where \mathcal{V} and \mathcal{E} is the set of network nodes and edges, respectively.

- Apply ADMM and obtain simplified iteration:

$$
\left\{\begin{array}{l}
x_{i}^{k+1}=\arg \min _{x_{i}} f_{i}\left(x_{i}\right)+\frac{\gamma\left|\mathcal{N}_{i}\right|}{2}\left\|x_{i}-x_{i}^{k}-\frac{1}{\left|\mathcal{N}_{i}\right|} \sum_{j \in \mathcal{N}_{i}} x_{j}^{k}+\frac{1}{\gamma\left|\mathcal{N}_{i}\right|} \alpha_{i}\right\|^{2}+\frac{\gamma\left|\mathcal{N}_{i}\right|}{2}\left\|x_{i}\right\|^{2} \\
\alpha_{i}^{k+1}=\alpha_{i}^{k}+\gamma\left(\left|\mathcal{N}_{i}\right| x_{i}^{k+1}-\sum_{j \in \mathcal{N}_{i}} x_{j}^{k+1}\right)
\end{array}\right.
$$

(\mathcal{N}_{i} is the set of neighbors of node i.)

Convergence results for general ADMM (joint with D. Davis)

Ergodic rate: let \bar{x}^{k} and \bar{y}^{k} be the running mean variables

$$
\begin{aligned}
\left|f\left(\bar{x}^{k}\right)+g\left(\bar{y}^{k}\right)-f\left(x^{*}\right)-g\left(y^{*}\right)\right| & =O\left(\frac{1}{k}\right) \\
\left\|A \bar{x}^{k}+B \bar{y}^{k}-b\right\|^{2} & =O\left(\frac{1}{k^{2}}\right) .
\end{aligned}
$$

Nonergodic rate:

$$
\begin{aligned}
\left|f\left(x^{k}\right)+g\left(y^{k}\right)-f\left(x^{*}\right)-g\left(y^{*}\right)\right| & =o\left(\frac{1}{\sqrt{k}}\right) \\
\left\|A x^{k}+B y^{k}-b\right\|^{2} & =o\left(\frac{1}{k}\right)
\end{aligned}
$$

Convergence results for general ADMM (joint with D. Davis)

Ergodic rate: let \bar{x}^{k} and \bar{y}^{k} be the running mean variables

$$
\begin{aligned}
\left|f\left(\bar{x}^{k}\right)+g\left(\bar{y}^{k}\right)-f\left(x^{*}\right)-g\left(y^{*}\right)\right| & =O\left(\frac{1}{k}\right) \\
\left\|A \bar{x}^{k}+B \bar{y}^{k}-b\right\|^{2} & =O\left(\frac{1}{k^{2}}\right)
\end{aligned}
$$

Nonergodic rate:

$$
\begin{aligned}
\left|f\left(x^{k}\right)+g\left(y^{k}\right)-f\left(x^{*}\right)-g\left(y^{*}\right)\right| & =o\left(\frac{1}{\sqrt{k}}\right) \\
\left\|A x^{k}+B y^{k}-b\right\|^{2} & =o\left(\frac{1}{k}\right)
\end{aligned}
$$

Comments:

- Neither objective error or constraint violation is monotonic.
- Better ergodic rate does not mean we should use the mean. It means current iterates may not be as stable in some cases.
- Rates are given under convexity and saddle-point existence only. Lipschitz gradients and/or strong convexity will improve them.

Application to decentralized ADMM for consensus problem

Ergodic rates:

$$
\left|\sum_{i=1}^{m} f_{i}\left(\bar{x}_{i}^{k}\right)-f\left(x^{*}\right)\right|=O\left(\frac{1}{k+1}\right) \quad \text { and } \sum_{\substack{i \in V \\ j \in N_{i}}}\left\|\bar{x}_{i}^{k}-\bar{z}_{i j}^{k}\right\|^{2}=O\left(\frac{1}{(k+1)^{2}}\right)
$$

Nonergodic rates:

$$
\left|\sum_{i=1}^{m} f_{i}\left(x_{i}^{k}\right)-f\left(x^{*}\right)\right|=o\left(\frac{1}{\sqrt{k+1}}\right) \quad \text { and } \sum_{\substack{i \in \mathcal{V} \\ j \in \mathcal{N}_{i}}}\left\|x_{i}^{k}-y_{i j}^{k}\right\|^{2}=o\left(\frac{1}{k+1}\right)
$$

Linear rates for all if f_{i} are strongly convex (with W.Shi and Q.Ling).

How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

$$
z^{k+1}=T z^{k}
$$

- establish firmly nonexpansiveness

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}
$$

- establish the rate for fixed-point residual

$$
\left\|T z^{k}-z^{k}\right\|^{2}
$$

How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

$$
z^{k+1}=T z^{k}
$$

- establish firmly nonexpansiveness

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}
$$

- establish the rate for fixed-point residual

$$
\left\|T z^{k}-z^{k}\right\|^{2}
$$

Then, do optimization analysis

- establish relation between $\left\|T z^{k}-z^{k}\right\|^{2}$ and $f\left(x^{k}\right)+g\left(y^{k}\right)$
- for ADMM, apply Fenchel-Young inequality to translate from primal to dual

Conclusions

- Four basic operators are building blocks of many first-order algorithms
- Splitting and duality. They increase the scope those basic operators by orders of magnitude.
- Still lots of room to develop simple yet powerful algorithms
- Convex optimization: it is possible to achieve convergence rates on a network "similar to" the centralized case.

[^0]: ${ }^{1}$ R. Bruck "An iterative solution of a variational inequality for certain monotone operator in a Hilbert space" 1975
 ${ }^{2}$ P. Lions and B. Mercier, "Splitting algorithms for the sum of two nonlinear operators," 1979.

[^1]: ${ }^{3}$ J.Eckstein, D.Bertsekas "On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators." Math. Prog. 1992.
 ${ }^{4}$ Svaiter, On weak convergence of the Douglas-Rachford method
 ${ }^{5}$ Splitting algorithms for the sum of two nonlinear operators

