Distributed Optimization over Network

Wotao Yin (UCLA, Math Department)

2014 IEEE SAM

Goal of this talk

Build optimization algorithms that run on networks from basic operators:

= forward operator: fwd; := (I — V)
= backward operator: prox; (define later)

= reflection operator: refl; := prox; + (prox; — I)

= averaging operator: W where W1 = 1.

Goal of this talk

Build optimization algorithms that run on networks from basic operators:

= forward operator: fwd; := (I — V)
= backward operator: prox; (define later)

= reflection operator: refl; := prox; + (prox; — I)

= averaging operator: W where W1 = 1.

We do not cover

= Nonconvex optimization
= Asynchronous computation or communication

= Dynamic topology, control problem.

Roughly speaking

first-order algorithms are simple
convergence requires very few conditions
convergence rates can be derived

combined with duality and splitting, they are very versatile:
- as simple as gradient descent and alternating projection

- but also handles complicated objective terms and constraints
- give rise to parallel, distributed, decentralized algorithms

focus: decentralized consensus

Consensus optimization

= A connected network of n agents

g8 &8
e

= Each agent ¢ has function f;

= Find a consensus solution z* € R? to

mlmmlze f(z Z filz

z€eR

For analysis, define f(z) := * Zl iz

Existing decentralized approaches

= (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by
Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13

Existing decentralized approaches

= (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by
Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13

= Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et
al’08, linear convergence Shi-Ling-Y.13

Existing decentralized approaches

= (sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by
Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13

= Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et
al’08, linear convergence Shi-Ling-Y.13

= Related to gossip algorithms (Tsitsiklis et al’86, Boyd et al’'06) and
diffusion algorithms (Lopes-Sayed'08, Tkahashi-Yamada'10)

Existing decentralized approaches

(sub)gradient descent: Nedic-Ozdaglar'09, diminishing step-size by
Jakovetic-Xavier-Moura'13, fixed step-size by Yuan-Ling-Y.'13

Decentralized ADMM: Bertsekas-Tsitsiklis'97, Giannakis et al, Schizas et
al’08, linear convergence Shi-Ling-Y.13

Related to gossip algorithms (Tsitsiklis et al'86, Boyd et al'06) and
diffusion algorithms (Lopes-Sayed'08, Tkahashi-Yamada'10)

Belief propagation (Cetin et al’'06)
Incremental optimization (Rabbat et al’'04)

. more ...

Compact notation

= Each node i has variable z(;) € R”, placed on the ith row of x.

T
Z(1)

T
Z(2)

1>

e Rnxp

T

= x is consensus if all rows are equal: x(f) = xg), Vi # j.

Compact notation

= Each node i has variable z(;) € R”, placed on the ith row of x.

T
_ x(l) _

T
— $(2) I

1>

e Rnxp

T
-)

= x is consensus if all rows are equal: x(f) = xg), Vi # j.

f(zay) — Vhlza)" —
2 - V 2 T -

fo) & f($_<) CR, V()2 f2(9.0() c R,
F(@my) — Vi)t —

= original problem <=

minimize 17f(x), subject to a;) = a(;), Vi # j.

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

= average in a neighborhood

= apply an individual gradient descent

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

= average in a neighborhood

= apply an individual gradient descent

x(ki)’l = Z U}/[jm(kj) — aVﬁ(mfi)), by agents i = 1,2,...
J

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

= average in a neighborhood

= apply an individual gradient descent

x(ki)’l = Z U}/[jm(kj) — aVﬁ(mfi)), by agents i =1,2,...,n.
J

Compact form: |[x"™ = Wx" — aVf(x")

Decentralized gradient descent (DGD)

Nedic-Ozdaglar'09:

= average in a neighborhood

= apply an individual gradient descent

x(ki)’l = Z U}/[jm(kj) — ani(a:fi)), by agents i =1,2,...,n.
J

Compact form: |[x"™ = Wx" — aVf(x")

This talk assumes synchronous and fixed topology, relaxed in practice.

Matrix W = [wy] is the mixing matrix:
= w; =0, 7# 7, if nodes ¢ and j are not neighbors

= assumption: symmetric, doubly stochastic

w=w" wi=1,1"w=1".

Example: decentralized least-squares

fixed v.s. diminishing step size

» DGCD with fixed a

10 - - -DGD with o = a/k"/?
- = DGD with o* = a/k/?

10°

10"

0 1000 2000 3000 4000 5000 6000 7000 8000
k

Fixed step size: quick but will stall; too large « causes divergence
Diminishing step size: slower but converges to consensus solution z*
= a/k'3: Jakovetic-Xavier-Moura'14

= a/kY? I-An Chen’12

DGD:
<M= wxb — ave(xh).

DGD:
<M= wxb — ave(xh).

Interpretation 1: unit-step gradient descent iteration

X" = (I - Véa) (xF)

DGD:
<M= wxb — ave(xh).

Interpretation 1: unit-step gradient descent iteration
X' = (1 - Véa)(x")
applied to the Lyapunov function

fal(x) = %tr(xT(I — W)x) + a1 TE(x).

DGD:
<M= wxb — ave(xh).

Interpretation 1: unit-step gradient descent iteration
X = (I = V&) (x")
applied to the Lyapunov function
fal(x) = %tr(xT(I — W)x) + a1 TE(x).

Interpretation 2: inexact gradient descent applied to

R
min — Z;Vf,(:r)

DGD:
<M= wxb — ave(xh).

Interpretation 1: unit-step gradient descent iteration
X = (I = V&) (x")
applied to the Lyapunov function
fal(x) = %tr(xT(I — W)x) + a1 TE(x).

Interpretation 2: inexact gradient descent applied to

R
min — Z;Vf,(:r)

Reason: multiply 217 x (DGD formula):

: 1
=k+1 _ =k k
T =z" -« |fl E Vf;,(x(i))] .
i=1

New results (with K.Yuan and Q.Ling)

Assume Vf; is Li-Lipschitz, and a < (1 4+ X\, (W))/ max; L;

Proved boundedness of everything and convergence (not to right solution)
(the bound is tight; counterexamples exist if it is voided)

(dropped boundedness assumptions on Vf; from previous work)

Bounded deviation from mean ~ O(125), where 3 is 2nd largest absolute
eigenvalue of W

Objective error ~ O(=%) until reaching 0(1%3)

If all f; are strongly convex, objective and point errors converge linearly
until reaching O(1%3)

New results (with K.Yuan and Q.Ling)

= Assume Vf; is Li-Lipschitz, and a < (1 + X (W))/ max; L;

= Proved boundedness of everything and convergence (not to right solution)
(the bound is tight; counterexamples exist if it is voided)

(dropped boundedness assumptions on Vf; from previous work)

* Bounded deviation from mean ~ O(125), where 3 is 2nd largest absolute
eigenvalue of W
* Objective error ~ O(=%) until reaching 0(1%3)
= If all f; are strongly convex, objective and point errors converge linearly
until reaching O(1%3)
Take-home: DGD performs just like (centralized) gradient descent, except

= spectra of W affects speed and final accuracy
= small a: slow and accurate
= large a: fast and inaccurate

= decreasing a: even slower but exact

DGD iteration:

Limit:

lim;(DGD iteration):

Speed-exactness dilemma

X = wx" — aVE(x")

"
Il
=
"

Speed-exactness dilemma

DGD iteration:
X = wx" — aVE(x")

Limit:

"
Il
=
"

lim;(DGD iteration):

Proposition

DGD is exact with a fixed « only if a single x minimizes all f;'s.

However, the original problem only minimizes the sum.

Develop new algorithm: EXTRA

Assume:

= convergence xF - X;

= same assumptionson W and, Wy =y <=y =1

Goal: obtain

is consensual <— Wx = x;

%

is optimal <= 1TVf(x) = 0.

bl

Develop new algorithm: EXTRA

Assume:

= convergence xF — X;

= same assumptionson Wand, Wy =y<=y=1

Goal: obtain

is consensual <— Wx = x;

%

is optimal <= 1TVf(x) = 0.

bl

Reason: original problem mingcrr ., f(s) () is equivalent to

minimize 17f(x), subject to Wx = x.
xERXP

Introduce
W= (W+1)/2.

Take the difference between two DGD iterations

XM = WxF — aVE(xh),

M2 = WM — avE ("),

(1)
(2)

Introduce
W= (W+1)/2.

Take the difference between two DGD iterations

X" = WxP — aVE(xh),

M2 = WM — avE ("),

we get the new iteration: "EXTRA"

M2 M = M WX — aVEMT) V().

(1)
(2)

(3)

Introduce
W= (W+1)/2.

Take the difference between two DGD iterations

X" = WxP — aVE(xh),

M2 = WM — avE ("),

we get the new iteration: "EXTRA"

M2 M = M WX — aVEMT) V().

Letting £ — oo and canceling terms give us:
— 1
0=(W-W)x= i(Wi_)_{)'

— Wx =X — x is consensual.

(3)

Adding 1st iteration (still DGD)
x' = Wx" — aVf(x")

to iterations 2,...,k in gives

k
X2 = WM — o v + Z(W - W)x".

i=0

Adding 1st iteration (still DGD)
x' = Wx" — aVf(x")

to iterations 2,...,k in gives
k
X" = wxM — aVE(x"T) + Z(W - W)x'.

i=0

Letting kK — oo and using Wx = x yield

aVE(®) =Y (W= W)x"

i=1

Adding 1st iteration (still DGD)
x' = Wx" — aVf(x")
to iterations 2,...,k in gives
k

X" = wxM — aVE(x"T) + Z(W - W)x'.

i=0

Letting kK — oo and using Wx = x yield
aVE(®) =Y (W= W)x"
i=1
Using left-stochasticity 17 (W — W) = 0, we have
17VE(x) =0,
—> X is also optimal.

Proposition

Assuming convergence and x* — X, then X is an optimal consensus solution.

Explanation

New iteration:

correction

= Assuming x" is asymptotically consensual, so x**' — Wx* is vanishing.
= need 17VF(x") — 0 (optimality). So, Vf(x") needs to be neutralized
over span{1}™.

. Zi:ol(W — W)x" is the simplest term we found for this purpose.

Convergence results

Theorem (sublinear 1/k convergence)

Assume (i) convex objectives with Lipschitz gradients, (ii) consensus solution
x* exists, (i) symmetric doubly stochastic W and W obeying

I+ W

-W = W.
5 W=

W =0 and

If step size o < 2Amin(W)/ max L;, then EXTRA has O(1/k) ergodic

convergence.

Theorem (linear convergence)

In addition, if
> fi(@)
=1

is (restrict) strongly convex, then ||x* — x*||w converges to 0 with a global

R-linear rate.

Example: decentralized least squares

DGD with fixed a__
- - -DGD with o* = a/k'/*
== DGD with o/ = a/k'/?

EXTRA with fi

Residual
=y
15y

5|

10

1000 2000 3000 4000 5000 6000 7000 8000
k

Example: decentralized sum of Huber functions

DGD with fixed a__
- = -DGD with of = a/k'/*
. == DGD with o/ = a/k'/?
10 EXTRA with fixed o

Residual
=y
o,

i
o,

10°

10°

0 500 1000 1500 2000 2500 3000
k

Other numerical results

In our paper (Shi-Ling-Wu-Yin, arXiv:1404.6264)

= Results with hand-optimized parameters for all solvers

= Logistic regression example

= Some discussions on different mixing matrices W, such as general
symmetric doubly stochastic (Tsitisklis'84), Laplacian-based W =1 — L/7
(Xiao-Boyd'04, Sayed'12), Mestropolis (Xiao-Boyd-Lall'06), symmetric
fastest distributed linear averaging (FDLA, Xiao-Boyd'-04).

Limitations and future work

Asymmetric mixing matrix W:

= 17TW #17: | may forget to send to neighbors, easier case

= W1 # 1: neighbors may not receive my messages, more difficult case
(Macua, Leon, and co-authors can ensure 17 W =17 and W1 =1)

Limitations and future work

Asymmetric mixing matrix W:

= 17TW #17: | may forget to send to neighbors, easier case

= W1 # 1: neighbors may not receive my messages, more difficult case
(Macua, Leon, and co-authors can ensure 17 W =17 and W1 =1)

Convergence improvement:

= optimal O(1/k?) convergence

= better constants by optimizing W

Limitations and future work

Asymmetric mixing matrix W:

= 17TW #17: | may forget to send to neighbors, easier case

= W1 # 1: neighbors may not receive my messages, more difficult case
(Macua, Leon, and co-authors can ensure 17 W =17 and W1 =1)

Convergence improvement:

= optimal O(1/k?) convergence

= better constants by optimizing W
Dynamic
= network topology varies over time

= f varies over time

Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

= forward (gradient desc.) operator: fwd; := (I — V)
= backward (proximal) operator: prox; (define later)

= reflection operator: refl; := prox; + (prox; — I)

= averaging operator: W where W1 = 1.

Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

= forward (gradient desc.) operator: fwd; := (I — V)
= backward (proximal) operator: prox; (define later)

= reflection operator: refl; := prox; + (prox; — I)

= averaging operator: W where W1 = 1.

Main references for distributed and decentralized ADMM:

= Bertsekas-Tsitsiklas'89 (distributed ADMM)
= Palomar-Chiang'06 (dual decomposition, network utility)
= Schizas-Ribeiro-Giannakis'08 (decentralized ADMM)

Proximal (backward) operator

= Definition: for a proper closed convex f (possibly nonsmooth), v > 0,
. 1
prox.(y) := arg min y/(z) + 5 |l= -yl
T

= Equivalently, z = prox_((y) if and only if

VWf(z) + (x—y) =0, Vf(z)e df(a).

Proximal (backward) operator

= Definition: for a proper closed convex f (possibly nonsmooth), v > 0,
. 1
prox.(y) := arg min y/(z) + 5 |l= -yl
T

= Equivalently, z = prox_((y) if and only if

VWf(z) + (x—y) =0, Vf(z)e df(a).

= Generalization to projection: Let C be a closed, nonempty set.
Let f := x ¢, which returns 0 if x € C; 0 if x & C.

prox, , = Pc

Proximal (backward) operator

Definition: for a proper closed convex f (possibly nonsmooth), v > 0,
. 1
prox.(y) := arg min y/(z) + 5 |l= -yl
T

Equivalently, = = prox_(y) if and only if

VWf(z) + (x—y) =0, Vf(z)e df(a).

Generalization to projection: Let C be a closed, nonempty set.
Let f := x ¢, which returns 0 if x € C; 0 if x & C.

prox, , = Pc

Reflection:

refl,; := prox_; + (prox,; — I) = 2prox_;, — I.

Forward vs backward

= Forward: explicit, easier to compute, v must be small enough
Zk:Jrl _ Zk‘ _ ’Y%f(zk)
= Backward: implicit, difficult to compute except for few, v > 0 is ok

Zk+1 _ Zl.: _ ’y%f(zk"'l).

What is splitting?

= Use basic operators (forward, proximal, reflection) of f and g to solve

minimize f(z)+ g(z)
z€H

and

minimize f(z)+ g(y) subject to Az + By = b,
z€H1,yEH2

Assumptions:
= H,H1,H2 are Hilbert spaces, may be finite dimensional
= All functions are proper, closed, convex; may or may not be differentiable

= Saddle point must exist when duality is used

Examples

minimize f(z)+ g(z)

= point in the intersection: f = x¢, and g = x¢,.
Find z € C1 N C2 <= minimize f(z) + g(z)
= constrained optimization: f = x¢, general g.
minimize g(z), subject to z € C <= minimize f(z) + g(z)

= regularized regression: f is data fitting, g enforces prior knowledge

Examples

minimize f(z)+ g(z)

point in the intersection: f = x¢, and g = x¢,-
Find z € C1 N C2 <= minimize f(z) + g(z)
constrained optimization: f = x¢, general g.
minimize g(z), subject to z € C <= minimize f(z) + g(z)

regularized regression: f is data fitting, g enforces prior knowledge

consensus optimization:

m

minimize Z hi(z) <= minimize f(x) + g(x)
i=1

where x = (21, ...,zm), f(x)= Z:ll hi(zi), 9(z) = X{x|o1=--=an} (X)

Forward-backward splitting (FBS)

= assumption: g is differentiable

2 = prox_; o fwd,,(z") = prox_; (zk - 'ng(zk))

= extends the gradient—projection iteration (when f = x¢)
= traces back to 1970s: Bruck!, Lions and Mercier?

= converge if step size v € (0,2/L), where L is the Lip. constant of Vg

R. Bruck “An iterative solution of a variational inequality for certain monotone operator in a Hilbert space” 1975

2p, Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” 1979.

Douglas-Rachford splitting (DRS)

. oisdiff .
= DRS algorithm:

‘ 1 1 ,
= (51 + §reﬂwfreﬂ—w) 2F

= 2P s to a fixed point, given existence; unbounded, otherwise®
= fixed points Z minimizers of f + g.

= however, proxw(zk) — a minimizer (first proof in 2011).*

= early history:

= proposed by Douglas and Rachford (1956) to solve matrix equations.
= analyzed for monotone operator by Lions and Mercier (1979) 5.

3J.Eckstein, D.Bertsekas “On the Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators.” Math. Prog. 1992.

ASvaiter, On weak convergence of the Douglas-Rachford method

5Splitting algorithms for the sum of two nonlinear operators

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1 _ Ly 1 '
M= o2t 4 S (2Pe, — 1)(2Po, — ().

Gy

Cr

o®

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1 _ Ly 1 '
M= o2t 4 S (2Pe, — 1)(2Po, — ().

Gy

Cr

Ne—t—

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1 _ Ly 1 '
M= o2t 4 S (2Pe, — 1)(2Po, — ().

Gy

Cr

o

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1 _ Ly 1 '
M= o2t 4 S (2Pe, — 1)(2Po, — ().

Gy

Cr

o

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1 _ Ly 1 '
M= o2t 4 S (2Pe, — 1)(2Po, — ().

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1, 1
M= o2t 4 S (2Pe, — 1)(2Po, — ().

DRS special case: “reflect, reflect, average”

C1 and (5 are closed convex sets. Find z € C; N Cs, assumed to exist.

1, 1
M= o2t 4 S (2Pe, — 1)(2Po, — ().

Peaceman-Rachford splitting (PRS)

= DRS without averaging:

2 = refl jrefl,, (")

= may not converge (may orbit with a fixed distance to the solution set)

= when it does converge, often faster than DRS

First-order algorithms: subgradient form

(Sub)gradient descent:

M= 28— V() = 4V ().
Proximal point algorithm (PPA):

A= V) = Ve (.
Forward backward splitting (FBS):
=2 = VI = 4 Vg ().

Douglas Rachford splitting (DRS):

= F ’y%f(a;//') — 7%9(15)
Douglas Rachford splitting (PRS):

= 2= VA (ef) — 2V ()

Example: consensus optimization

m
minimize Z hi(z)
xT
i=1

= variable splitting: introduce
= x=(Z1,.. ., Tm),
s f) =00 hi(w),
= 9(2) = Xx|or ==} (X)
= reduce to two splitting problem:

minimize f(x)+ g(x)

= DRS iteration: for k =0,1,2, ..., iteration
m
e 1 k
consensus average z° = — g 2
m
i=1

zf = prox%(QZk —2F);

A = Lk 4 d(2af - (23 - o))

7

for all ¢ in parallel

Linearly constrained splitting problem

Formulation:

minimize)+
Ininimize f(z) + g(y)

subject to Ax + By = b
where A : H1 — G and B : H2s — G are linear

Function: split awkward combinations of f and g

Main problems can be turned into this form by operator/variable
splitting

ADMM = DRS applied to the dual

= Lagrangian:
L(z,y;w) == f(z) + g(y) — w" (Az + By — b)
= Lagrange dual:
mjx(n;i;l L(z,y;w)) <= min%‘I}nize (A w) + g*(B"w) — b"w

where * denotes the convex conjugate (i.e., Legendar transform)

ADMM = DRS applied to the dual

Lagrangian:
L(z, y;w) := f(z) + g(y) — w” (Az + By — b)
Lagrange dual:
mjx(n;i;l L(z,y;w)) <= mingnize (A w) + g*(B"w) — b"w
where * denotes the convex conjugate (i.e., Legendar transform)

Introduce
di(w) == f*(A"w) and dy(w):=g"(B"w)—b"w
Apply DRS algorithm to

minirrglize dp(w) + dy(w)
we

= Obtain the simplified dual DRS iteration:

y* 1 = argmin £(z", y; w")
y

Wt = — ’y(Azk + Byk —b)

k1 . K1, k1
2" = argmin £(z, y*T; W)
xT

(sequence z* is hidden)
= It is exactly equivalent to ADMM (alternating direction method of

multipliers)

Example: consensus optimization

= Consensus problem can be turned to

minimize i(T;
tim ;f((i)

subject to ;) = Yy, () = Yy, V(i,7) € E,

where V and £ is the set of network nodes and edges, respectively.

Example: consensus optimization

= Consensus problem can be turned to
minimize i
tim > hla)
icv
subject to ;) = Yy, () = Yy, V(i,7) € E,
where V and £ is the set of network nodes and edges, respectively.

= Apply ADMM and obtain simplified iteration:

o = argmin, fi(w;) + %L‘HL B WlA Zje/\/i, zf + maiHQ + %HLHQ

o = a4y (NGt - 5, o).

(WN; is the set of neighbors of node i.)

Convergence results for general ADMM (joint with D. Davis)
Ergodic rate: let Z* and 7* be the running mean variables
—k —k * * 1
@)+ 97 = £ = o) = 05)
4z + 57" — bt = 0 (35)

k2

Nonergodic rate:

Sl

1f(z") + g(y*) = f(z*) — g(y")| = 0 (

ST
N—

42" + By* — B> = o (

Convergence results for general ADMM (joint with D. Davis)
Ergodic rate: let Z* and 7* be the running mean variables
—k —k * * 1
@)+ 97 = £ = o) = 05)
4z + 57" — bt = 0 (35)

k2

Nonergodic rate:

Sl

1f(z") + g(y*) = f(z*) — g(y")| = 0 (

ST
N—

42" + By* — B> = o (

Comments:

= Neither objective error or constraint violation is monotonic.

= Better ergodic rate does not mean we should use the mean. It means
current iterates may not be as stable in some cases.

= Rates are given under convexity and saddle-point existence only. Lipschitz

gradients and/or strong convexity will improve them.

Application to decentralized ADMM for consensus problem

Ergodic rates:

> H@EH - =)

. 1 k2 _ 1
_O<k+1> and ;”gg’ %l _O<(k+1)2)'
.;ENi

Nonergodic rates:

> fila) - f(a")

1 k k2 (1)
—of —— d E kP =0 ——).
0(\/“71) an e = will” = o\ 757

IS%
JEN;

Linear rates for all if f; are strongly convex (with W.Shi and Q.Ling).

How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

= Tt
= establish firmly nonexpansiveness
1Tz — Tyl|* < lle = ylI* = |1 = T)z — (I = T)yl
= establish the rate for fixed-point residual

17" — 2*|1®

How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

R
= establish firmly nonexpansiveness
T2 = Ty||* < llz = y|* = (I = T)z — (I = T)yl|*
= establish the rate for fixed-point residual
172" = 2*|®

Then, do optimization analysis

= establish relation between || 7%* — 2*||? and f(z*) + g(y*)

= for ADMM, apply Fenchel-Young inequality to translate from primal to
dual

Conclusions

Four basic operators are building blocks of many first-order algorithms

Splitting and duality. They increase the scope those basic operators by
orders of magnitude.

Still lots of room to develop simple yet powerful algorithms

Convex optimization: it is possible to achieve convergence rates on a

network “similar to” the centralized case.

