
Distributed Optimization over Network

Wotao Yin (UCLA, Math Department)

2014 IEEE SAM



Goal of this talk

Build optimization algorithms that run on networks from basic operators:

• forward operator: fwdf := (I −∇f )

• backward operator: proxf (define later)

• reflection operator: reflf := proxf + (proxf − I )

• averaging operator: W where W 1 = 1.



Goal of this talk

Build optimization algorithms that run on networks from basic operators:

• forward operator: fwdf := (I −∇f )

• backward operator: proxf (define later)

• reflection operator: reflf := proxf + (proxf − I )

• averaging operator: W where W 1 = 1.

We do not cover

• Nonconvex optimization

• Asynchronous computation or communication

• Dynamic topology, control problem.



Roughly speaking

• first-order algorithms are simple

• convergence requires very few conditions

• convergence rates can be derived

• combined with duality and splitting, they are very versatile:

- as simple as gradient descent and alternating projection

- but also handles complicated objective terms and constraints

- give rise to parallel, distributed, decentralized algorithms

• focus: decentralized consensus



Consensus optimization

• A connected network of n agents

• Each agent i has function fi

• Find a consensus solution x∗ ∈ Rp to

minimize
x∈Rp

f (x) :=
n∑

i=1

fi(x)

For analysis, define f̄ (x) := 1
n

∑n
i=1 fi(x).



Existing decentralized approaches

• (sub)gradient descent: Nedic-Ozdaglar’09, diminishing step-size by

Jakovetic-Xavier-Moura’13, fixed step-size by Yuan-Ling-Y.’13



Existing decentralized approaches

• (sub)gradient descent: Nedic-Ozdaglar’09, diminishing step-size by

Jakovetic-Xavier-Moura’13, fixed step-size by Yuan-Ling-Y.’13

• Decentralized ADMM: Bertsekas-Tsitsiklis’97, Giannakis et al, Schizas et

al’08, linear convergence Shi-Ling-Y.’13



Existing decentralized approaches

• (sub)gradient descent: Nedic-Ozdaglar’09, diminishing step-size by

Jakovetic-Xavier-Moura’13, fixed step-size by Yuan-Ling-Y.’13

• Decentralized ADMM: Bertsekas-Tsitsiklis’97, Giannakis et al, Schizas et

al’08, linear convergence Shi-Ling-Y.’13

• Related to gossip algorithms (Tsitsiklis et al’86, Boyd et al’06) and

diffusion algorithms (Lopes-Sayed’08, Tkahashi-Yamada’10)



Existing decentralized approaches

• (sub)gradient descent: Nedic-Ozdaglar’09, diminishing step-size by

Jakovetic-Xavier-Moura’13, fixed step-size by Yuan-Ling-Y.’13

• Decentralized ADMM: Bertsekas-Tsitsiklis’97, Giannakis et al, Schizas et

al’08, linear convergence Shi-Ling-Y.’13

• Related to gossip algorithms (Tsitsiklis et al’86, Boyd et al’06) and

diffusion algorithms (Lopes-Sayed’08, Tkahashi-Yamada’10)

• Belief propagation (Cetin et al’06)

• Incremental optimization (Rabbat et al’04)

• ... more ...



Compact notation

• Each node i has variable x(i) ∈ R
p, placed on the ith row of x.

x ,








— xT
(1) —

— xT
(2) —
...

— xT
(n) —







∈ Rn×p

• x is consensus if all rows are equal: xT
(i) = xT

(j), ∀i 6= j.



Compact notation

• Each node i has variable x(i) ∈ R
p, placed on the ith row of x.

x ,








— xT
(1) —

— xT
(2) —
...

— xT
(n) —







∈ Rn×p

• x is consensus if all rows are equal: xT
(i) = xT

(j), ∀i 6= j.

f(x) ,








f (x(1))

f (x(2))
...

f (x(n))







∈ Rn , ∇f(x) ,








— ∇f1(x(1))
T —

— ∇f2(x(2))
T —

...

— ∇fn(x(n))
T —







∈ Rn×p.

• original problem ⇐⇒

minimize 1T f(x), subject to x(i) = x(j), ∀i 6= j.



Decentralized gradient descent (DGD)

Nedic-Ozdaglar’09:

• average in a neighborhood

• apply an individual gradient descent



Decentralized gradient descent (DGD)

Nedic-Ozdaglar’09:

• average in a neighborhood

• apply an individual gradient descent

xk+1
(i) =

∑

j

wijx
k
(j) − α∇fi(x

k
(i)), by agents i = 1, 2, . . . , n.



Decentralized gradient descent (DGD)

Nedic-Ozdaglar’09:

• average in a neighborhood

• apply an individual gradient descent

xk+1
(i) =

∑

j

wijx
k
(j) − α∇fi(x

k
(i)), by agents i = 1, 2, . . . , n.

Compact form: xk+1 = W xk − α∇f(xk)



Decentralized gradient descent (DGD)

Nedic-Ozdaglar’09:

• average in a neighborhood

• apply an individual gradient descent

xk+1
(i) =

∑

j

wijx
k
(j) − α∇fi(x

k
(i)), by agents i = 1, 2, . . . , n.

Compact form: xk+1 = W xk − α∇f(xk)

This talk assumes synchronous and fixed topology, relaxed in practice.

Matrix W = [wij ] is the mixing matrix:

• wij = 0, i 6= j, if nodes i and j are not neighbors

• assumption: symmetric, doubly stochastic

W = W T , W 1 = 1, 1T W = 1T .



Example: decentralized least-squares
fixed v.s. diminishing step size

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

R
e
s
id
u
a
l

 

 

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= α/k1/2

Fixed step size: quick but will stall; too large α causes divergence

Diminishing step size: slower but converges to consensus solution x∗

• α/k1/3: Jakovetic-Xavier-Moura’14

• α/k1/2: I-An Chen’12



DGD:

xk+1 = W xk − α∇f(xk).



DGD:

xk+1 = W xk − α∇f(xk).

Interpretation 1: unit-step gradient descent iteration

xk+1 = (I −∇ξα)(xk)



DGD:

xk+1 = W xk − α∇f(xk).

Interpretation 1: unit-step gradient descent iteration

xk+1 = (I −∇ξα)(xk)

applied to the Lyapunov function

ξα(x) :=
1
2

tr(xT (I −W )x) + α1T f(x).



DGD:

xk+1 = W xk − α∇f(xk).

Interpretation 1: unit-step gradient descent iteration

xk+1 = (I −∇ξα)(xk)

applied to the Lyapunov function

ξα(x) :=
1
2

tr(xT (I −W )x) + α1T f(x).

Interpretation 2: inexact gradient descent applied to

min
x̄

1
n

n∑

i=1

∇fi(x̄).



DGD:

xk+1 = W xk − α∇f(xk).

Interpretation 1: unit-step gradient descent iteration

xk+1 = (I −∇ξα)(xk)

applied to the Lyapunov function

ξα(x) :=
1
2

tr(xT (I −W )x) + α1T f(x).

Interpretation 2: inexact gradient descent applied to

min
x̄

1
n

n∑

i=1

∇fi(x̄).

Reason: multiply 1
n 1T × (DGD formula):

x̄k+1 = x̄k − α

[
1
n

n∑

i=1

∇fi(x
k
(i))

]

.



New results (with K.Yuan and Q.Ling)

• Assume ∇fi is Li-Lipschitz, and α ≤ (1 + λn(W ))/maxi Li

• Proved boundedness of everything and convergence (not to right solution)

(the bound is tight; counterexamples exist if it is voided)

(dropped boundedness assumptions on ∇fi from previous work)

• Bounded deviation from mean ∼ O( α
1−β ), where β is 2nd largest absolute

eigenvalue of W

• Objective error ∼ O( 1
αk ) until reaching O( α

1−β )

• If all fi are strongly convex, objective and point errors converge linearly

until reaching O( α
1−β )



New results (with K.Yuan and Q.Ling)

• Assume ∇fi is Li-Lipschitz, and α ≤ (1 + λn(W ))/maxi Li

• Proved boundedness of everything and convergence (not to right solution)

(the bound is tight; counterexamples exist if it is voided)

(dropped boundedness assumptions on ∇fi from previous work)

• Bounded deviation from mean ∼ O( α
1−β ), where β is 2nd largest absolute

eigenvalue of W

• Objective error ∼ O( 1
αk ) until reaching O( α

1−β )

• If all fi are strongly convex, objective and point errors converge linearly

until reaching O( α
1−β )

Take-home: DGD performs just like (centralized) gradient descent, except

• spectra of W affects speed and final accuracy

• small α: slow and accurate

• large α: fast and inaccurate

• decreasing α: even slower but exact



Speed-exactness dilemma

DGD iteration:

xk+1 = W xk − α∇f(xk)

Limit:

x̂ := lim
k→∞

xk ,

limk(DGD iteration):

(W − I ) x̂ + α∇f(x̂) = 0.

Since x̂ is consensual ⇐⇒ (W − I ) x̂ = 0 ⇐⇒ ∇f(x̂) = 0, we have



Speed-exactness dilemma

DGD iteration:

xk+1 = W xk − α∇f(xk)

Limit:

x̂ := lim
k→∞

xk ,

limk(DGD iteration):

(W − I ) x̂ + α∇f(x̂) = 0.

Since x̂ is consensual ⇐⇒ (W − I ) x̂ = 0 ⇐⇒ ∇f(x̂) = 0, we have

Proposition

DGD is exact with a fixed α only if a single x minimizes all fi ’s.

However, the original problem only minimizes the sum.



Develop new algorithm: EXTRA

Assume:

• convergence xk → x̄;

• same assumptions on W and, W y = y⇐⇒ y = 1

Goal: obtain

• x̄ is consensual ⇐⇒W x̄ = x̄;

• x̄ is optimal ⇐⇒ 1T∇f(x̄) = 0.



Develop new algorithm: EXTRA

Assume:

• convergence xk → x̄;

• same assumptions on W and, W y = y⇐⇒ y = 1

Goal: obtain

• x̄ is consensual ⇐⇒W x̄ = x̄;

• x̄ is optimal ⇐⇒ 1T∇f(x̄) = 0.

Reason: original problem minx∈Rp
∑n

i=1 f(i)(x) is equivalent to

minimize
x∈Rn×p

1Tf(x), subject to W x = x.



Introduce

W := (W + I )/2.

Take the difference between two DGD iterations

xk+1 = W xk − α∇f(xk), (1)

xk+2 = W xk+1 − α∇f(xk+1), (2)



Introduce

W := (W + I )/2.

Take the difference between two DGD iterations

xk+1 = W xk − α∇f(xk), (1)

xk+2 = W xk+1 − α∇f(xk+1), (2)

we get the new iteration: “EXTRA”

xk+2 − xk+1 = W xk+1 −W xk − α∇f(xk+1) + α∇f(xk). (3)



Introduce

W := (W + I )/2.

Take the difference between two DGD iterations

xk+1 = W xk − α∇f(xk), (1)

xk+2 = W xk+1 − α∇f(xk+1), (2)

we get the new iteration: “EXTRA”

xk+2 − xk+1 = W xk+1 −W xk − α∇f(xk+1) + α∇f(xk). (3)

Letting k →∞ and canceling terms give us:

0 = (W −W )x̄ =
1
2

(W x̄− x̄) .

=⇒ W x̄ = x̄ =⇒ x̄ is consensual.



Adding 1st iteration (still DGD)

x1 = W x0 − α∇f(x0)

to iterations 2, . . . , k in box gives

xk+2 = W xk+1 − α∇f(xk+1) +
k∑

i=0

(W −W )xi .



Adding 1st iteration (still DGD)

x1 = W x0 − α∇f(x0)

to iterations 2, . . . , k in box gives

xk+2 = W xk+1 − α∇f(xk+1) +
k∑

i=0

(W −W )xi .

Letting k →∞ and using W x̄ = x̄ yield

α∇f(x̄) =
∞∑

i=1

(W −W )xi .



Adding 1st iteration (still DGD)

x1 = W x0 − α∇f(x0)

to iterations 2, . . . , k in box gives

xk+2 = W xk+1 − α∇f(xk+1) +
k∑

i=0

(W −W )xi .

Letting k →∞ and using W x̄ = x̄ yield

α∇f(x̄) =
∞∑

i=1

(W −W )xi .

Using left-stochasticity 1T (W −W ) = 0, we have

1T∇f(x̄) = 0,

=⇒ x̄ is also optimal.

Proposition

Assuming convergence and xk → x̄, then x̄ is an optimal consensus solution.



Explanation

New iteration:

xk+1 = W xk − α∇f(xk) +
k−1∑

i=0

(W −W )xi

︸ ︷︷ ︸
correction

.

• Assuming xk is asymptotically consensual, so xk+1 −W xk is vanishing.

• need 1T∇f(xk)→ 0 (optimality). So, ∇f(xk) needs to be neutralized

over span{1}⊥.

•
∑k−1

i=0 (W −W )xi is the simplest term we found for this purpose.



Convergence results

Theorem (sublinear 1/k convergence)

Assume (i) convex objectives with Lipschitz gradients, (ii) consensus solution

x∗ exists, (iii) symmetric doubly stochastic W and W obeying

W � 0 and
I + W

2
�W �W .

If step size α < 2λmin(W )/max Li , then EXTRA has O(1/k) ergodic

convergence.

Theorem (linear convergence)

In addition, if
n∑

i=1

fi(x)

is (restrict) strongly convex, then ‖xk − x∗‖W converges to 0 with a global

R-linear rate.



Example: decentralized least squares

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

R
e
s
id
u
a
l

 

 

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= α/k1/2

EXTRA with fixed α



Example: decentralized sum of Huber functions

0 500 1000 1500 2000 2500 3000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 



Other numerical results

In our paper (Shi-Ling-Wu-Yin, arXiv:1404.6264)

• Results with hand-optimized parameters for all solvers

• Logistic regression example

• Some discussions on different mixing matrices W , such as general

symmetric doubly stochastic (Tsitisklis’84), Laplacian-based W = I − L/τ

(Xiao-Boyd’04, Sayed’12), Mestropolis (Xiao-Boyd-Lall’06), symmetric

fastest distributed linear averaging (FDLA, Xiao-Boyd’-04).



Limitations and future work

Asymmetric mixing matrix W :

• 1T W 6= 1T : I may forget to send to neighbors, easier case

• W 1 6= 1: neighbors may not receive my messages, more difficult case

(Macua, Leon, and co-authors can ensure 1T W = 1T and W 1 = 1)



Limitations and future work

Asymmetric mixing matrix W :

• 1T W 6= 1T : I may forget to send to neighbors, easier case

• W 1 6= 1: neighbors may not receive my messages, more difficult case

(Macua, Leon, and co-authors can ensure 1T W = 1T and W 1 = 1)

Convergence improvement:

• optimal O(1/k2) convergence

• better constants by optimizing W



Limitations and future work

Asymmetric mixing matrix W :

• 1T W 6= 1T : I may forget to send to neighbors, easier case

• W 1 6= 1: neighbors may not receive my messages, more difficult case

(Macua, Leon, and co-authors can ensure 1T W = 1T and W 1 = 1)

Convergence improvement:

• optimal O(1/k2) convergence

• better constants by optimizing W

Dynamic

• network topology varies over time

• f varies over time



Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

• forward (gradient desc.) operator: fwdf := (I −∇f )

• backward (proximal) operator: proxf (define later)

• reflection operator: reflf := proxf + (proxf − I )

• averaging operator: W where W 1 = 1.



Next: develop and analyze an ADMM approach

Build optimization algorithms that run on networks from basic operators:

• forward (gradient desc.) operator: fwdf := (I −∇f )

• backward (proximal) operator: proxf (define later)

• reflection operator: reflf := proxf + (proxf − I )

• averaging operator: W where W 1 = 1.

Main references for distributed and decentralized ADMM:

• Bertsekas-Tsitsiklas’89 (distributed ADMM)

• Palomar-Chiang’06 (dual decomposition, network utility)

• Schizas-Ribeiro-Giannakis’08 (decentralized ADMM)



Proximal (backward) operator

• Definition: for a proper closed convex f (possibly nonsmooth), γ > 0,

proxγf (y) := arg min
x
γf (x) +

1
2
‖x − y‖2.

• Equivalently, x = proxγf (y) if and only if

γ∇̃f (x) + (x − y) = 0, ∇̃f (x) ∈ ∂f (x).



Proximal (backward) operator

• Definition: for a proper closed convex f (possibly nonsmooth), γ > 0,

proxγf (y) := arg min
x
γf (x) +

1
2
‖x − y‖2.

• Equivalently, x = proxγf (y) if and only if

γ∇̃f (x) + (x − y) = 0, ∇̃f (x) ∈ ∂f (x).

• Generalization to projection: Let C be a closed, nonempty set.

Let f := χC , which returns 0 if x ∈ C ; ∞ if x 6∈ C .

proxχC
≡ PC



Proximal (backward) operator

• Definition: for a proper closed convex f (possibly nonsmooth), γ > 0,

proxγf (y) := arg min
x
γf (x) +

1
2
‖x − y‖2.

• Equivalently, x = proxγf (y) if and only if

γ∇̃f (x) + (x − y) = 0, ∇̃f (x) ∈ ∂f (x).

• Generalization to projection: Let C be a closed, nonempty set.

Let f := χC , which returns 0 if x ∈ C ; ∞ if x 6∈ C .

proxχC
≡ PC

• Reflection:

reflγf := proxγf + (proxγf − I ) = 2proxγh − I .



Forward vs backward

• Forward: explicit, easier to compute, γ must be small enough

zk+1 = zk − γ∇̃f (zk).

• Backward: implicit, difficult to compute except for few, γ > 0 is ok

zk+1 = zk − γ∇̃f (zk+1).



What is splitting?

• Use basic operators (forward, proximal, reflection) of f and g to solve

minimize
x∈H

f (x) + g(x)

and

minimize
x∈H1,y∈H2

f (x) + g(y) subject to Ax + By = b,

Assumptions:

• H,H1,H2 are Hilbert spaces, may be finite dimensional

• All functions are proper, closed, convex; may or may not be differentiable

• Saddle point must exist when duality is used



Examples

minimize
x

f (x) + g(x)

• point in the intersection: f = χC1 and g = χC2 .

Find x ∈ C1 ∩ C2 ⇐⇒ minimize f (x) + g(x)

• constrained optimization: f = χC , general g.

minimize g(x), subject to x ∈ C ⇐⇒ minimize f (x) + g(x)

• regularized regression: f is data fitting, g enforces prior knowledge



Examples

minimize
x

f (x) + g(x)

• point in the intersection: f = χC1 and g = χC2 .

Find x ∈ C1 ∩ C2 ⇐⇒ minimize f (x) + g(x)

• constrained optimization: f = χC , general g.

minimize g(x), subject to x ∈ C ⇐⇒ minimize f (x) + g(x)

• regularized regression: f is data fitting, g enforces prior knowledge

• consensus optimization:

minimize
m∑

i=1

hi(x)⇐⇒ minimize f (x) + g(x)

where x = (x1, . . . , xm), f (x) =
∑m

i=1 hi(xi), g(x) = χ{x|x1=∙∙∙=xm}(x)



Forward-backward splitting (FBS)

• assumption: g is differentiable

zk+1 = proxγf ◦ fwdγg(zk) = proxγf

(
zk − γ∇g(zk)

)

• extends the gradient–projection iteration (when f = χC )

• traces back to 1970s: Bruck1, Lions and Mercier2

• converge if step size γ ∈ (0, 2/L), where L is the Lip. constant of ∇g

1
R. Bruck “An iterative solution of a variational inequality for certain monotone operator in a Hilbert space” 1975

2P. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” 1979.



Douglas-Rachford splitting (DRS)

• g is differentiable

• DRS algorithm:

zk+1 =
(1

2
I +

1
2

reflγf reflγg

)
zk

• zk ⇀ to a fixed point, given existence; unbounded, otherwise3

• fixed points 6≡ minimizers of f + g.

• however, proxγg(zk)⇀ a minimizer (first proof in 2011).4

• early history:
• proposed by Douglas and Rachford (1956) to solve matrix equations.
• analyzed for monotone operator by Lions and Mercier (1979) 5.

3J.Eckstein, D.Bertsekas “On the Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators.” Math. Prog. 1992.

4Svaiter, On weak convergence of the Douglas-Rachford method
5Splitting algorithms for the sum of two nonlinear operators



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0

z1



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0

z1



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0

z1

z2

z3



DRS special case: “reflect, reflect, average”

C1 and C2 are closed convex sets. Find x ∈ C1 ∩ C2, assumed to exist.

zk+1 =
1
2

zk +
1
2

(2PC1 − I )(2PC2 − I )(zk).

C1

C2

z0

z1

z2

z3

PC2 zk



Peaceman-Rachford splitting (PRS)

• DRS without averaging:

zk+1 = reflγf reflγg(zk)

• may not converge (may orbit with a fixed distance to the solution set)

• when it does converge, often faster than DRS



First-order algorithms: subgradient form

• (Sub)gradient descent:

zk+1 = zk − γ∇̃f (zk)− γ∇̃g(zk).

• Proximal point algorithm (PPA):

zk+1 = zk − γ∇̃f (zk+1)− γ∇̃g(zk+1).

• Forward backward splitting (FBS):

zk+1 = zk − γ∇̃f (zk+1)− γ∇̃g(zk).

• Douglas Rachford splitting (DRS):

zk+1 = zk − γ∇̃f (xk
f )− γ∇̃g(xk

g ).

• Douglas Rachford splitting (PRS):

zk+1 = zk − 2γ∇̃f (xk
f )− 2γ∇̃g(xk

g ).



Example: consensus optimization

minimize
x

m∑

i=1

hi(x)

• variable splitting: introduce
• x = (x1, . . . , xm),
• f (x) =

∑m
i=1

hi(xi),
• g(x) = χ{x|x1=∙∙∙=xm}(x)

• reduce to two splitting problem:

minimize
x

f (x) + g(x)

• DRS iteration: for k = 0, 1, 2, . . ., iteration

consensus average z̄k =
1
m

m∑

i=1

zk
i

for all i in parallel

{
xk

i = proxγfi
(2z̄k − zk

i );

zk+1
i = 1

2 zk
i + 1

2 (2xk
i − (2z̄k − zk

i ))



Linearly constrained splitting problem

• Formulation:

minimize
x∈H1,y∈H2

f (x) + g(y)

subject to Ax + By = b

where A : H1 → G and B : H2 → G are linear

• Function: split awkward combinations of f and g

• Main problems can be turned into this form by operator/variable

splitting



ADMM = DRS applied to the dual

• Lagrangian:

L(x, y; w) := f (x) + g(y)− wT (Ax + By − b)

• Lagrange dual:

max
w

(min
x,y
L(x, y; w)) ⇐⇒ minimize

w
f ∗(AT w) + g∗(BT w)− bT w

where ∗ denotes the convex conjugate (i.e., Legendar transform)



ADMM = DRS applied to the dual

• Lagrangian:

L(x, y; w) := f (x) + g(y)− wT (Ax + By − b)

• Lagrange dual:

max
w

(min
x,y
L(x, y; w)) ⇐⇒ minimize

w
f ∗(AT w) + g∗(BT w)− bT w

where ∗ denotes the convex conjugate (i.e., Legendar transform)

• Introduce

df (w) := f ∗(AT w) and dg(w) := g∗(BT w)− bT w

• Apply DRS algorithm to

minimize
w∈G

df (w) + dg(w)



• Obtain the simplified dual DRS iteration:

yk+1 = arg min
y
L(xk , y; wk)

wk+1 = wk − γ(Axk + Byk − b)

xk+1 = arg min
x
L(x, yk+1; wk+1)

(sequence zk is hidden)

• It is exactly equivalent to ADMM (alternating direction method of

multipliers)



Example: consensus optimization

• Consensus problem can be turned to

minimize
x,y

∑

i∈V

fi(x(i))

subject to x(i) = yij , x(j) = yij , ∀(i, j) ∈ E ,

where V and E is the set of network nodes and edges, respectively.



Example: consensus optimization

• Consensus problem can be turned to

minimize
x,y

∑

i∈V

fi(x(i))

subject to x(i) = yij , x(j) = yij , ∀(i, j) ∈ E ,

where V and E is the set of network nodes and edges, respectively.

• Apply ADMM and obtain simplified iteration:






xk+1
i = arg minxi

fi(xi) + γ|Ni |
2 ‖xi − xk

i −
1
|Ni |

∑
j∈Ni

xk
j + 1

γ|Ni |
αi‖2 + γ|Ni |

2 ‖xi‖2

αk+1
i = αk

i + γ
(
|Ni |xk+1

i −
∑

j∈Ni
xk+1

j

)
.

(Ni is the set of neighbors of node i.)



Convergence results for general ADMM (joint with D. Davis)

Ergodic rate: let xk and yk be the running mean variables

|f (xk) + g(yk)− f (x∗)− g(y∗)| = O
(1

k

)
,

‖Axk + Byk − b‖2 = O
( 1

k2

)
.

Nonergodic rate:

|f (xk) + g(yk)− f (x∗)− g(y∗)| = o

(
1
√

k

)
,

‖Axk + Byk − b‖2 = o
(1

k

)
.



Convergence results for general ADMM (joint with D. Davis)

Ergodic rate: let xk and yk be the running mean variables

|f (xk) + g(yk)− f (x∗)− g(y∗)| = O
(1

k

)
,

‖Axk + Byk − b‖2 = O
( 1

k2

)
.

Nonergodic rate:

|f (xk) + g(yk)− f (x∗)− g(y∗)| = o

(
1
√

k

)
,

‖Axk + Byk − b‖2 = o
(1

k

)
.

Comments:

• Neither objective error or constraint violation is monotonic.

• Better ergodic rate does not mean we should use the mean. It means

current iterates may not be as stable in some cases.

• Rates are given under convexity and saddle-point existence only. Lipschitz

gradients and/or strong convexity will improve them.



Application to decentralized ADMM for consensus problem

Ergodic rates:
∣
∣
∣
∣
∣

m∑

i=1

fi(x
k
i )− f (x∗)

∣
∣
∣
∣
∣

= O
( 1

k + 1

)
and

∑

i∈V
j∈Ni

‖xk
i − zk

ij‖
2 = O

(
1

(k + 1)2

)
.

Nonergodic rates:
∣
∣
∣
∣
∣

m∑

i=1

fi(x
k
i )− f (x∗)

∣
∣
∣
∣
∣

= o

(
1

√
k + 1

)
and

∑

i∈V
j∈Ni

‖xk
i − yk

ij‖
2 = o

( 1
k + 1

)
.

Linear rates for all if fi are strongly convex (with W.Shi and Q.Ling).



How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

zk+1 = Tzk

• establish firmly nonexpansiveness

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(I − T)x − (I − T)y‖2

• establish the rate for fixed-point residual

‖Tzk − zk‖2



How do we show it?

Roughly, first do operator theoretic analysis: treat each iteration as

zk+1 = Tzk

• establish firmly nonexpansiveness

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(I − T)x − (I − T)y‖2

• establish the rate for fixed-point residual

‖Tzk − zk‖2

Then, do optimization analysis

• establish relation between ‖Tzk − zk‖2 and f (xk) + g(yk)

• for ADMM, apply Fenchel-Young inequality to translate from primal to

dual



Conclusions

• Four basic operators are building blocks of many first-order algorithms

• Splitting and duality. They increase the scope those basic operators by

orders of magnitude.

• Still lots of room to develop simple yet powerful algorithms

• Convex optimization: it is possible to achieve convergence rates on a

network “similar to” the centralized case.


