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f-k Filtering  
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Sample in 

Space with an 

Array of Sensors 

and in Time 



1-D to 2-D Transformation 
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Make 2-D FIR Filters 

From 1-D FIR Filters 

(Optimal Equiripple) 



Actual 2-D Frequency Response 
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Well Logging (1980’s) 
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Acoustic Dispersion Curves 
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12-channel Sonic Tool 
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Exponential Model vs. space 
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Dispersion: velocity vs. freq 
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12-channel Sonic Tool 
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“Sparse” freq-space spectrum 
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“Sparsity” Dispersion curves 
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Model that can 

be enumerated 

ICASSP-2010 



Schlumberger-2010 (2) 
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Schlumberger-2010 (3) 
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Schlumberger-2010 (4) 
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Constraint is 

Group Sparsity 

(Joint Sparsity) 



Schlumberger-2010 (5) 
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Detection of Subsurface Objects 

 Why is important? 

 Buried Landmines and 

Improvised Explosive Devices 

are a Horrendous Problem 

 100 million landmines buried 

throughout the world 

 26,000 injuries and deaths per 

year 

 IEDs wound and kill as many 

soldiers as combat 

 Unexploded Ordinance 

 Tunnels 

 Utilities 

 Treasure 
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Autonomous  

Robotic System 

PSS-14 

PSS-14 



Detection of Subsurface Objects 

 Subsurface detection methodologies 

 Ground Penetrating Radar (GPR) 

 Seismic 

 Electromagnetic Induction (EMI) 

 Manual probing 

 Nuclear Quadrupole Resonance (NQR) 

 Biological 

 Infrared/Hyperspectral 

 Electrical Impedance Tomography 

 X-Ray Backscatter 

 Neutron Technologies 

 Electrochemical Methods 
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TX RX

Detection of Subsurface Objects 
 Given the success of medical 

imaging and terrestrial radars, 

finding buried objects would not 

seem to be difficult 

 Robust methods for finding 

subsurface objects in general have 

proven to be very difficult 

 Why is it so difficult?  

 Cluttered environment 

 Inhomogeneous soil 

 False targets 

 Only access to surface 

 Makes imaging very ill conditioned 

 Measurement time restrictions 
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Drs. Waymond Scott & M. Alam 
 

 Spectrum Analysis of Seismic Surface Waves 

 Separation of seismic waves 

 New Prony based spectrum analysis technique 
 Processing results and applications 

 

 

Locating Buried Targets (landmines)  by using Seismic Waves 

 Waves separation and ID by vector-IQML 

 Imaging algorithm 
 Optimal maneuvering 
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Prototype Seismic Mine Detection System 

Interaction of Rayleigh wave with mines can be used for detection and 

localization of mines 

W. R. Scott Jr., J. S. Martin, and G. D. Larson, 

“Experimental model for a seismic landmine detection 

system,” IEEE Trans. Geoscience and Remote Sensing, 

vol. 39, pp. 1155–1164, June 2001. 



AP Mine: 1.3 cm deep 
Raw Measured Data 
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Elastic Wave Sources and Sensors 

Development 
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 Electrical arc source 
Ultrasonic sensor 

 Air acoustic source 

Electrodynamic Shaker 

Passive air 

acoustic sensor 

 Radar Sensor  

 Ground Contacting 

Sensors 
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Multi-Channel Extension 
 Each channel can be modeled individually and then match 

them in the (k, ω) domain 

 Determine one model for two channels simultaneously  

 Same pole (k), different zeros (A) 

 Derive and use multi-channel IQML (multi-channel 

extension of Steiglitz-McBride) 
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Two Channel Space-Time Data 

Numerical FDTD Data 

Channel-x Channel-z 
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Spectrum Analysis and Polarization 

Rayleigh wave 

Polarization 

Complex amplitude for “x” and “z” are used 

to create polarization ellipse at each (k , ω ) 
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Henri Georges Doll (1902-1991) 
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Landmine Detection 

 1877: Metal Detector Patent, Alexander Graham Bell 

 1941 patent: Jozef Kosacki, Polish signal officer 

stationed in Britain 

 ~5 kHz.  Could be carried by soldier (14 kg) 

 France and US wanted vehicle mounted system 

 1940, Doll had an (EMI) prototype running in France 

 Fled France and escaped back to the US 

 Had lived and worked in Houston 1928—1938 as Schlumberger grew in US 

 1940: US started development of new mine detectors 

 Doll sets up EMR and spends 50% time during WWII 

 While continuing to serve as director at Schlumberger (SWSC) 

 1943:  won field trial vs. “Prairie Dog” 

 Delivered 505 systems by end of war 
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Henri Doll  (1945) 
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Anecdotes 
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Automatic Braking 



Henri Doll                  (1945) 
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Ground Penetrating Radar 

 GPR senses changes in 

the permittivity and 

conductivity of the 

subsurface 

 Advantages 

 Senses almost all targets of 

interest 

 Complements EMI (metal 

detectors) 

 Very fast 

 Disadvantages 

 Many sources of false alarms 
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TX RX



Sparsity-1 
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Sparsity-2 
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Dr. Ali Cafer Gurbuz:  GPR-1 
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Gurbuz:  GPR-2 
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Gurbuz:  GPR-3 
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Enumerate responses 

from all possible targets 



Gurbuz:  GPR-4 
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Gurbuz:  GPR-5 
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Gurbuz:  GPR-6 
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Sparsity Concepts 

 Enumerate all possible outcomes, and 

then pick the best one(s) 
 

 Enumerate from a model 

 Sampling density of parameters 

 RIP  more samples not necessarily better 
 

 Pick the best, but not exhaustive search! 

 Use L1 optimization to pick the answer 

 Often group sparsity applies 
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EMI Sensing of Buried Targets 

 EMI sensor will sense both  

 Magnetic susceptibility χ of the soil 

 Magnetic polarizability M of the 

targets 

 Measure R but we want 

information about the subsurface 

 Target 

 Type 

 Spatial location  

 Spatial orientation 

 Soil 

 Magnetic Properties 

 Voids 

 Consistency 

 How to get this information? 

 Very accurate measurements of R 

 Understand soil properties 

 Clever signal processing/inversion 

McClellan, Georgia Tech June 2014 50 

Soil 

Target 



Sensor Development 
 The hardware must quickly and 

accurately measure the response 

of a target to meet the goals 

 Current systems 

 High dynamic range 

 Wide bandwidth: 300 Hz to 90 KHz 

 21 logarithmically spaced frequencies 

 30 to 90 Hz update rate 

 Uncoupled from the soil 

 30 Hz update rate 
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Small Array EMI 
Small Single EMI 

Large Array EMI 



53 Krueger, Georgia Tech 

Enumerate responses 

from all possible targets ? 
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Tensor  (6 params) instead of  

enumerating rotation angles 
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“Tensor Amplitude” 
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Sparsity-Aware Parameter Estimation for 

Multiple  

Microseismic Events 

Hadi Jamali-Rad 

h.jamalirad@tudelft.nl 

Circuits and Systems (CAS) Group – Delft Univ. of Tech. (TU Delft) 

Georgia Tech 
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Background and Objectives 

 Hydraulic Fracturing?  

 Low permeability 

 Stimulation by creating fractures 

 Water & sand to stop collapse 

 What do we want to know? 

 Hypocenter 

 Moment tensors 

 Origin time 

 Why do we want to know? 

 Productivity 

 Opening, shearing, effectiveness 

 Event detection and sync. 

 Our Goal? 

 Fast & accurate recovery of source 

parameters 

 What do we measure? 

 Displacement traces 

 Geophone arrays 

 

 Fracture  =  Microseismic source 
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The Basic Idea 

 What is missed? Does it help? 

 SPARSITY (in spatial domain) 

 Incorporate in the model: Sparsity-Aware! 



Green’s Functions: Ray Tracing 
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 Moment tensor source model 

 Displacement received from a tensor source  

First Approach 

Preliminaries 
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The validity and accuracy of the proposed approach relies on the knowledge 

of the source time function: 

Second Approach 

A practical constraint 

 Is there a way to eliminate this crucial need?   

Frequency 
Domain Time 

Domain 

 A sparsity-aware framework blind to s(t)! 
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Second Approach 

Modeling: Freq.-Domain 

                    
3 × 1 

3 M × 1 
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Second Approach 

A novel estimator 

 How can we handle Nf  dictionaries and measurement vectors? 

Accuracy (LS part per freq) Group sparsity   

A novel estimator: 

 Take the specific group structure into account 

 Take the common sparsity support in different frequencies into account 

3 M × 6N 

Regularization        



Recap 

 3-axis sensors everywhere 
 

 Tensor representation 

 Formidable Computation  
 

 Sparse Representations 

 Simplify Models 

 

 Compressive Sensing 

 Simpler Acquisition 
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