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Introduction

MIMO radar is an emerging concept that has recently at-
tracted a lot of interest

MIMO radar: A radar system with multiple transmit wave-
forms that is able to jointly process signals received at multi-
ple receive antennas

A MIMO radar may be configured with widely separated or
with co-located antennas (we focus on the latter)

MIMO radar has many advantages such as extended array
aperture, improved resolution, enhanced identifiability, etc.

2 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Introduction (Cont’d)

Phased-array enables coherent processing yielding an M2N
SNR gain
As compared to phased-array, MIMO radar suffers from
several drawbacks such as

A factor of M loss in SNR gain [Daum and Huang, 2009]
A factor of M loss in clear area [Abramivich and Frazer, 2008]

Phased-MIMO radar enables applying the concept of MIMO
radar without having to sacrifice the coherent processing
gain
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Phased-MIMO Radar

Let {φk (t)}K
k=1 (1 ≤ K ≤ M) be a set of baseband orthonor-

mal waveforms
The complex envelope of the signals transmitted by M trans-
mit antennas

ψ(t)︸ ︷︷ ︸
M×1

=

√
M
K

W∗Φ(t)︸︷︷︸
K×1

Φ(t) = [φ1(t), . . . ,φK (t)]: K × 1 waveform vector
W = [w̃1, . . . , w̃K ]: M × K transmit weight matrix
w̃k : M × 1 weight vector used to form the k th Tx beam
Tx beamforming can be optimized over {w̃k}K

k=1 to satisfy
certain Tx beampattern requirements
total Tx power constraints
and/or Tx power per antenna constraints
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Phased-MIMO Radar (Cont’d)

We consider Tx array partitioning

W !





w1,1 0 . . . 0
... w2,1 0K−2

w1,M−K+1
...

... wK ,1

0K−2 w2,M−K+1
...

0 0K−2 wK ,M−K+1





Under fixed total transmit energy, the signal transmitted by
the k th subarray

sk (qT + t) =
√

M
K

w∗
kφk (t)

wk : (M-K+1)× 1 unit-norm weight vector
Esk = M/K : total Tx energy constraint (ET = M)

5 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Phased-MIMO Radar (Cont’d)

Signal reflected from target

r(qT + t) !
√

M
K
βt(q)

K∑

k=1

e−τk (θt )
(

wH
k ak (θt)

)
φk (t)

βt(q): target reflection coefficient (changes from pulse to
pulse)
τk (θt): propagation time-delay between 1st element of 1st
subarray and 1st element of k th subarrays
The N × 1 received data snapshot

x(qT + t) =

√
M
K
βt(q)

K∑

k=1

e−τk (θt )
(

wH
k ak (θt)

)
b(θt)φk (t)

+xi+n(qT + t)
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Phased-MIMO Radar (Cont’d)

Using K matched filters

xk (q) !
∫

T
x(qT + t)φ∗

k (t)dt , k = 1, . . . ,K

Stacking {xk (q)}K
k=1 yields the KN × 1 virtual snapshot

y(q) =
√

M
K
βt(q)u(θt) + yi+n(q) (1)

u(θ) is the KN × 1 virtual steering vector

u(θ) !




wH

1 a1(θ)e−τ1(θ)

...
wH

K aK (θ)e−τK (θ)



⊗ b(θ). (2)

7 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Phased-MIMO Radar (Cont’d)

For K = 1, (1) and (2) simplify to the phased-array while the
case K = M corresponds to MIMO radar.

The benefits of MIMO radar can be achieved at a higher
SNR gain.

Tx beamforming can be optimized over {wk}K
k=1 to satisfy

certain Tx beampattern requirements.
Tx power constraints, e.g. per antenna
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Non-adaptive Tx/Rx Beamforming

We analyze the performance of the proposed formulations in the
context of conventional Tx/Rx beamforming

Tx/Rx beamforming weights

wk =
1√

M − K + 1
ak (θt)

wd = u(θt)

Normalized Tx/Rx Beampattern

GK (θ) !
∣∣wH

d u(θ)
∣∣2

∣∣wH
d u(θt)

∣∣2
=

∣∣u(θt)Hu(θ)
∣∣2

‖u(θt)‖2
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Phased-MIMO Tx/Rx Beampattern

For simplicity, consider ULA
e−τk (θ) = a[k ](θ)
wH

1 a1(θ) = . . . = wH
K aK (θ)

Rewriting the virtual steering vector

u(θ) =




wH

1 a1(θ)e−τ1(θ)

...
wH

K aK (θ)e−τK (θ)



⊗ b(θ) = wH
K aK (θ)[ã(θ)⊗ b(θ)]

ã(θ): K × 1 vector (first K entries of a(θ))
aK (θ): last M − K + 1 entries of a(θ)
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Phased-MIMO Tx/Rx Beampattern (Cont’d)

Rewrite the beampattern expression as

GK (θ) =

∣∣aH
K (θt)aK (θ)

∣∣2

‖aK (θt)‖2
︸ ︷︷ ︸

CK (θ)

·
∣∣ãH(θt)ã(θ)

∣∣2

‖ã(θt)‖2
︸ ︷︷ ︸

DK (θ)

·
∣∣bH(θt)b(θ)

∣∣2

‖bK (θt)‖2
︸ ︷︷ ︸

R(θ)

(3)

CK (θ): Tx coherent processing pattern
DK (θ): waveform diversity pattern
R(θ): Rx coherent processing pattern (does not depend on K )
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Phased-MIMO Tx/Rx Beampattern (Cont’d)

By inspecting (3), we have
For K = 1 (Phased-array radar)

C1(θ) =

∣∣aH(θt)a(θ)
∣∣2

‖aH(θt)‖2 , D1(θ) = 1

Maximum Tx coherent gain, no diversity gain
For K = M (Traditional MIMO radar)

CM(θ) = 1, DM(θ) =

∣∣aH(θt)a(θ)
∣∣2

‖aH(θt)‖2

No Tx coherent gain, Maximum waveform diversity gain
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Phased-MIMO Output SINR

The output SINR

SINR !
M
K σ2

βt
|wdu(θt)|2

wdRi+nwd
=

M
K σ2

βt
|uH(θt)u(θt)|2

Pi + σ2
n‖u(θt)‖2

Dominant noise power (Pi ' σ2
n)

SINRK (
σ2
βt

σ2
n
· M

K
‖u(θt)‖2

= M(M − K + 1)N︸ ︷︷ ︸
Gain

σ2
βt

σ2
n︸︷︷︸

SNR
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Phased-MIMO Output SINR (Cont’d)

Dominant noise power (Cont’d)
Phased-array output SINR (K = 1)

SINRPH ( M2N
σ2
βt

σ2
n

MIMO output SINR (K = M)

SINRMIMO ( MN
σ2
βt

σ2
n

=
1
M

SINRPH

Phased-MIMO output SINR

SINRPH−MIMO ( M − K + 1
M

× SINRPH (4)
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Output SINR (Cont’d)

Dominant interference power:
Phased-array and MIMO radars have the same same side-
lobe levels, hence

SINRMIMO ( SINRPH

Phased-MIMO radar is shown to have

SINRPH−MIMO ≥ SINRPH

via proving

SL

{
sin KΩ

2

K sin Ω
2
·

sin (M−K+1)Ω
2

(M − K + 1) sin Ω
2

}
≤ SL

{
sin MΩ

2

M sin Ω
2

}

Ω ! πd sin(θ)
λ

SL{·} highest sidelobe level

15 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Phased-Array Tapering

Consider the special case when

φ1(t) = . . . = φ1(t) = φ(t)

can be interpreted as phased-array with tapering
Applying the same beamforming weights per each subar-
ray yields the same beampattern and SINR gain as that of
phased-MIMO radar
However, the waverform diversity and the corresponding
benefits are lost
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Example 1: Beampatterns

M = 10 sensors spaced half a wavelength apart. Same
array for Tx/Rx.
Target located at θt = 10◦

Two interferences located at −30◦ and −10◦.
K = 5 subarrays
{
ϕk (t) = e2π k

T t
}K

k=1
.
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Example 1: Transmit Beampattern

Transmit beampattern
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Example 1: Diversity Beampattern

Diversity beampattern
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Example 1: Overall Tx/Rx Beampattern

Overall Tx/Rx beampattern
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Example 2: Output SINR under weak interference
power

INR = −30 dB
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Example 3: Output SINR under dominant interference
power

INR = 30 dB
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DOA Estimation in MIMO Radar

DOA estimation for MIMO radar using ESPRIT [Duofang et.
al.’08] and PARAFAC [Nion and Sidropoulos, ICASSP’09].
In some applications, a priori information about the general
angular source sectors is available.
Omni-directional transmission results in waste of energy in
the out-of-sector areas.
Full-waveform diversity based MIMO radar suffers from SNR
loss.

Solution
The SNR per virtual antenna can be increased by

transmitting less waveforms of higher energy.
focusing transmitted energy within certain spatial sectors.
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Contents

A method for designing the transmit weight matrix, which is
based on maximizing the energy transmitted within the de-
sired spatial sector and minimizing the energy disseminated
in the out-of-sector area, is developed.
The proposed transmit energy focusing results in SNR im-
provement at the receive array enabling better DOA estima-
tion performance.
An expression for the Cramer-Rao bound that shows its
dependence on the transmit weight matrix and the number
of transmitted waveforms is derived.
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MIMO Radar Signal Model

Transmitting M waveforms, l th target reflection is given by

rl(t , τ) !
√

E
M

βl(τ)aT (θl)φ(t).

Assuming L targets, the N ×1 received vector is modeled as

x(t , τ) =
L∑

l=1

rl(t , τ)b(θl) + z(t , τ).

Matched-filtering the received data to the transmitted wave-
forms yields

y(τ) =

√
E
M

L∑

l=1

βl(τ) a(θl)⊗ b(θl)︸ ︷︷ ︸
MN×1

+z̃(τ). (5)
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Proposed Formulations

The signal radiated from a beam towards the direction θ can
be modeled as

s(t , θ)=
√

E
K

cH
k a(θ)φk (t)

Forming K transmit beams, the N × 1 received vector is
modeled as

x(t , τ)=
√

E
K

L∑

l=1

αl(τ) ·
((

CHa(θl)
)T

φK (t)
)

b(θl)+z(t , τ).

Matched-filtering xbeam(t , τ)to the k th transmitted waveforms

xk (τ) !
∫

x(t , τ)φ∗
k (t)dt =

√
E
K

L∑

l=1

αl(τ)
(

cH
k a(θl)

)
b(θl) + zk (τ)
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Proposed Formulations (Cont’d)

Stacking the individual vector components into one column
vector, the KN × 1 virtual data vector is obtained as

y(τ) ! [xT
1 (τ) · · · xT

K (τ)]
T

=

√
E
K

L∑

l=1

αl(τ)
(

CHa(θl)
)
⊗ b(θl) + z̃K (τ). (6)

SNR improves due to
|cH

k a|2: transmit beamforming gain.
E/K : increased energy of k th waveform.
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Transmit Beamspace Design

The transmit weight matrix C is designed based on maximiz-
ing the ratio

Γk !
∫

T
∫
Θ

∣∣cH
k a(θ)φk (t)

∣∣2dθdt
∫

T
∫ π
−π |c

H
k a(θ)φk (t)|2dθdt

=
cH

k
(∫

Θ a(θ)aH(θ)dθ
)
ck∫ π

−π |c
H
k a(θ)|2dθ

=
cH

k Ack

2πcH
k ck

(7)

A !
∫
Θ a(θ)aH(θ)dθ is a positive definite matrix.

The maximization of the expression (7) is equivalent to max-
imizing its numerator while fixing its denominator.
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Transmit Beamspace Design (Cont’d)

One way to insure that c1 *= c2 . . . *= cK is to impose the
constraint CHC = I.
The maximization of {Γk}K

k=1 subject to the constraint CHC =
I yields

C = [u1,u2, . . . ,uK ]

{ui}K
i=1 are K principal eigenvectors of A.

It is worth noting that the use of principle eigenvectors for
transmit beamforming has been used by [Frazer, et. al.,
2007] to minimize the reactive power at the transmitter.
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Transmit Beamspace Based MUSIC

The virtual data model (6) can be rewritten as

y(τ) =

√
E
K

Vα(τ) + z̃K (τ)

α(τ)! [α1(τ), . . . ,αL(τ)]
T

V! [v(θ1), . . . ,v(θL)]
v(θ) =

(
CHa(θ)

)
⊗ b(θ).

The KN × KN transmit energy focusing based covariance
matrix is then given by

R ! E
{

y(τ)yH(τ)
}
=

E
K

VSVH + σ2
z IKN
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Transmit Beamspace Based MUSIC (Cont’d)

The eigendecomposition of R̂ can be written as
R̂ = EsΛsEH

s + EnΛnEH
n .

The transmit energy focusing based spectral-MUSIC estima-
tor can be expressed as

f (θ) =
vH(θ)v(θ)

vH(θ)Qv(θ)
Q = EnEH

n = I − EsEH
s is the projection matrix onto the noise

subspace.
Substituting v(θ) into (31), we obtain

f (θ) =
NaH(θ)CCHa(θ)

[(
CHa(θ)

)
⊗ b(θ)

]HQ
[(

CHa(θ)
)
⊗ b(θ)

] .
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Cramer-Rao Bound
The CRB for estimating the DOAs can be expressed as

CRB(θ) =
σ2

z K
2QE

{
Re

(
DHP⊥

V D + GT
)}−1

P⊥
V ! V(VHV)−1VH , G ! (SVHR−1VS), D ! [d(θ1), . . . ,d(θL)]

d(θ) =
d
[
(CHa(θ))⊗ b(θ)

]

dθ
= (CHa′(θ))⊗ b(θ) + (CHa(θ))⊗ b′(θ).

It can also be shown that if CK+1 = [CK , cK+1] (cK+1 is a
non-principal eigenvector) is used, then we have

CRBK+1 > CRBK .
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Simulation Results

ULA, ∆ = λ/2, M = 10, and Θ = [−10◦ 10◦].
Two types of receivers (i) a single receive antenna; (ii) an
arbitrary linear receive array of N = 10 antennas; random
locations.
Two targets are located at directions 2◦ and 4◦.
Fixed total transmit energy E = M.
Targets are assumed to be resolved if

|θ̂i − θi | ≤
|θ2 − θ1|

2
, i = 1, 2.
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Simulation Results (Cont’d)

RMSE versus SNR
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Simulation Results (Cont’d)

Probability of source resolution
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Simulation Results (Cont’d)

CRB versus number of transmit beams K
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Transmit Beamspace Signal Model

Assume L targets are located within spatial sector Θ.
Each transmit subarray is taken as the whole transmit array,
i.e., all K subarrays are identical.
Let W(θ) = [w1, . . . ,wK ] be the M × K transmit beamspace
matrix.
The M × 1 weight vector wk can be designed to focus the
energy of the k th waveform within Θ.
The N × 1 received vector

xbeam(t , q)=
√

E
K

L∑

l=1

βl(q)b(θl)
(

WHa(θl)
)T

Φ(t)+z(t , q).

Φ(t) ! [φ1(t), . . . ,φK (t)]T : K × 1 waveform vector.

37 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Transmit Beamspace Signal Model (Cont’d)

Match-filtering to the K transmitted waveforms

yk (q) =

∫

T
xbeam(t , q)φ∗

k (t)dt , k = 1, . . . ,K

=

√
E
K

L∑

l=1

βl(q)
(

wH
k a(θl)

)
b(θl) + zk (q). (8)

Rewrite (8) as

yk (q) = Bkβ(q) + zk (q). (9)

Bk ! [b(θ1), . . . ,b(θL)]Ψk
Ψk ! diag

{
wH

k a(θ1), . . . ,wH
k a(θL)

}

β(q) ! [β1(q), . . . ,βL(q)]T .
The form (9) enjoys rotational invariance properties

Bk = BjΨ
−1
j Ψk , k , j = 1, . . . ,K .

Therefore, PARAFAC/ESPRIT can be applied to (8).
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Transmit Beamspace Based ESPRIT

When K = 2, i.e., two transmit beams

B2 = B1Ψ

Ψ ! diag

{
wH

2 a(θ1)

wH
1 a(θ1)

, . . . ,
wH

2 a(θL)

wH
1 a(θL)

}
. (10)

Rewrite (10) as

Ψ = diag
{

A(θ1)eΩ(θ1), . . . ,A(θL)eΩ(θL)
}

A(θ) = |wH
2 a(θ)/wH

1 a(θ)|, Ω(θ) = angle
{

wH
2 a(θ)/wH

1 a(θ)
}

.
ESPRIT-based techniques can estimate Ψ.
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Special Case: ULA Transmit Array

Assuming w1 = [w̃T 0]T and w2 = [0 w̃T ]T , then

w̃Ha2(θ) = w̃Ha1(θ)e− 2πd
λ sin θ

a1(θ): contains first M − 1 of a(θ),
a2(θ): contains last M − 1 of a(θ).
In this case,

Ψ = diag
{

e− 2πd
λ sin θ1 , . . . ,e− 2πd

λ sin θL
}
.
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Simulation Results

M = 10 transmit antennas spaced half a wavelength apart.
N = 10 receive antenna (arbitrary array)
Two target located at θ1 = 1◦ and θ2 = 3◦

The sector of interest is [−5◦ 5◦].
Fixed total transmit energy E = M.
Two orthogonal transmit waveforms are used.
w̃ = [−0.5623 − 0.5076 − 0.4358 − 0.3501 − 0.2542
−0.1524 − 0.0490 0.0512 0.1441]T .
Targets are assumed to be resolved if

|θ̂i − θi | ≤
|θ2 − θ1|

2
, i = 1, 2.
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Simulation Results (Cont’d)

42 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Simulation Results (Cont’d)
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Simulation Results (Cont’d)
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2D Arrays

Sparse 2D transmit arrays are commonly used in practice to
reduce the cost.
Sparse 2D arrays are also used to realize dual-band radar
systems.
Sparse arrays do not straightforwardly enable the use of
computationally efficient direction finding algorithms.

A method for mapping an arbitrary transmit array into an
array with virtually uniform structure enables

SNR improvement due to 2D transmit beamforming gain.
Root-MUSIC for computationally efficient target localization.
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Signal Model and Problem Formulation

Consider a MIMO radar with planar transmit and receive
arrays of M and N antennas, respectively.
The transmit array can be a non-uniform array or a sparse
array.
The M × 1 transmit array steering vector can be represented
as

a(θ,φ) =
[
e−j2πµT (θ,φ)p1 , . . . ,e−j2πµT (θ,φ)pM

]T

θ and φ: Elevation and Azimuth angles, respectively
pm ! [xm ym]T , m = 1, . . . ,M: Locations of the transmit
antennas
µ(θ,φ) = [sin θ cosφ sin θ sinφ]T : The propagation vector.
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Signal Model and Problem Formulation (Cont’d)
Let C = [c1, . . . ,cQ] be the M × Q interpolation matrix
(Q ≤ M).
Let d(θ,φ) be the Q × 1 interpolated array steering vector

CHa(θ,φ) ( d(θ,φ) θ ∈ Θ, φ ∈ Φ

The signal radiated towards a hypothetical spatial location
(θ,φ) is

ξ(t , θ,φ)=dT (θ,φ)s(t) =
Q∑

i=1

(
cH

i a(θ,φ)
)

si(t)

s(t) = [s1(t), . . . , sQ(t)]: Q × 1 vector of orthogonal wave-
forms.
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Signal Model and Problem Formulation (Cont’d)
Assuming L targets, the receive observation vector is

x(t , τ) =
L∑

l=1

βl(τ)
(

dT (θl ,φl)s(t)
)

b(θl ,φl) + z(t , τ)

τ : Radar pulse number
βl(τ): Reflection coefficient associated with l-th target
b(θ,φ): N × 1 steering vector of the receive array
z(t , τ): N × 1 additive noise vector.
Matched-filtering x(t , τ) to si(t) yields

yi(τ) =
L∑

l=1

βl(τ)

(
cH

i a(θl ,φl)

)

︸ ︷︷ ︸
Transmit Processing Gain

b(θl ,φl) + zi(τ), i = 1, . . . ,Q
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LS-based Transmit Array Interpolation
The interpolation matrix C can be computed as the LS solu-
tion to

CHA = Ã (11)

A = [a(θ1,φ1), . . . ,a(θKΘ
,φ1), . . . ,a(θKΘ

,φKφ
)] (size : M×KθKφ)

Ã = [ã(θ1,φ1), . . . , ã(θKΘ
,φ1), . . . , ã(θKΘ

,φKφ
)] (size : M̃×KθKφ)

θk ∈ Θ, k = 1, . . . ,Kθ: Angular grid that approximates the
sector Θ
φk ∈ Φ, k = 1, . . . ,Kφ: Angular grid that approximates the
sector Φ.
Given that KθKφ ≥ M, the LS solution to (11) can be given
as

C =
(

AAH
)−1

AÃH

This solution exhibits very high sidelobe levels resulting in
wasting the transmit power within the out-of-sector regions!
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Transmit Interpolation Matrix Design

Minimize the maximum difference between the mapped array
steering vector and the desired one within a certain sector
(Θ,Φ) while keeping the sidelobe level bounded by some
constant.
The interpolation matrix design (convex) problem:

min
C

max
θk ,φk′

∥∥∥CHa(θk ,φk ′)− d(θk ,φk ′)
∥∥∥

1
(12)

θk ∈ Θ, k = 1, . . . ,Kθ, φk ′ ∈ Φ, k ′ = 1, . . . ,Kφ

subject to
∥∥∥CHa(θn,φn′)

∥∥∥
1
≤ γ,

θn ∈ Θ̄, n = 1, . . . ,Nθ, φn′ ∈ Φ̄, n′ = 1, . . . ,Nφ

γ is a positive number of user choice used to upper-bound
the sidelobe level.
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Transmit Interpolation Matrix Design (Cont’d)

Alternative interpolation matrix design (convex) problem:

min
C

max
θn,φn′

∥∥∥CHa(θn,φn′)
∥∥∥

1
(13)

θn ∈ Θ̄, n = 1, . . . ,Nθ, φn′ ∈ Φ̄, n′ = 1, . . . ,Nφ

subject to
∥∥∥CHa(θk ,φk ′)− d(θk ,φk ′)

∥∥∥
1
≤ ∆

θk ∈ Θ, k = 1, . . . ,Kθ, φk ′ ∈ Φ, k ′ = 1, . . . ,Kφ

∆ is a positive number of user choice used to control the
deviation of the interpolated array from the desired one.
Note: Other requirements can also be enforced by imposing
additional constraints in (12) and (13). Spectral Constraints
[Rowe, Stoica, Li’14]
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Root-MUSIC Based Localization

Assume L-shaped desired array with half wavelength inter-
element spacing d(θ,φ) = [uT (θ,φ) vT (θ,φ)]T

u(θ,φ)=
[
1, e−jπ sin θ cosφ, . . . ,e−jπ(Md−1) sin θ cosφ

]T

v(θ,φ)=
[
1, e−jπ sin θ sinφ, . . . ,e−jπ(Nd−1) sin θ sinφ

]T

Md : Number of desired elements on x-axis
Nd : Number of desired elements on y-axis
Solving either (1) or (2) yields

CHa(θ,φ) ≈ [uT (θ,φ) vT (θ,φ)]T , θ ∈ Θ, φ ∈ Φ
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Root-MUSIC Based Localization (Cont’d)

Construct the Md × N data matrix

Yu(τ) = [y1(τ), . . . ,yMd (τ)]
T

≈
L∑

l=1

βl(τ)u(θ,φ)bT (θl ,φl) + Zu(τ)

Build the Md × Md covariance matrix

R̂u =
Ts∑

τ=1

Yu(τ)YH
u (τ)

Apply root-MUSIC to obtain the estimates

ζl = sin θl cosφl , l = 1, . . . ,L
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Root-MUSIC Based Localization (Cont’d)

Similarly, construct the Nd × N data matrix

Yv (τ) = [yMd+1(τ), . . . ,yMd+Nd (τ)]
T

≈
L∑

l=1

βl(τ)v(θ,φ)bT (θl ,φl) + Zv (τ)

Build the Nd × Nd covariance matrix

R̂v =
Ts∑

τ=1

Yv (τ)YH
v (τ)

Apply root-MUSIC to obtain the estimates

νl = sin θl sinφl , l = 1, . . . ,L
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Root-MUSIC Based Localization (Cont’d)

The ζl and νl estimates can be further arranged in the form

χl = ζl + jνl , l = 1, . . . ,L

The estimates of the elevation angles are obtained as

θ̂l = sin−1(|χl |), l = 1, . . . ,L

The estimates of the azimuth angles are obtained as

φ̂l = ∠(χl), l = 1, . . . ,L
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Simulation Results

M = 64 transmit antennas; x- and y-components of their
positions be drawn randomly from the interval [0, 8λ]
Transmit sector: Θ = [30◦, 40◦] and Φ = [100◦, 110◦]

L-shaped array: Md = 5 equally spaced along the x-axis;
Nd = 5 equally spaced along the y-axis
Unknown target direction θ = 35◦ and φ = 105◦

C is designed using (13) for ∆ = 0.1, 0.02, and 0.001
N = 16 elements receive array (locations drawn randomly
from [0, 10λ])
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Simulation Results (Cont’d)

Transmit beampattern for ∆ = 0.1
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Simulation Results (Cont’d)

Transmit beampattern for ∆ = 0.02
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Simulation Results (Cont’d)

Transmit beampattern for ∆ = 0.001
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Simulation Results (Cont’d)

Probability of in-sector detection versus SNR.
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Simulation Results (Cont’d)

RMSE versus SNR.
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ESPRIT-based 2D DOA Estimation

Without loss of generality, we choose the desired array to be
two perpendicular linear subarrays of two elements each.
The virtual locations of the elements of the two subarrays
are [x̃1, 0]T , [x̃2, 0]T , [0, ỹ1]

T , and [0, ỹ2]
T (x̃1, x̃2, ỹ1, and

ỹ2 measured in wavelength).
Also choose the desired ã(θ,φ) to take the following format

ã(θ,φ) =





e−j2πx̃1 sin θ

e−j2πx̃2 sin θ

e−j2πỹ1 sinφ

e−j2πỹ2 sinφ



, θ ∈ Θ, φ ∈ Φ.
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ESPRIT-based 2D DOA Estimation (Cont’d)

The matched filtered virtual data at the receiver simplifies to

y1(τ) ≈
L∑

l=1

βl(τ)e−j2πx̃1 sin θl b(θl ,φl) + z1(τ)

y2(τ) ≈
L∑

l=1

βl(τ)e−j2πx̃2 sin θl b(θl ,φl) + z2(τ)

y3(τ) ≈
L∑

l=1

βl(τ)e−j2πỹ1 sinφl b(θl ,φl) + z3(τ)

y4(τ) ≈
L∑

l=1

βl(τ)e−j2πỹ2 sinφl b(θl ,φl) + z4(τ)

y1 and y2 enjoy rotational invariance that enables estimating
θl , l = 1, . . . ,L.
y3 and y4 enjoy rotational invariance that enables estimating
φl , l = 1, . . . ,L.
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Simulation Results

8 × 8 non-uniform rectangular transmit array
Θ = [30◦, 40◦] and Φ = [95◦, 105◦]

x̃1 = ỹ1 = λ/2 and x̃2 = ỹ2 = λ (λ is the wavelength)
Two targets located φ1 = 98◦, φ2 = 101◦, θ1 = 33◦ and
θ2 = 37◦

C is designed using (13)–(14) using ∆ = 0.1
N = 16 elements receive array (locations drawn randomly
from [0, 2λ])

64 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Simulation Results (Cont’d)

Normalized transmit beampattern
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Simulation Results (Cont’d)

Left: Phase rotation between first and second elements of the
interpolated arrays. Right: Phase rotation between third and

forth elements of the interpolated arrays
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Simulation Results (Cont’d)

RMSE versus SNR
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Capability of Jammers Suppression

Jammers suppression is one of the most important issues
in radar signal processing.
MIMO radar with colocated antennas shows advantages
over phased-array (PA) radar, and provides designers with
more opportunities to achieve multiple goals.
Capability of efficient suppression on powerful jammers for
MIMO radar has not been studied in previous works.
Spatial processing techniques (with reduced dimension
(RD)) such as beamspace processing or beamforming tech-
niques significantly reduce the computational complexity.
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Contents

Three RD beamspace designs with robustness or adap-
tiveness are proposed.
Reasonable tradeoffs among desired in-sector source pre-
servation, powerful in-sector jammer suppression, and out-
of-sector interference attenuation are made when designing
beamspace matrices.
Two robust beamformers are designed for known/unknown
in-sector jammers suppression.
Efficient source power estimates in the context of powerful
jammers and non-ideal factors are derived.
Capability of efficient in-sector jammers suppression using
these designs is shown to be unique in MIMO radar.

69 / 108



Intro T/R Beamforming Tr Energy Focusing Tr Array Mapping Localization Jammers Suppresstion TB AF Ref Contr

Background

Jamming signals take the form of high-power transmission
that aim at impairing the receive system.
Terrain-scattered jamming occurs when the high-power jam-
mer transmits its energy to ground, and it reflects the energy
in a dispersive manner.
Jamming appears at the receive array as distributed source.
Jammers suppression becomes more challenging when jam-
ming impinges on the receive array from the same direction
as the desired target.
Situation worsens even more since the powerful jammers
are generally unknown.
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Signal Model

L targets including the desired and interfering sources, J
presumed powerful jammers
The received signal can be modeled as

y(τ) =
L∑

l=1

αl(τ)v(θl) +
J∑

j=1

βj(τ)ṽ
(
θj
)
+ ~z(τ)

where
!
"

#
$v(θl) ! a(θl)⊗ b(θl) and

!
"

#
$ṽ(θj) ! 1M ⊗ b(θj) .

Jammer does not originate from the transmit array, therefore,
does not depend on the transmit array steering vector.
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RD Beamspace Processing

RD beamspace matrix B of size MN × D (D ' MN) with
transformation

ỹ(τ) = BHy(τ).

Covariance matrix:

Eigendecomposition:

Rỹ ! E
{

ỹ(τ)ỹH(τ)
}
= BHRyB

R̂ỹ = EsΛsEH
s + EnΛnEH

n

Beamspace spectral-MUSIC DOA estimator

f (θ) =
vH(θ)BBHv(θ)

vH(θ)BQBHv(θ)

Q ! EnEH
n = ID − EsEs is the projection matrix.
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Assumptions

Desired targets are located within a known (or pre-estimated)
angular sector Θ.
Powerful jamming sources are also present within the sector-
of-interest Θ, and can even have the same spatial directions
as targets.
Interfering sources are present in the out-of-sector spatial
area Θ.
Generally, all the possible in-sector jamming and out-of-
sector interfering sources are unknown.
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Beamspace Design I

Build a quiescent response beamspace matrix Bq using
spheroidal sequences based methods. Θ using spheroidal
sequences based methods.
Upper-bound the acceptable difference between the desired
beamspace matrix B and the quiescent one Bq while maxi-
mizing the worst-case in-sector jammers suppression.
Maintain out-of-sector sidelobes below a certain level.

min
B

max
i

∥∥∥BH ṽ(θi)
∥∥∥, θi ∈ Θ, i = 1, . . . ,Q

s.t.
∥∥B − Bq

∥∥
F ≤ ε

∥∥∥BHv
(
θ̄k
)∥∥∥ ≤ γ, θ̄k ∈ Θ̄, k = 1, . . . ,K .

(14)
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Beamspace Design II

Build a quiescent beamspace matrix Bq.
Minimize the difference between the desired and quiescent
response beamspace matrices while keeping the in-sector
jammers suppression higher than a certain desired level.
If needed, keep the out-of-sector interference attenuation at
an acceptable level.

min
B

∥∥B − Bq
∥∥

F

s.t.
∥∥∥BH ṽ(θi)

∥∥∥ ≤ δ, θi ∈ Θ, i = 1, . . . ,Q
∥∥∥BHv

(
θ̄k
)∥∥∥ ≤ γ, θ̄k ∈ Θ̄, k = 1, . . . ,K .

(15)
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Beamspace Design III

Data-adaptive approach is meaningful especially when jam-
mers and/or interfering sources are varying.
Build a quiescent beamspace matrix Bq.
Minimize output power of ỹ(τ) while maintaining beamspace
matrix difference, in-sector jammers suppression, and out-
of-sector interference attenuation below desired levels.

min
B

tr
{

BHRyB
}

s.t.
∥∥B − Bq

∥∥
F ≤ ε

∥∥∥BH ṽ(θi)
∥∥∥ ≤ δ, θi ∈ Θ, i = 1, . . . ,Q

∥∥∥BHv
(
θ̄k
)∥∥∥ ≤ γ, θ̄k ∈ Θ̄, k = 1, . . . ,K .

(16)
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Technical Details

Feasibility

(14) and (15) are always feasible for reasonable δ and γ.

Feasibility of (16) is guaranteed if ε ≥ εmin (minimum value of
‖B − Bq‖F by solving (15)) is used for fixed δ and γ.

Beamspace dimension

Depends on the width of Θ, no smaller than the number of
principal eigenvalues of A !

∫
Θ vH(θ)v(θ)dθ.

No smaller than the number of desired targets for MUSIC-
based DOA estimation.
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Robust Beamforming I

Case I: Known Jammer Directions
Maintain a distortionless response towards the desired target
direction θt .
Enforce deep nulls towards the spatial directions of the jam-
mers.

min
w

wHRw

s.t. wHv(θt) = 1

wH ṽ
(
θj
)
= 0, j = 1, . . . , J

R: MN × MN covariance matrix of interference plus jammer
and noise.
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Robust Beamforming II

Case II: Unknown Jammer Directions
Enforce deep nulls towards all the possible directions of the
jammers and, if needed, the out-of-sector interfering source
attenuation should be kept to an acceptable level.

min
w

wHRw

s.t. wHv(θt) = 1
∣∣∣wH ṽ(θi)

∣∣∣ ≤ δ, θi ∈ Θ, i = 1, . . . ,Q
∣∣∣wHv

(
θ̄k
)∣∣∣ ≤ γ, θ̄k ∈ Θ̄, k = 1, . . . ,K .
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Source Power Estimation

Performance degrades when array calibration errors and mis-
matches between the presumed and actual target steering
vectors are present.
Robust beamforming design II can be approximated by the
following strengthened optimization problem

min
w

wHRw

s.t. wH v̄(θt) = 1

‖wH Ṽ‖2 ≤ δ̃

where Ṽ ! [ṽ(θ1), . . . , ṽ(θQ)], δ̃ ! Qδ2, and ‖v̄(θ)−v(θ)‖2 ≤
ε.
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Source Power Estimation (Cont’d)

Closed-form solutions

I. If v̄H (θt )R−1RṼR−1v̄(θt )

[v̄H (θt )R−1v̄(θt )]
2 ≤ δ̃, then w̄ = R−1v̄(θt )

v̄H (θt )R−1v̄H (θt )
.

II. If v̄H (θt )R−1RṼR−1v̄(θt )

[v̄H (θt )R−1v̄(θt )]
2 > δ̃, then w̄ =

(R+λ̄RṼ)
−1v̄(θt )

v̄(θt )
H(R+λ̄RṼ)

−1v̄(θt )
.

Source power estimate can be derived as

σ̄2
0 =

v̄(θt)
H(R + λ̄RṼ

)−1R
(
R + λ̄RṼ

)−1v̄(θt)
[
v̄(θt)

H(R + λ̄RṼ
)−1v̄(θt)

]2 (17)

which is valid for both conditions (λ̄ = 0 for the first one),
and RṼ ! ṼṼH .
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Simulation Results of Beamspace Designs

ULA, dT = dR = λ/2, M = 16, N = 8, and Θ = [10◦, 25◦].
Target DOAs θt = 16.5◦ and 18.5◦.
Interfering source DOAs θ = −35◦, −20◦,−5◦, and 50◦,
respectively.
SNR = 0 dB, INR = 40 dB, and JNR = 50 dB.
D = 7, γ = 0.2, δ = 0.1, and ε = 1.467.
Targets are assumed to be resolved if

|θ̂i − θi | ≤
|θ2 − θ1|

2
, i = 1, 2.
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Simulation Results of Beamspace Designs (Cont’d)
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Simulation Results of Beamspace Designs (Cont’d)
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DOA estimation performance versus SNR. 5 jammers located
between 15.5◦ and 19.5◦ are present.
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Simulation Results of Robust Beamforming

ULA, dT = dR = λ/2, M = 10, N = 10, and Θ = [10◦, 25◦].
Target DOA θt = 18◦.
Interfering sources DOAs θ = −35◦, −20◦,0◦, and 50◦,
respectively.
SNR = 5 dB, INR = 40 dB, and JNR = 50 dB.
δ̃ = 0.0001.
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Simulation Results of Robust Beamforming (Cont’d)
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Simulation Results of Robust Beamforming (Cont’d)
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(f) Power estimates versus angles.
The second example. Three jamming signals with the DOAs

θj = 15◦, 18◦, and 21◦, respectively, are present.
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Ambiguity Function of the TB-Based MIMO Radar

Ambiguity function (AF) serves as a fundamental tool to
evaluate radar waveform or resolution performance.
Transmit beamspace (TB)-based MIMO radar focuses en-
ergy of multiple transmitted waveforms within a certain spa-
tial sector where a target is likely present via TB design
techniques.
Essence of the TB-based MIMO radar is to achieve im-
proved SNR gain and increased aperture simultaneously.
Superior DOA estimation performance in a wide range of
SNRs can be achieved in the TB-based MIMO radar.
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Contents

AF for the TB-based MIMO radar for the case of far-field
targets and narrow-band waveforms is derived.
Equivalent transmit phase centers are introduced in the AF
definition.
It serves as a generalized AF form for the existing radar con-
figurations including phased-array (PA) radar and traditional
MIMO radar (with subarrays).
Relationships between the defined TB-based MIMO radar
AF and the previous AF works are established.
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Background

Woodward’s AF serves as the groundbreaking work on AF.
Traditional MIMO radar AF becomes invalid for TB-based
MIMO setup since TB processing allows non-orthogonal or
correlated waveforms to be emitted at each antenna.
Waveform correlation matrix design for desired transmit
beampattern can be simplified to TB matrix design in tradi-
tional MIMO radar.
In-depth study on TB-based MIMO radar AF may also pro-
vide insight into facilitating the clutter/interference mitigation
in airborne MIMO radar system using TB design.
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Signal Model

K (in general,K ≤ M) initially orthogonal waveforms are
emitted.
K transmit beams that fully cover the pre-estimated spatial
sector Ω are formed using TB matrix C ! [c1, . . . ,cK ].
Signal model
Signal radiated via the k th beam:

sk (t) =
√

E
K

cT
k a(θ)φk (t), k = 1, . . . ,K .

Signal radiated from the mth antenna:

s̃m(t) =
√

E
K

K∑

k=1

cmkφk (t), m = 1, . . . ,M.
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Signal Model (Cont’d)

Let the received signal at the j th antenna be r̂j(t ,Θ).
Matched filtered noise-free signal component w.r.t. the i th
waveform is

r̄ ′ji
(
Θ,Θ′) =

∫
r̂j(t ,Θ)φ∗

i
(
t ,Θ′)dt

=

√
E
K

M∑

m=1

K∑

k=1

αmj

∫
cmkφk

(
t − τmj(p)

)
φ∗

i
(
t − τq(i)j

(
p′))

× exp
{
−j2πτmj(p)

(
fc + fmj(Θ)

)}

× exp
{

j2πτq(i)j
(
p′)(fc + fq(i)j

(
Θ′))}

× exp
{

j2π
(
fmj(Θ)− fq(i)j

(
Θ′))t

}
dt .
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AF Definition

Define the AF as the square of coherent summation of all
noise-free matched filter output pairs, i.e.,

χ(Θ,Θ′) !

∣∣∣∣∣∣

N∑

j=1

K∑

i=1

r̄ ′ji
(
Θ,Θ′)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N∑

j=1

K∑

i=1

M∑

m=1

αmj [R]mi(Θ,Θ′,C, j)exp{−j2πτmj(p)

×(fc + fmj(Θ))}exp{j2πτq(i)j(p′)(fc + fq(i)j(Θ′))}

∣∣∣∣∣∣

2
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AF Definition (Cont’d)

[R]mi(Θ,Θ′,C, j) !
√

E
K

K∑

k=1

cmk

∫
φk (t − τmj(p))

× φ∗
i (t − τq(i)j(p′))exp{j2π(fmj(Θ)− fq(i)j(Θ′))t}dt

φk : the k th orthogonal waveform.
fc : radar operating frequency.
fmj : Doppler shift due to the (m, j)th transmit-receive

channel.
τmj : two-way time delay due to the (m, j)th channel.
q(i): the i th equivalent transmit phase center.
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AF Illustration

Defined AF is composed of summation terms.

Each term contains three components:
Complex reflection coefficient
Match-filtered component standing for waveform correlation
Exponential terms standing for phase shift information due to
relative position and target motion w.r.t. array geometry.

Defined AF means that the mth antenna emits a signal
consisting of all K initially orthogonal waveforms windowed
by elements of the mth row in C.
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AF Simplification

Neglect complex coefficients (with constant contributions).
Simplify AF definition as

χ
(
Θ,Θ′) =

∣∣∣aH
R (Θ)aR

(
Θ′)

∣∣∣
2∣∣∣aH

T (Θ)R(∆τ,∆fd ,C)aTE
(
Θ′)

∣∣∣
2

aT, aR, aTE are the transmit, the receive, and the equivalent
transmit array steering vectors, respectively.

R derives from R with ∆τ and ∆fd being used.

[
R
]

mi(∆τ,∆fd ,C) =

√
E
K

K∑

k=1

cmk

∫
φk (t)φ∗

i (t −∆τ)exp{j2π∆fd t}dt
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Relationships With Other AFs

Express the simplified AF using Woodward’s AF:

χ
(
Θ,Θ′) = E

K

∣∣∣aH
R (Θ)aR

(
Θ′)

∣∣∣
2∣∣∣aH

T (Θ)Cχ(∆τ,∆fd)aTE
(
Θ′)

∣∣∣
2
.

Traditional MIMO Radar: K = M, C = IM , aTE = aT
(uniform subarrays: C is block diagonal, choose subarray
centers for aTE)

χMIMO
(
Θ,Θ′) = E

M

∣∣∣aH
R (Θ)aR

(
Θ′)

∣∣∣
2∣∣∣aH

T (Θ)χ(∆τ,∆fd)aT
(
Θ′)

∣∣∣
2
.

PA Radar: K = 1, C = wM (beamforming weights), aTE = 1

χPA
(
Θ,Θ′) = E

∣∣∣aH
R (Θ)aR

(
Θ′)

∣∣∣
2∣∣∣aH

T (Θ)wMχ(∆τ,∆fd)
∣∣∣
2
.
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Weak and Strong “Clear Region” Bounds

Worst-Case Bound

C I(A) ≤ 4VK
N2K

|aH
R (Θ)aR(Θ′)|2

VK − 4η (18)

Best-Case Bound

CII(A) ≤ 4VK
N2

|aH
R (Θ)aR(Θ′)|2

VK − 4η (19)
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Simulation Results

ULA, dT = dR = λ/2, M = 8, N = 8, and E = M.
Array locates on x-axis.
Polyphase-coded waveforms with code length being 256.
T = 10 ms, BT = 128, and fs = 2B.
Single pulse.
Two targets locate on y -axis.
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Simulation Results (Cont’d)

Difference between the defined TB-based MIMO radar AF and
the squared-summation-form traditional MIMO radar AF, 8

polyphase-coded waveforms are employed.
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Simulation Results (Cont’d)

TB-based MIMO radar AF, 4 polyphase-coded waveforms are
employed.
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Trade-Offs in MIMO Radar with 
widely-spaced antennas 

Marco Lops 
 
 



Outline 
• MIMO Radar with widely spaced antennas: 

Angular diversity and its consequences; 
• Signal models, diversity, Space-Time Coding; 
• Detection through MIMOs: cost functions, figures 

of merit and tradeoffs; 
• Robust waveform design; 
• Localization through MIMO radars: should we 

really maximize angle diversity? 
• Conclusions 

 
 



MIMO Radar 
• Decentralized systems: multiple receivers and a 

fusion center collecting either raw data or a 
quantized version thereof; 

• Multi-site Radars: systems joining in the network, 
with no real transmitter cooperation; 

• Communication-theory-related MIMO: Multiple 
transmitters, cooperating to form the radiated 
waveforms and operating under power 
constraints, along with multiple receivers, 
cooperating in order to make final decisions. 



Aspect angles 



Transmit/Receive Diversity 

Receive diversity: 
 
Transmit diversity: 



Interpretation: Receive diversity 
A target whose size in the receive array alignment direction is V’ 
becomes an aperture antenna whose beam has width λ/V’.  
The scattering towards two elements spaced d’ apart is 
independent if they are not seen as belonging to the same cell. 
Such a cell at distance R’ has size R’ λ/V’.  

Remark: The interpretation of transmit diversity is the same. 



Consequence 
The same target may not offer the same amount of angle diversity over time. 
Indeed, the number of independent paths turns out to depend on the target 
orientation (i.e., on its size along the transmit array direction) and on its range. 
Additionally, the same target may offer: 
 
Full transmit and/or receive diversity; 
Full transmit diversity and partial receive diversity (or vice-versa); 
Partial (or no) diversity (transmit and/or receive). 
 
The issue of designing waveforms which are robust with respect to the amount of 
real diversity is central in MIMO radar. For a physical (electromagetic) study of the 
relationship between target scattering and available d.o.f. see, e.g.,  M. D. Migliore, 
“Some physical limitations in the performance of statistical multiple-input multiple-
output RADARs”, IET Microw. Antennas and Propagations, vol. 2, N. 8 
  



Angular diversity: models 

• Full transmit diversity: α1,T, α2,T, ... αM,T are 
statistically independent; 

• Receive diversity: α(1)
T,1, α(1)

T,2, ... α(1)
T,L, are 

statistically independent, and so are α(i)
T,1 , ... α(i)

T,L 
for i=2,...,M 

• Full diversity: both transmit and receive diversity; 
• Notice that the amount of diversity varies with V, 

V’, the target distance, and the array elements 
spacing.  



Full diversity  

The matrix α=(α1,α2) has rank 2 almost surely. 



Signal models 



About the delays 

• Resolvable paths: the delays are all resolvable, 
which means that the available transmit 
bandwidth is large enough as to allow 
resolvability for most of the distances. 

• Un-resolvable paths: the radar is “narrow-
band”, whereby the target appears in one and 
the same range cell. 

• The most interesting situation to study the 
trade-offs is the latter, as will be shown later. 



Un-resolvable paths: conditions 



Resolvable paths 

In this case the following “orthogonality” is advocated  

This requires either extremely large bandwidths, 
or extremely wide spacing or radars operating on 
disjoint spectra. It is reminiscent more of 
frequency diversity than of space diversity. 



Choosing the waveforms: Space-
Time coding 

A viable way to design the waveforms is to set 



Example#1: Pulsed STC radar 



Example 2: Sophisticated STC 
Radar 



The STC Matrix 

The key parameter is the STC matrix   

It may be worth noticing that the simplest case is to make c real. 



Key parameters 
• Transmitted energy, encapsulated in trace(CCH): it 

represents an overall constraint that applies to the 
transmitted waveforms and allows performing 
comparisons and eliciting trade-offs; 

• Rank(C), i.e. the rank of the STC matrix, 
encapsulating the transmit policy: for both resolvable 
- where it equals the number of active antennas- and 
un-resolvable paths it determines how many degrees 
of freedom we choose to exploit a priori. 



Degrees of freedom 

The matrix C defines the degrees of freedom, which are obviously   

The reason is that, for fat matrix, the code-words are no longer 
linearly independent. As a consequence, for un-resolvable paths the 
signal space is obviously of reduced dimension. 
From now on we consider the far more challenging (as far as trade-
offs are concerned)  situation of un-resolvable paths, since most of 
the conclusions, at least for target detection, carry over to the case 
of resolvable paths.  



Target detection: signal model 

The signal received at receive antenna i, ri ∈ C N , reads: 

Where αi is the scattering towards antenna i (and thus has 
dimension M) while wi represents the impinging disturbance, 
which is assumed Gaussian with covariance matrix 



Memo: symbol meaning 



Generalized Likelihood Ratio Test 
(GLRT, scattering as nuisance) 

If C is full rank, the number of degrees of freedom is Lmin(N,M) 
since: 



Detector structure (un-resolvable 
paths) 



Interesting Special cases 

White noise, N=M and orthogonal coding: 

GLRT: (Incoherent integrator on ML paths) 

Rank-one coding (e.g., C=11T, corresponds to an incoherent 
power multiplexer) 

GLRT: 

No transmit diversity, only receive diversity, since whatever is 
transmitted collapses onto the unique direction of the signal 
space. 

(Incoherent integrator on L  
coherent integrators) 



Remark: resolvable paths 
For resolvable paths, rank-deficient coding would correspond to 
activating just a subset of the transmit antennas. Once an antenna is 
activated, it necessarily introduces L diversity paths if the 
“orthogonality hypothesis under any delay” applies: otherwise stated, 
if all of the antennas are activated we generate LM diversity paths, but 
by taking a much larger bandwidth. The optimum detector is obviously 
an incoherent energy integrator. Thus, un-resolvable paths with full-
rank coding achieve the same detection performance as resolvable 
paths with M active antennas. 
 
Question: can a MIMO radar with widely spaced antennas be 
considered as a mechanism achieving spatial diversity? Or – rather – it 
enjoys a form a frequency diversity, possibly combined with angle 
diversity if the transmitters operate on non-disjoint bandwidths, arising 
from the wide-band transmission format? This is debatable.  



Effect of diversity on detection 
performance 

Assume rank-δ coding under un-resolvable paths (the case of 
resolvable paths with δ transmitters is similar). The detection 
perfomance admits the general expression  

where η is the detection threshold and the generalized Marcum 
function is defined as 



Some comments 
Given the detection structure, the signal at the input of the energy 
detector for RX i is 

As a consequence the conditional (given the scattering) signal-to-
interference ratio reads  

Remark: the above represents the overall received SNR. There is 
an inherent trade-off between number of (transmitted) diversity 
dimensions and overall received signal-to-noise ratio, and rank-1 
coding corresponds to concentrating all of the energy along one 
and the same direction. 



Waveform design 
• This amounts to choosing the rank δ of the STC 

matrix (or the number of active transmitters) and 
to deciding on how to distribute the energy budget 
among the transmit degrees of freedom. 

• Question: does an optimal transmit policy exist? 
Answer: it depends on the figure of merit. For 
example, if SNR is the figure of merit, the 
optimum choice is obviously rank-1 coding along 
the least interfered direction, which means giving 
up angular diversity. 



Figures of merit 

• Figures involving the pair (PFA, PD); 
• The mutual information between the 

observations available at the receive antennas 
and the scattering matrix of the target; 

• Figures of merit involving Kullback-Leibler 
divergence; 

• Figures of merit involving both the detection 
performance and the estimation accuracy, if 
some parameter must be estimated. 

 



Detection and False-Alarm 
Probabilities 

• Here it is necessary to resort to some 
hypotheses, in order to come up with closed-
form results. 

• Assumptions: Gaussian scattering; 
• Possible tools: maximize the Lower Chernoff 

Bound (LCB) to the detection probability. 
Remark, however, that this bound is tight only 
in the large signal-to-noise ratio region, as 
detailed later. 



LCB 
The LCB to the detection probability under Gaussian scattering 
reads 



LCB-optimal codes 

• Maximize the LCB to the detection probability 
subject to constraints on the rank of the STC 
matrix and the average received SNR (much 
questioned). 

• Solution: generate as many independent and 
identically distributed diversity paths as 
possible. 



Example 

N=M=L=2 and white noise 
 
 
 
 

Rank-1 coding and GLRT 
LCB-optimal and GLRT 
Rank-1 coding and energy detector 



Comments 

• Apparently, LCB-optimal codes are optimal 
only in the large SNR region, while rank-
deficient coding is largely preferable in the 
low SNR region. 

• This suggests (and theory confirms) that no 
uniformly optimum transmit policy exists if 
the figure of merit is detection performance. 



Determining the transmit policy 

Find the STC matrix maximizing the LCB subject to: 
 
a) A Semi-definite constraint on the matrix rank, i.e. Rank(C)=θ ≤ 

∆ 
b) Average received energy 
 
The above problem does not admit any solution which is optimal 
for any SNR, and evidence that an uniformly optimal policy does 
not exist if LCB is our major figure of merit.  



Performance 

Optimal rank of the code matrix  (i.e., requiring minimum 
SNR to achieve the miss probability on the abscissas). 
Pfa=10-4; N=M=4; 



Different conclusions 

Mutual-Information (MI)-optimal codes (Gauss-Gauss and 
uncorrelated scattering) 

Average received SNR: 

Once again, θ denotes the rank of the STC matrix, and is a design 
parameter subject to a semi-definite constraint.  



Different conclusions 

• Subject to semi-definite constraints on the STC 
rank and the transmit (or receive, when 
applicable) energy 

a) Maximize MI: Solution is diversity 
maximization, with a power allocation which 
attempts to create as many independent and 
identically distributed paths as possible 

b) Maximize SNR: Here the solution is rank-1 
coding along the least interfered direction. 



Comments 

• MI is a Schur-concave function of the 
variables it depends upon; 

• Matrix trace is a Schur-convex function of the 
matrix eigenvalues; 

• LCB is neither concave nor convex, but is not 
tight for low SNR, so it does not appear 
perfectly suited. 



Memo: Schur-convexity/concavity 

Any symmetric (i.e., invariant to argument permutation) function 
which is concave (convex) is also Schur-concave (Schur-convex). MI 
is Schur-concave, and attains its maximum when the arguments are 
maximally “dispersed”, i.e. when we generate as many independent 
and equivalent paths as possible through full-rank coding and water-
filling. Trace is Schur-convex and is optimum for maximum 
“concentration” of its arguments, i.e. Rank-1 coding.  



Divergence-based figures of merit 
Assume that we have to decide between two hypotheses, 
corresponding to two densities of the observations, say f1(x) and 
f0(x). We know that, the more “different” the densities, the easier to 
make correct decisions. A measure of such a difference is the pair 

These two measures are relevant in testing f1 against f0, whether 
we resort to Fixed-Sample-Size Tests (FSST) or Sequential 
Probability Ratio Tests (SPRT).  



FSST: Chernoff-Stein Lemma 
Let Xn be iid ∼ f0(x) or f1(x) and define PFA as the probability of 
declaring that f1(x) is in force as the alternative is true, while 
PM=1-PD is the probability of a miss. Then, among all the test 
achieving PFA≤α, the best that we can do has the following 
asymptotic property: 

While D10 is the error exponent of the false alarm probability. 
Passing over the details, these two measures also have 
relevance in SPRT’s, regulating the Average Sample Number 
(ASN) needed to make decisions under the two hypotheses. 



Sequential tests 
Here the number of observations is random and any performance 
can be obtained by collecting a large enough number of samples. 
The primary parameters are thus the average sample numbers 
(ASN’s) under the two alternatives. Sequential Probability Ratio 
Test (SPRT) aimed at discriminating between f0(x) and f1(x) enjoys 
the following: 



Figures of merit 

Divergence-based figures of merit have been proposed in 
 
Kay, IEEE Trans, AES, 2009, D01 adopted as foM 
Tang, Li, Wu, IEEE Signal Processing Letters, 2009,  
Grossi, Lops, IEEE Trans. Info. Theory, 2012, proposing the 
convex combination κD10+(1-κ)D01  
 
In general, it is interesting to define, as a function of the 
waveforms that can be transmitted (i.e., in our setup, of the STC 
matrix) the achievability region, by constraining either the transmit 
energy or the received SNR. This gives us all of the information on 
what can be achieved, as far as detection is concerned, through 
STC in MIMO radar. 



Achievability region, constrained 
received SNR 



Achievability region, constrained 
received SNR 



Achievability region, constrained 
transmit energy 



An example of application: FSST 

FSST, divergences chosen based on the achievability region. 



An example of application: SPRT 



Synopsis (∆=11) 

The evidence speaks in favor of the fact that, in the low SNR region, 
we’d better use MIMO as an incoherent power multiplexer rather 
than as a source of diversity (or, equivalently, that we concentrate all 
of the power on one transmitter). κ=0 corresponds to assuming D01 
as a measure of performance, and κ=1 to assuming D10. 



Question 
Is there any realistic situation – concerning detection – wherein  full angular 
diversity is desirable? Otherwise stated, if full diversity is advantageous only in the 
large SNR region, why to pay so much attention to it? 
 
A possible answer resides in the fact that, so far, we have operated under fairly ideal 
conditions, studying the fundamental limits with scarce attention to a such a basic 
issue as robustness, i.e. resilience of the detection performance with respect to 
deviations between the nominal and the actual operating conditions. These 
deviations may concern: 
 
The disturbance covariance; 
The amount of transmit diversity (we underline here that, for given wavelength, 
path independence is a function of the distance and of the target extension); 
The amount of receive diversity (same situation as above). 
 
It is thus interesting to focus attention on the issue of robust waveform design, which 
leads us to fairly different conclusions!! 



Theoretical framework 
Let Mw = Qw⊗Rw be, as usual, the disturbance covariance and E[αiαi

H] =Qα⊗ 
Rα the clutter and scattering covariance, encapsulating the transmit diversity 
(matrices R) and the receive diversity (matrices Q, assumed IL for simplicity). 
The STC matrix C (or transmitted waveform)  can be “robustified” under two 
different situations through the mini-max principle 



Mini-max Waveforms 
All cost functions which are decreasing and Schur-convex admit one 
and the same robust solution, i.e. full transmit diversity. The power 
allocation depends on the operating conditions, i.e.: 
 
Water-filling, if M is known, assigning more power to the least 
interfered directions; 
Isotropic transmission, if M is unknown. 

 
Interpretation: No empty sub-space exists where the target may hide. 
What matters here is the transmit policy (i.e., the amount of transmit 
diversity), while the power allocation strategy is definitely less critical. 
 
Problem: Do cost functions fulfilling the above conditions have any 
relevance in radar detection/estimation? 



Admissible cost functions 
Are in the required form the following families of cost functions 
 
Any decreasing function of the received SCR; 
The LMMSE estimator of the target scattering matrix; 
The mutual Information between the observations and the target scattering. 
 
Moreover, since:  

also the probability of miss will do, at least in the two relevant regions of 
large and small SCR.  



Remark 

The previous derivations assumed full receive diversity and 
partially or totally unknown transmit diversity. Everything carries 
over to the general case where both scattering and clutter have 
unknown transmit and receive diversity, and the major results re-
apply to the cases where the overall covariance matrices take on 
the form of a Kronecker product between transmit and receive 
covariance matrices.  



Example of application: effect of 
transmit diversity 

M=L=2 (Number of receive and transmit antennas), N=4 (code-
word length) 
 
Rα=Uα Λα Vα

H,  Λα =σ2
αdiag(ρ α ,1-ρ α) 

 
Rw=Uw Λw Vw

H 

 
Legenda for next slides: 
 
Optimal Coding: everything is known; 
Mismatched coding: the receiver assumes ρ α =0, and the signal is 
built around the absence of transmit diversity. 
 



The typical figures of merit 



More figures of merit 



Major role of (angle) diversity in 
detection 

At the transmitter end: full angle diversity, which may be achieved through 
full-rank coding for un-resolvable paths or by distributing the available power 
among a number of wide-band transmitters, for the case of resolvable paths, is 
fundamental in granting robustness in almost all of the most credited figures of 
merit. 
 
At the receiver end, of course diversity is always beneficial, which is a well-
known results concerning decentralized systems. 
 
 
The above holds true for detection (and, somehow, parameter estimation if 
LMMSE is considered). What about other issues like localization? This is a 
long story, and we do not have much time, but we can give some general 
trends. 



What about localization? 
• Two main situations: 

– Un-resolvable paths: target ranging  
– Resolvable paths: target localization through multi-

lateration.  
 
The latter has been thoroughly studied in  
Godrich, Haimovich and Blum, “Target Localization accuracy 

gain in MIMO radar-based systems”, IEEE Trans. Info. 
Theory, 2010. 

Godrich, Petropolu, Poor, “Power Allocation Strategies for 
Target Localization in Distributed Multiple-Radar 
Architectures”, IEEE Trans. Signal Processing, 2011. 



Target Ranging in un-resolvable 
paths 

Assume a space-time coded MIMO system, transmitting the 
waveforms 



Fisher information in delay 
estimation 

This is a Schur-convex function, which is maximum for rank-1 coding. 



Consequence 
If f (Σ) is any figure of merit, no matter its Schur-
concavity/convexity characteristic, an optimization problem in the 
form 

Cannot but imply rank-deficient coding. In other words, angle 
diversity maximization is not optimal except that if the figure of 
merit is Schur-concave and the constraint marginal (i.e., the value 
of β is small). 



Resolvable paths (M×L MIMO) 
Localization in a plane of a target located at (x,y); 
Deterministic channels.  

For details, see Godrich, Haimovich, Blum, IEEE Transactions on 
Information Theory, 2010.  

Facts:  
othe (measurable) delays τi,j are known functions of (x,y), once the 
TX and RX positions are known.  
oAny vector parameter θ containing (x,y) as its first two entries 
has FIM J(θ).  
oThe 2×2 north-western sub-matrix of J-1(θ), say D(θ), has, on its 
diagonal elements, the CRLB to the estimates of x and y.   
oThe key cost function is thus Trace(D). 



Design parameters and constraints 

Cost function 



Some allocation criteria 



Example 

•5 transmitters and 5 receivers 
•Available bandwidth: 3 MHz 
•PRT= 5 kHz 
•4 stationary equal-strength targets with RCS=10m2; 
•The targets are randomly located in a 20km×20km area 
•The channels are Rayleigh and random.  
•1000 trials  



The cost function 



Achieved performance 



Resolvable paths: amount of 
transmit diversity 



Resolvable paths: effect of the 
optimization 



Some comments 

The previous plots refers to un-equal average SNR, each channel being 
characterized by a Rayleigh attenuation with unit mean square value; 

 
Once again angular diversity appears more a means for robustifying 
localization procedure than a tool to improve performance, as clearly 
demonstrated by the fact that the “best” (i.e., most frequently chosen) transmit 
policy does not rely on transmit diversity maximization. 

 
A possible conclusion is that, for both detection and localization, the amount 
of transmit diversity must be a compromise between optimality and robustness, 
on the understanding that in many application maximizing the transmit diversity 
is a mini-max (or maxi-min, if a merit function is involved) choice. 
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