Domain-Specific Languages for Convex Optimization

Stephen Boyd Steven Diamond EE & CS Departments Stanford University

IEEE SAM Workshop, PUC-Rio, July 11 2016

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Convex Optimization

Convex optimization problem — standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & Ax = b \end{array}$$

with variable $x \in \mathbf{R}^n$

► objective and inequality constraints f₀,..., f_m are convex for all x, y, θ ∈ [0, 1],

$$f_i(heta x + (1- heta)y) \leq heta f_i(x) + (1- heta)f_i(y)$$

i.e., graphs of f_i curve upward

equality constraints are linear

Convex optimization problem — conic form

cone program:

minimize
$$c^T x$$

subject to $Ax = b$, $x \in \mathcal{K}$

with variable $x \in \mathbf{R}^n$

- linear objective, equality constraints; \mathcal{K} is convex cone
- special cases:
 - linear program (LP)
 - semidefinite program (SDP)
- ▶ the modern canonical form
- there are well developed solvers for cone programs

Convex Optimization

Why convex optimization?

beautiful, fairly complete, and useful theory

- solution algorithms that work well in theory and practice
 - convex optimization is actionable

many applications in

- control
- combinatorial optimization
- signal and image processing
- communications, networks
- circuit design
- machine learning, statistics
- finance
- ... and many more

How do you solve a convex problem?

use an existing custom solver for your specific problem

- develop a new solver for your problem using a currently fashionable method
 - requires work
 - but (with luck) will scale to large problems
- transform your problem into a cone program, and use a standard cone program solver
 - can be automated using domain specific languages

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Curvature: Convex, concave, and affine functions

▶ *f* is concave if -f is convex, *i.e.*, for any *x*, *y*, $\theta \in [0, 1]$,

$$f(heta x + (1 - heta)y) \geq heta f(x) + (1 - heta)f(y)$$

f is affine if it is convex and concave, i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any $x, y, \theta \in [0, 1]$ • f is affine \iff it has form $f(x) = a^T x + b$

Verifying a function is convex or concave

(verifying affine is easy)

approaches:

- via basic definition (inequality)
- ▶ via first or second order conditions, *e.g.*, $\nabla^2 f(x) \succeq 0$
- via convex calculus: construct f using
 - library of basic functions that are convex or concave
 - calculus rules or transformations that preserve convexity

Convex functions: Basic examples

- x^{p} ($p \ge 1$ or $p \le 0$), e.g., x^{2} , 1/x (x > 0)
- ► e[×]
- x log x
- $a^T x + b$
- $x^T P x (P \succeq 0)$
- ▶ ||*x*|| (any norm)
- $\max(x_1,\ldots,x_n)$

Concave functions: Basic examples

•
$$x^p$$
 ($0 \le p \le 1$), e.g., \sqrt{x}

$$\checkmark \sqrt{xy}$$

•
$$x^T P x (P \leq 0)$$

•
$$\min(x_1,\ldots,x_n)$$

Convex functions: Less basic examples

Concave functions: Less basic examples

- $\log \det X$, $(\det X)^{1/n} (X \succ 0)$
- $\log \Phi(x)$ (Φ is Gaussian CDF)

$$\blacktriangleright \ \lambda_{\min}(X) \ (X = X^T)$$

Calculus rules

- nonnegative scaling: f convex, $\alpha \ge 0 \implies \alpha f$ convex
- **sum**: f, g convex $\implies f + g$ convex
- affine composition: f convex $\implies f(Ax + b)$ convex
- **• pointwise maximum**: f_1, \ldots, f_m convex $\implies \max_i f_i(x)$ convex

• **composition**: *h* convex increasing, *f* convex $\implies h(f(x))$ convex

... and similar rules for concave functions

(there are other more advanced rules)

Examples

from basic functions and calculus rules, we can show convexity of ...

- piecewise-linear function: $\max_{i=1,...,k} (a_i^T x + b_i)$
- ℓ_1 -regularized least-squares cost: $||Ax b||_2^2 + \lambda ||x||_1$, with $\lambda \ge 0$
- sum of largest k elements of x: $x_{[1]} + \cdots + x_{[k]}$
- ► log-barrier: $-\sum_{i=1}^{m} \log(-f_i(x))$ (on $\{x \mid f_i(x) < 0\}$, f_i convex)
- KL divergence: $D(u, v) = \sum_i (u_i \log(u_i/v_i) u_i + v_i)$ (u, v > 0)

A general composition rule

 $h(f_1(x),\ldots,f_k(x))$ is convex when h is convex and for each i

- ▶ *h* is increasing in argument *i*, and *f_i* is convex, or
- ▶ *h* is decreasing in argument *i*, and *f_i* is concave, or
- ▶ f_i is affine
- there's a similar rule for concave compositions (just swap convex and concave above)
- this one rule subsumes all of the others
- this is pretty much the only rule you need to know

Constructive convexity verification

- start with function given as expression
- build parse tree for expression
 - leaves are variables or constants/parameters
 - nodes are functions of children, following general rule
- tag each subexpression as convex, concave, affine, constant
 - ► variation: tag subexpression signs, use for monotonicity e.g., (·)² is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity

Example

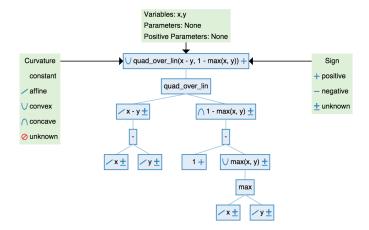
for
$$x < 1$$
, $y < 1$
$$\frac{(x - y)^2}{1 - \max(x, y)}$$

is convex

- ▶ (leaves) x, y, and 1 are affine expressions
- $\max(x, y)$ is convex; x y is affine
- $1 \max(x, y)$ is concave
- ▶ function u²/v is convex, monotone decreasing in v for v > 0 hence, convex with u = x - y, v = 1 - max(x, y)

Example

analyzed by dcp.stanford.edu (Diamond 2014)



Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Disciplined Convex Programming

Disciplined convex programming (DCP)

(Grant, Boyd, Ye, 2006)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization

Disciplined convex program: Structure

a DCP has

- zero or one objective, with form
 - minimize {scalar convex expression} or
 - maximize {scalar concave expression}
- zero or more constraints, with form
 - {convex expression} <= {concave expression} or</p>
 - {concave expression} >= {convex expression} or
 - {affine expression} == {affine expression}

Disciplined Convex Programming

Disciplined convex program: Expressions

- expressions formed from
 - variables,
 - constants/parameters,
 - and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- ▶ all subexpressions match general composition rule

Disciplined convex program

a valid DCP is

- convex-by-construction (cf. posterior convexity analysis)
- 'syntactically' convex (can be checked 'locally')
- convexity depends only on *attributes* of library functions, and not their meanings
 - ▶ e.g., could swap $\sqrt{\cdot}$ and $\sqrt[4]{\cdot}$, or exp \cdot and $(\cdot)_+$, since their attributes match

Canonicalization

- easy to build a DCP parser/analyzer
- not much harder to implement a *canonicalizer*, which transforms DCP to equivalent cone program
- then solve the cone program using a generic solver
- yields a modeling framework for convex optimization

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Optimization modeling languages

- domain specific language (DSL) for optimization
- express optimization problem in high level language
 - declare variables
 - form constraints and objective
 - solve
- Iong history: AMPL, GAMS,
 - no special support for convex problems
 - very limited syntax
 - callable from, but not embedded in other languages

Modeling languages for convex optimization

all based on DCP

YALMIP	Matlab	Löfberg	2004
CVX	Matlab	Grant, Boyd	2005
CVXPY	Python	Diamond, Boyd	2013
Convex.jl	Julia	Udell et al.	2014

some precursors

- ► SDPSOL (*Wu, Boyd, 2000*)
- ▶ LMITOOL (El Ghaoui et al., 1995)

CVX

```
cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1
cvx_end</pre>
```

- ▶ A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist inside problem
- after cvx_end
 - problem is canonicalized to cone program
 - then solved

Some functions in the CVX library

function	meaning	attributes
norm(x, p)	$\ x\ _p, p \ge 1$	сvх
square(x)	x ²	cvx
pos(x)	x ₊	cvx, nondecr
<pre>sum_largest(x,k)</pre>	$x_{[1]} + \cdots + x_{[k]}$	cvx, nondecr
sqrt(x)	\sqrt{x} , $x \ge 0$	ccv, nondecr
inv_pos(x)	1/x, x > 0	cvx, nonincr
max(x)	$\max\{x_1,\ldots,x_n\}$	cvx, nondecr
<pre>quad_over_lin(x,y)</pre>	$x^2/y, y > 0$	cvx, nonincr in y
lambda_max(X)	$\lambda_{\max}(X), X = X^T$	cvx

DCP analysis in CVX

```
cvx_begin
variables x y
square(x+1) <= sqrt(y) % accepted
max(x,y) == 1 % not DCP
...</pre>
```

Disciplined convex programming error: Invalid constraint: {convex} == {real constant}

CVXPY

- ▶ A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist outside of problem
- solve method canonicalizes, solves, assigns value attributes

Signed DCP in CVXPY

function	meaning		attributes	
abs(x)	x		cvx,	nondecr for $x \ge 0$,
	1 1			nonincr for $x \leq 0$
huber(x)	$\left \begin{array}{ccc} x^2, & x \\ 2 x -1, & x \end{array} \right $	$ \leq 1$	cvx,	nondecr for $x \ge 0$,
	$\left \begin{array}{c} 2 x -1, \\ \end{array} \right x$	x > 1		nonincr for $x \leq 0$
norm(x, p)	$\ \mathbf{y}\ = \mathbf{n} > 1$	cvx,	nondecr for $x \ge 0$,	
	$\ \wedge\ p, p \geq 1$			nonincr for $x \leq 0$
square(x)	× ²		cvx,	nondecr for $x \ge 0$,
	^			nonincr for $x \leq 0$

DCP analysis in CVXPY

$$expr = \frac{(x-y)^2}{1-\max(x,y)}$$

Parameters in CVXPY

- symbolic representations of constants
- can specify sign
- change value of constant without re-parsing problem
- for-loop style trade-off curve:

```
x_values = []
for val in numpy.logspace(-4, 2, 100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```

Parallel style trade-off curve

Use tools for parallelism in standard library. from multiprocessing import Pool

```
# Function maps gamma value to optimal x.
def get_x(gamma_value):
    gamma.value = gamma_value
    result = prob.solve()
    return x.value
```

```
# Parallel computation with N processes.
pool = Pool(processes = N)
x_values = pool.map(get_x, numpy.logspace(-4, 2, 100))
```

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Conclusions

DCP is a formalization of constructive convex analysis

- simple method to certify problem as convex (sufficient, but not necessary)
- basis of several DSLs/modeling frameworks for convex optimization

 modeling frameworks make rapid prototyping of convex optimization based methods easy

References

- Disciplined Convex Programming (Grant, Boyd, Ye)
- Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- Matrix-Free Convex Optimization Modeling (Diamond, Boyd)
- CVX: http://cvxr.com/
- CVXPY: http://www.cvxpy.org/
- Convex.jl: http://convexjl.readthedocs.org/