The Ninth IEEE Sensor Array and Multichannel Signal Processing Workshop

Multi-sensor applications in aircraft technology Embraer experience

Helio Librantz – July 2016

Agenda

Who are we?

Multi-sensors Applications

Defense aircraft

Defense ground systems

Navigation systems

Aeroelastic model validation

Maintenance applications

Overview of future applications

Conclusion

Section One | Who are we?

WE HAVE DEVELOPED OUR BUSINESS IN THE AREAS OF:

COMMERCIAL AVIATION

EXECUTIVE AVIATION

EMBRAER DEFENSE AND SECURITY

Commercial Aircraft

EMB 110 Bandeirante

ERJ 170 /190

EMB120 Brasilia

.......

-

di Trent av

EMB 312 Tucano

ALX and SIVAM EMB145 AEW&C / RS

AMX

1994

Embraer is privatized, fusing technological and industry expertise with an entrepreneurial approach.

2015

Embraer is one of the world's leading manufacturers of commercial and executive jets, with substantial and growing operations in defense and security.

1946

Brazil launches a national strategic aerospace initiative via the Aeronautics Technical Center (CTA) and the Technological Institute of Aeronautics (ITA).

1969

Federal Government creates Embraento develop aeronautical engineering and manufacture aircraft in Brazil.

WHERE WE OPERATE

JOINT VENTURES & AFFILIATES

VISIONA

EZ AIR

AST

SNIS

CAE

TRAINING SERVICES

合尔滨安博着

HARPIA

OGMA

DIVERSITY IS WEALTH

MORE THAN 19,000 EMPLOYEES FROM OVER 20 COUNTRIES

MORE THAN 2,300 EMPLOYEES IN JOINT VENTURES AND AFFILIATE

Section Two | Multi-Sensors Applications

Multi-sensors Applications in Aircraft Tecnologies

- Embraer has a long history of sensor arrays and multichannel signal processing applications to its products with very positive results.
- There is a wide range of technologies which employ multi-sensors as the basis of the product concept
- Some examples are:
 - Defense products
 - Navigation systems
 - Tools for Aeroelastic Certification of Aircraft
 - Maintenance Optimization Means

Section Two | Defense Aircraft

Integration of multi-sensor systems in defense aircraft for armed forces of several countries:

- AEW (Airborne Early Warning)
- Surveillance aircraft
- Maritime patrol
- SIGINT (Signal Intelligence)
- Ground attack aircraft

Multi-sensor system applications include

- AESA (Airborne Electronic Scanning Array) Radar
- IFF (Identify Foe or Friend) Interrogator
- RWR, ESM (Electronic Support Measures), SIGINT
- MAWS (Missile Approach Warning Systems)
- Commint (Communication Intelligence)
- Interferometric SAR (Synthetic Aperture Radar)
- ECM (Electronic Counter Measures) and more

Including data fusion from different sensors in many cases

ISR Family FAB - Brazilian Air Force

EMB145AEW&C – IAF Indian Air Force

EMB145 Multi Intel – FAB R99

EMB145MP and EMB145AEW&C – "FAM" Mexico Air Force

EMB145AEW&C – HAF Helenic Air Force

KC-390 Military Transport

Section Two | Defense ground systems

C4I2SR Systems

- C4I2SR: Command, Control, Communications, Computers, Intelligence, Information, Surveillance and Reconnaissance
- C4I2SR System increases the situation awareness and support commander decision.
- NATO definition: "Integrated System of doctrine, procedures, structured organizational structures, personnel, equipment, facilities, communications, intelligence, and identification designed to support commander's exercise of command and control across the range of military operations."

C4I2SR Systems

Ground Surveillance: Radar and Cameras

- Radar for early warning, target detection and classification
- Day and Night Cameras for target description
- Radar detects crawling and walking man and vehicles
- Radar points the cameras to target
- Cameras describe target with high resolution and powerful zoom
- Radar and camera can be locally and remotely operated
- Integrated with a powerful visualization unit

Transportable Radar far from Cameras

EMBRAER DEFESA & SEGURANÇA

Radar and Cameras integrated at tower

Air-Traffic Control: Saber M200

BRADAR

EMBRAER DEFESA & SEGURANÇA

Multi-Mission AESA Radar

- 20 feet ISO Container format
- Multi-Tasking and Parallel Radar Architecture
- 258 independent radars
- More than 4000 T/R modules.

It operates simultaneously as:

- Long Range Primary Radar
- Long Range Secondary Radar
- Precision Approach Radar
- Meteorological Radar
- Defense Radar
- Fire-control radar

BRADAR

EMBRAER DEFESA & SEGURANÇA

Airborne Radar: BradarSAR

- P band Radar;
- Visual Camera;
- Infrared Camera;
- X/P band InSAR and D-InSAR.

It operates for:

- Cartography 1:5.000 1:50.000
- Deforestation monitoring
- Illegal settlement monitoring
- Erosion monitoring
- Land Slide monitoring
- *MTI: detection, classification and description

X/P band BradarSAR radar image with 1 m resolution

*Moving Target Indicator

Section Four | Navigation systems

Navigation Systems

FMS (Flight Management System)

Section Five | Aeroelastic model validation

Aeroelastic model validation

Aerodynamics and Loads

PREDICTED

Aerodynamic Models: Tunnel + **CFD

ĈEĐ Theoretical design loads -5000

HTALL (NM) 8 -1500

-20000

-25000

48540

TIME (s)

FLIGHT TEST (EXPERIMENTAL LOADS):

Aeroelastic model validation Ground Vibration Test (GVT)

Scope:

- Identification of natural frequencies, damping and mode shapes of the aircraft structure and control surfaces
- Identification of rotational frequencies of the control surfaces
- · Identification of flutter vanes structural modes
- Verification of the flight control system influence on the aircraft structural modes

Structural Modes Identification

MIMO Concept

- ~250 accelerometers
- Up to 6 shakers

Aeroelastic Validation Flutter Flight Test (FFT)

Scope:

- Verification in flight of the aeroelastic stability of the aircraft
- Comparison of frequency and damping evolution with aeroelastic model
- Verification of dynamic pressure and compressibility
 effects
- Verification of automatic pilot, FBW, and yaw damper effects on the aircraft stability
 - · Excitation System Applies Known Input;
 - Instrumentation System Measures Airframe Response;
 - Data System Generates Transfer Functions;
 - Modal Frequency and Damping Estimated;
 - Flutter Velocity Predicted by Extrapolation.

Section Six | Maintenance applications

SHM (Structural Health Monitoring)

Management

Involves the use of detection, monitoring and assessment results combined with information about available resources to plan fleet utilization or maintenance activities

Assessment

Involves the use of detection and monitoring results along with design information and structural properties to determine the current structural status and generate, if required, instructions associated to maintenance

Monitoring

Involves maintaining regular surveillance over factors that can lead to or indicate structural faults

Detection

Involves finding with pre-defined quality the existence, type, location and/or extent of structural faults (FD, ED or AD) such as crack

SAE/ARP 6461: Published in Sep/19/2013

SHM – Damage Detection Systems

SHM Damage Detection Technologies considered by Embraer

- Acoustic Emission (AE)
- Electro-Mechanical Impedance (EMI)
- Fiber Bragg Gratings (FBG)
- Comparative Vacuum Monitoring (CVM)
- Lamb Waves (LW)
- Meandering Winding Magnetometer (MWM)

SHM - Applications

PHM - PROGNOSTICS AND HEALTH WONITORING

CONDITIONED

PHM – Proof of Concept

Brake Control Valve

APU

PHM (Prognostics and Health Monitoring) Concept

PHM – New technologies for IVHM (Integrated Vehicle Health Monitoring)

- MEMS/Digital Sensors;
- Wireless Sensors/Energy Harvesting
- Integrated Wireless Data transfer and Power Generation
- Multifunctional materials (Structures and Sensing)
- High-temperature sensors/electronics
- RFID
- Noncontact sensing
- Fiber optics
- Embedded Sensors
- Deposited Sensors
- Self-Aware and Self-Calibrating Sensors
- Self-reacting and Self-Repairing Components

Figure 2.1 Measurement chain for an IVHM system.

Section Seven | Overview of future applications

Overview of future applications

IVHM

 Integrated Vehicle Health Management (IVHM) is the transformation of system data on a complex vehicle or system into information to support operational decisions and optimize maintenance (Cranfield/Boeing IVHM Centre).

Overview of future applications

IVHM – Major role in the evolution to Smart Integration in aviation

Thank you!

