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Problem Description: Sparse Signal Recovery (SSR)

y is a N × 1 measurement vector.
Φ is N ×M dictionary matrix where M >> N.
x is M × 1 desired vector which is sparse with k non zero
entries.
v is the measurement noise.
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Block Sparsity

Multiple Measurement Vectors (MMV)

Block MMV

MMV with time varying sparsity
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Multiple Measurement Vectors (MMV)

Multiple measurements: L measurements

Common Sparsity Profile: k nonzero rows
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Applications

Signal Representation (Mallat, Coifman, Donoho,..)

EEG/MEG (Leahy, Gorodnitsky,Ioannides,..)

Robust Linear Regression and Outlier Detection (Jin,
Giannakis, ..)

Speech Coding (Ozawa, Ono, Kroon,..)

Compressed Sensing (Donoho, Candes, Tao,..)

Magnetic Resonance Imaging (Lustig,..)

Sparse Channel Equalization (Fevrier, Proakis,...)

Face Recognition (Wright, Yang, ...)

Cognitive Radio (Eldar, ..)

and many more.........
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Potential Algorithmic Approaches

Finding the Optimal Solution is NP hard. So need low complexity
algorithms with reasonable performance.

Greedy Search Techniques

Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), ...

Minimizing Diversity Measures (Regularization Framework)

Tractable Surrogate Cost functions: e.g. `1 minimization, ...

Bayesian Methods

Make appropriate Statistical assumptions on the solution
(sparsity): Choice of Prior
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Bayesian Methods: Choice of Prior

Super Gaussian Distributions: Heavy tailed and sharper peak
at origin compared to Gaussian.

Tractable representations using Scale Mixtures:

Gaussian Scale Mixture (GSM)
Laplacian Scale Mixture (LSM)
Power Exponential Scale Mixture (PESM)
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Gaussian Scale Mixtures

Separability: p(x) =
∏

i p(xi )

p(xi ) =

∫
p(xi |γi )p(γi )dγi =

∫
N(xi ; 0, γi )p(γi )dγi

Theorem

A density p(x) which is symmetric with respect origin, can be
represented by a GSM iff p(

√
x) is completely monotonic on

(0,∞).

Most of the sparse priors over x can be represented in this GSM
form. [Palmer et al., 2006]
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Examples of Gaussian Scale Mixture

Laplacian density

p(x ; a) =
a

2
exp(−a|x |)

Scale mixing density: p(γ) = a2

2 exp(−a2

2 γ), γ ≥ 0.

Student-t Distribution

p(x ; a, b) =
baΓ(a + 1/2)

(2π)0.5Γ(a)

1

(b + x2/2)a+1/2

Scale mixing density: Gamma Distribution.

Generalized Gaussian

p(x ; p) =
1

2Γ(1 + 1
p )

e−|x |
p

Scale mixing density: Positive alpha stable density of order p/2.
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Generalized Scale Mixture Family

GSM corresponds to `2 norm based SSR algorithm.

LSM corresponds to `1 norm based SSR algorithm.

Need a generalized scale mixture for a unified treatment of `1

and `2 minimization based SSR.
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Power Exponential Scale Mixture Distributions (PESM)

Power Exponential Distribution

Also known as Box and Tiao (BT) or Generalized Gaussian
distribution (GGD).

pPE (x ; 0, σ, p) = Ke−
|x|p
σp

Scale Mixture of Power Exponential :

p(xi ) =

∫
p(xi |γi )p(γi )dγi =

∫
pPE (xi ; 0, γi , p)p(γi )dγi

Bhaskar D Rao University of California, San Diego



Power Exponential Scale Mixture Distributions (PESM)

Power Exponential Distribution

Also known as Box and Tiao (BT) or Generalized Gaussian
distribution (GGD).

pPE (x ; 0, σ, p) = Ke−
|x|p
σp

Scale Mixture of Power Exponential :

p(xi ) =

∫
p(xi |γi )p(γi )dγi =

∫
pPE (xi ; 0, γi , p)p(γi )dγi

Bhaskar D Rao University of California, San Diego



Power Exponential Scale Mixture Distributions (PESM)

Choice of p=2

Gaussian Scale Mixtures (GSM): `2 norm minimization based
algorithms.

Choice of p=1

Laplacian Scale Mixtures (LSM): `1 norm minimization based
algorithms.

PESM

Unified treatment of both `1 and `2 based algorithms.
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PESM Example: Generalized t distribution

Inverse Generalized Gamma (GG) for scaling density:

p(γi ) = pGG (γi ;−p, σ, q) = η(σ/γi )
pq+1e−(σ/γi )

p

pGT (x ;σ, p, q) = K (1 +
|x |p

qσp
)−(q+1/p)

A wide class of heavy tailed super gaussian densities can be
represented by GT using suitable shape parameters p and q.
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Variants of GT

Table: Variants of Generalized t Distribution

q p Distribution

q →∞ 2 Normal
q →∞ 1 Laplacian (Double Exponential)
q ≥ 0 (degrees of freedom) 2 Student t distribution
q ≥ 0 (shape parameter) 1 Generalized Double Pareto (GDP)
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Bayesian Methods

MAP Estimation (Type I)

Hierarchical Bayes (Type II)
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MAP Estimation Framework (Type I)

Problem Statement

x̂ = arg max
x

p(x |y) = arg max
x

p(y |x)p(x)

Choice of p(x) = a
2e
−a|x | as Laplacian and Gaussian Likelihood

assumption will lead to the familiar LASSO framework.
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Hierarchical Bayesian Framework (Type II)

Problem Statement

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y |γ)p(γ)

Using this estimate of γ we can compute our concerned posterior
p(x |y ; γ̂).
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Hierarchical Bayesian Framework (Type II)

Potential Advantages

Averaging over x leads to fewer minima in p(γ|y).

γ can tie several parameters, leading to fewer parameters.

Maximizing the true posterior mass over the subspaces
spanned by non zero indexes instead of looking for the mode.

Bayesian LASSO

Laplacian p(x) as GSMa:

p(x) =

∫
p(x |γ)p(γ)dγ

=

∫
1√
2πγ

exp(− x2

2γ
)︸ ︷︷ ︸

p(x|γ)

× a2

2
exp(−a2

2
γ)︸ ︷︷ ︸

p(γ)

dγ

=
a

2
exp(−a|x |)

a”Bayesian Compressive Sensing Using Laplace Priors”, Babacan et al
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MAP Estimation (Type I) Framework

Problem Statement

x̂ = arg max
x

log p(x|y) = arg max
x

log p(y|x) + log p(x)

Examples:

Prior Distribution Penalty Function SSR Algorithm

Normal ||x||2 Ridge Regression
Laplacian ||x||1 LASSO

Student t distribution log(ε + x2) Reweighted `2 (Chartrand’s)
Generalized Double Pareto log(ε + |x|) Reweighted `1(Candes’s)

PESM as sparsity promoting prior p(x): Unified Type I Framework
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Unified Type I Framework

Choice of Prior: p(x)

Any distribution in PESM class.

EM Algorithm

Complete Data Log-Likelihood:

log p(y, x, γ) = log p(y|x) + log p(x|γ) + log p(γ)

Hidden Variable: γ

Concerned Posterior: p(γ|x, y) ∼ p(γ|x) (From Markov chain).
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Unified Type I: E step

Q(x) = Eγ|x
[

log p(y|x) + log p(x|γ) + log p(γ)

]

E Step

Only second term has dependencies on both x and γ.

Compute Eγi |xi
[

1
γpi

]

Bhaskar D Rao University of California, San Diego



Unified Type I: E step

p′(xi ) =
d

dxi

∫ ∞
0

p(xi |γi )p(γi )dγi

= −p × |xi |p−1sign(xi )p(xi )

∫ ∞
0

1

γpi
p(γi |xi )dγi

= −p × |xi |p−1sign(xi )p(xi )Eγi |xi
[ 1

γpi

]
E step

Eγi |xi
[ 1

γpi

]
= − p′(xi )

p × |xi |p−1sign(xi )p(xi )

Note: No need to know p(γ), as long as p(x) is known and has a
PESM representation.
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Unified Type I: M step

M step

x̂(k+1) = arg min
x

1

2λ
||y − Φx||2 +

∑
i

w
(k)
i |xi |

p

Where,

w
(k)
i = E

γi |x
(k)
i

[ 1

γpi

]
Special Case: Generalized t distribution

w
(k)
i =

q + 1/p

qσp + |x (k)
i |p
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Hierarchical Bayesian Framework (Type II)

Estimate of the posterior distribution for x using estimated γ̂;
i.e.p(x |y ; γ̂).

Choice of GSM as p(x) leads to Sparse Bayesian Learning
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Sparse Bayesian Learning (Type II)

y = Φx + v

Solving for MAP estimate of γ

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y |γ)p(γ)

What is p(y |γ)

Given γ, x is Gaussian with mean zero and Covariance matrix Γ with
Γ = diag(γ), i.e. p(x |γ) = N(x ; 0, Γ) = ΠN(xi ; 0, γi ).

Then p(y |γ) = N(y ; 0,Σy ), where Σy = σ2I + ΦΓΦT ,

p(y |γ) =
1√

(2π)N |Σy |
e−

1
2 y

T Σ−1
y y
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γ̂ = arg max
γ
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Sparse Bayesian Learning (Tipping)

y = Φx + v

Solving for the optimal γ

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y |γ)p(γ)

= arg min
γ

log |Σy |+ yTΣ−1
y y − 2

∑
i

logp(γi )

where, Σy = σ2I + ΦΓΦT and Γ = diag(γ)

Computational Methods

Many options for solving the above optimization problem, e.g.
Majorization Minimization, Expectation-Maximization (EM).
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Sparse Bayesian Learning

y = Φx + v

Computing Posterior

Now because of our convenient GSM choice, posterior can be easily
computed, i.e, p(x |y ; γ̂) = N(µx ,Σx) where,

µx = E [x |y ; γ̂] = Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1y

Σx = Cov [x |y ; γ̂] = Γ̂− Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1ΦΓ̂

µx can be used as a point estimate.

Sparsity of µx is achieved through sparsity in γ.

Another parameter of interest for the EM algorithm

E (x2
i |y, γ̂) = µ2

x(i) + Σx(i , i)
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EM algorithm: Updating γ

Treating (y, x) as complete data and vector x as hidden variable.

log p(y , x , γ) = log p(y |x) + log p(x |γ) + log p(γ)

E step

Q(γ|γk) = Ex|y ;γk [log p(y |x) + log p(x |γ) + log p(γ)]

M step

γk+1 = argmaxγQ(γ|γk) = argmaxγEx|y ;γk [log p(x |γ) + log p(γ)]

= argminγEx|y ;γk

M∑
i=1

[(
x2
i

2γi
+

1

2
log γi

)
− log p(γi )

]
Solving this optimization problem with a non-informative prior p(γ),

γk+1
i = E (x2

i |y, γk) = µx(i)2 + Σx(i , i)
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Type II (SBL) properties

Local minima are sparse, i.e. have at most N nonzero γi

Cost function p(γ|y) is generally much smoother than the
associated MAP estimation objective p(x |y). Fewer local
minima.

In high signal to noise ratio, the global minima is the sparsest
solution. No structural problems.

Attempts to approximate the posterior distribution p(x |y) in
the area with significant mass.
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Algorithmic Variants

Fixed Point iteration based on setting the derivative of the
objective function to zero (Tipping)

Sequential search for the significant γ’s (Tipping and Faul)

Majorization-Minimization based approach (Wipf and
Nagarajan)

Reweighted `1 and `2 algorithms (Wipf and Nagarajan)

Approximate Message Passing (AlShoukairi and Rao)
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Type II using PESM

In E step we need to compute the conditional expectation.

Closed form may not be available depending on the choice of
p (distributional parameter of PESM).

Alternative: MCMC technique.

LSM

Using the fact that a Laplacian density has a GSM representation,
a tractable 3 layer hierarchical model can be developed.
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Simulation Results

Parameters

1 N = 50, M = 250.

2 Dictionary Elements: Normal Distribution with mean = 0 and
standard deviation = 1.

3 Distribution of non zero elements

(I) Zero mean unit variance Gaussian.
(II) Student t distribution with degrees of freedom ν = 3.

(Super-Gaussian)
(III) Uniform ±1 random spikes.
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Simulation Results: Gaussian

Figure: Recovery performance with Gaussian distributed non zero
coefficients
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Simulation Results: Super Gaussian

Figure: Recovery performance with Super Gaussian (Student t)
distributed non zero coefficients
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Simulation Results: Uniform

Figure: Recovery performance with uniform spikes as non zero coefficients
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Special Case: MMV

Multiple measurements: L measurements

Common Sparsity Profile: k nonzero rows
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Bayesian Methods: GSM Extension

Representation for Random Vectors (Rows for MMV)

X = γG where, G ∼ N(g ; 0,B)

γ is a positive random variable, which is independent of G.

p(x) =

∫
p(x|γ)p(γ)dγ =

∫
N(x; 0, γB)p(γ)dγ

B = I if the row entries are assumed independent.

One γ per row vector. Complexity of estimating γ does not
grow with L.

The EM algorithm is also very tractable.
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MMV Empirical Comparison: 1000 trials
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Summary

Sparse Signal Recovery (SSR) and Compressed Sensing (CS) are
interesting new signal processing tools with many potential
applications.

Many algorithmic options exist to solve the underlying sparse signal
recovery problem; Greedy Search Techniques, regularization
methods, Bayesian methods, among others.

Bayesian methods offer interesting algorithmic options to the Sparse
Signal Recovery problem

MAP methods (reweighted `1 and `2 methods)
Hierarchical Bayesian Methods (Sparse Bayesian Learning)
Versatile and can be more easily employed in problems with
structure
Algorithms can often be justified by studying the resulting
objective functions.
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