One-Bit Quantization in Massive MIMO Systems Lee Swindlehurst

Center for Pervasive Communications and Computing University of California Irvine Hans Fischer Senior Fellow, Institute for Advanced Study Technical University of Munich

One-Bit Quantization in Massive MIMO Systems <u>Collaborators</u>:

Yongzhi Li, Amodh Saxena, Amine Mezghani (UCI) Fabian Steiner, Hela Jedda, Josef Nossek, Wolfgang Utschick (TUM) Inbar Fijalkow (Univ. Cergy-Pontoise, France) Gonzalo Seco Granados (UAB, Spain)

Outline

• Background and Motivation

• Massive MIMO Uplink with One-Bit ADCs

- > Model
- Channel estimation
- Bussgang decomposition
- Optimized training
- Achievable rate analysis
- Energy efficiency
- How many more antennas are needed?

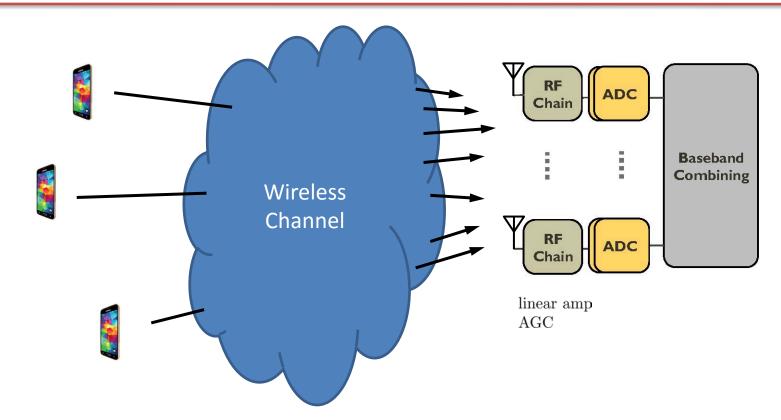
• Massive MIMO Downlink with One-Bit DACs

- > Model
- ML Encoding
- Bussgang analysis
- Quantized precoders
- Conclusions

The Road to Gigabit Wireless

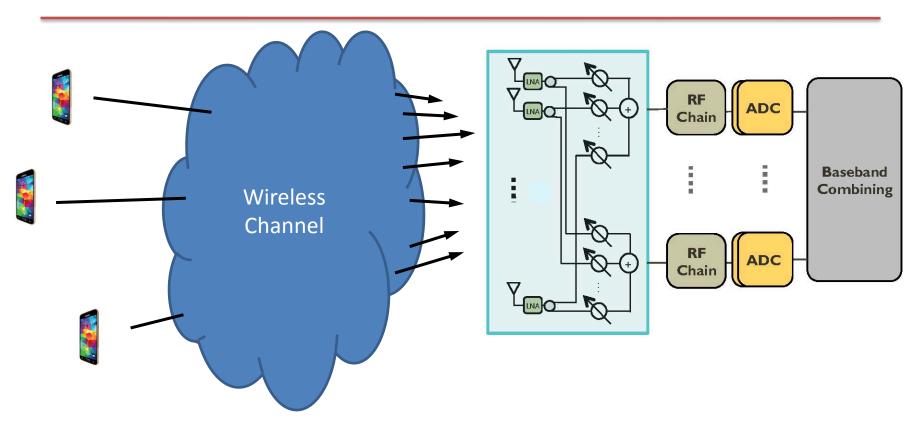
- How do we get to Gb/s wireless links?
- Incremental gains from
 - standard MIMO
 - cooperative comm
 - cognitive radios
- What are the next steps?
- Three symbiotic trends emerging:
 - Deployment of pico- and femto-cells (OoM decrease in cell size)
 - Millimeter wave frequencies (OoM increase in bandwidth)
 - Massive MIMO (OoM increase in antennas)

mmWave Ma\$\$ive MIMO



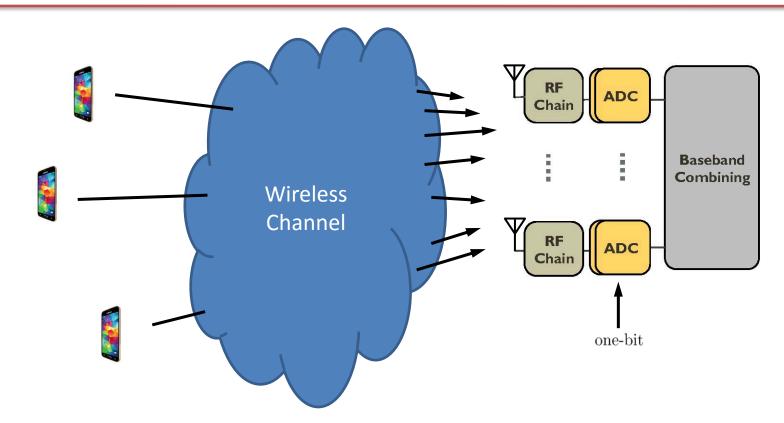
- Full precision ADC requires linear, low-noise amplifiers and AGC
- ADC power consumption grows exponentially with sampling rate
- A commercial TI 1 Gs/s 12-bit ADC requires 4W
- Not practical for ideal massive MIMO

Hybrid Analog-Digital Beamforming



- Reduce dimensionality with RF beamforming network
- Complicates receiver design, scalability issues for wideband operation
- Phase shifters are typically quantized
- Power/cost still an issue

Alternative: Low-Resolution (1-bit) ADC



- One-bit ADC \Rightarrow simple RF, no AGC or high cost LNA
- Operates at a fraction of the power
- Low SNR loss (typical operating point for mmWave massive MIMO) only 2dB
- Compensate for quantization error with signal processing

Signal Processing Issues for One-Bit Quantization

• Channel Estimation

- training-based methods
- channel models? Rayleigh, sparse, DOA-based, etc.
- price of ignoring 1-bit ADCs?

• Uplink Decoding

- joint decoding & channel estimation
- high quantization noise \Rightarrow less dense constellations
- high SNR error floor \Rightarrow gains from power control

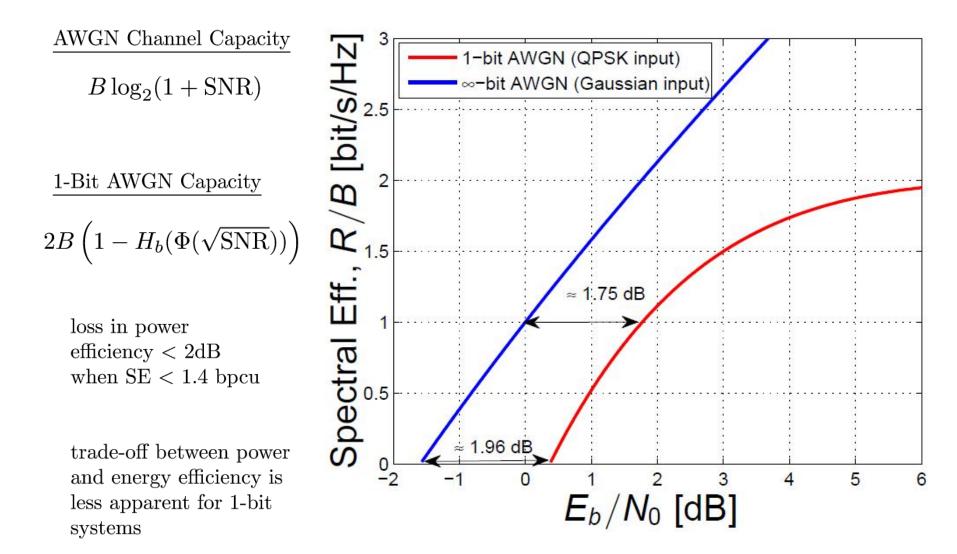
• Downlink Precoding

- 1-bit DAC \Rightarrow finite alphabet, non-linear precoding
- ML encoder too expensive and over constrains problem
- antenna selection?

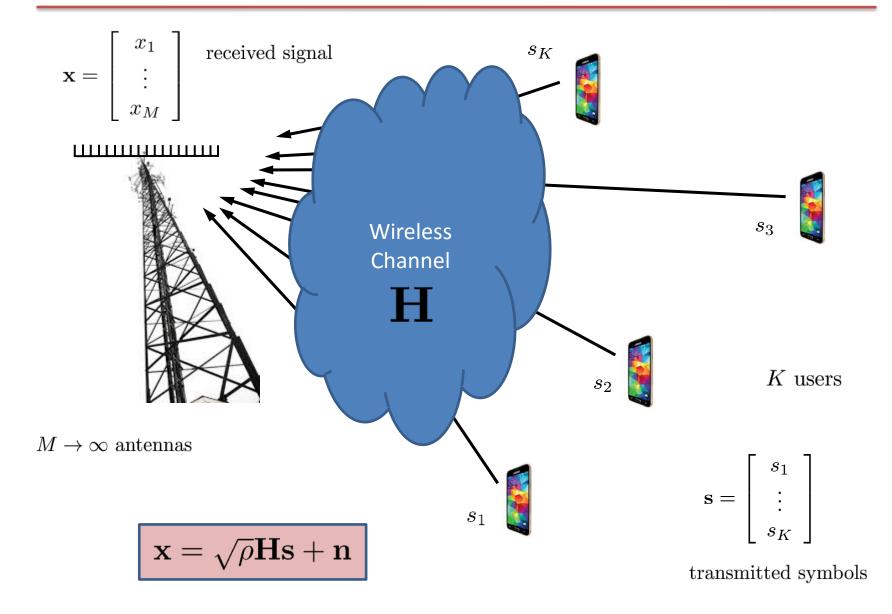
• Information Theoretic Analyses

- what spectral efficiencies are achievable?
- how many more antennas do we need?
- exploit Bussgang decomposition

Single Antenna Analysis – Mezghani & Nossek



Massive MIMO Uplink



<u>**Theorem</u>**: Ergodic capacity of one-bit quantized i.i.d. MIMO channel with $\mathbf{H}_{ij} \sim \mathcal{CN}(0, 1)$ is achieved asymptotically at low SNR by QPSK signals:</u>

$$C_{1-bit}^{erg} \simeq \frac{2}{\pi} M \cdot \text{SNR} - \frac{M(M + (\pi - 1)K - 1)}{2K} \left(\frac{2}{\pi} \text{SNR}\right)^2$$

Unquantized channel with QPSK signals achieves

$$C^{erg} \simeq M \cdot \text{SNR} - \frac{M(M+K)}{2K} (\text{SNR})^2$$

Channel Estimation with One-Bit ADC

Use $K\times\tau$ uplink training data $\pmb{\Phi}$

$$\mathbf{X} = \sqrt{\rho} \mathbf{H} \mathbf{\Phi} + \mathbf{N}$$

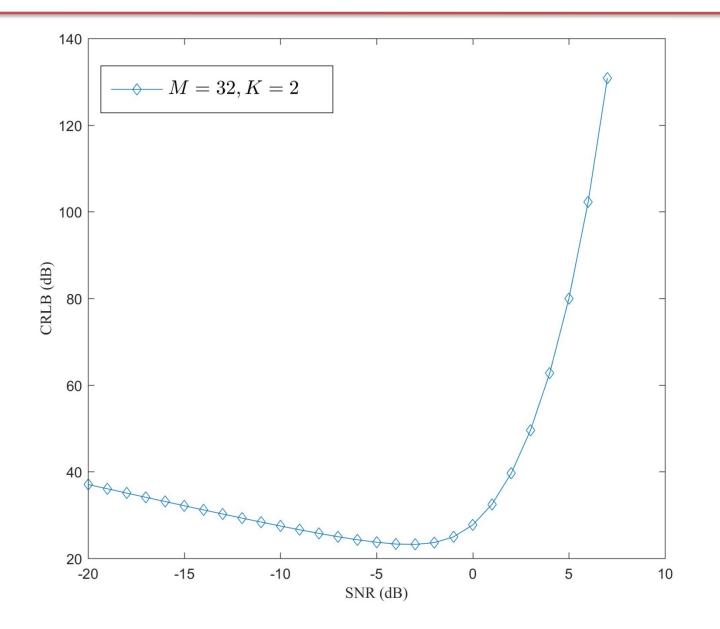
Vectorized model

$$\begin{split} \mathbf{x} &= \operatorname{vec}(\mathbf{X}) = \sqrt{\rho} \left(\mathbf{\Phi}^T \otimes \mathbf{I} \right) \operatorname{vec}(\mathbf{H}) + \operatorname{vec}(\mathbf{N}) \\ &= \tilde{\mathbf{\Phi}} \mathbf{h} + \mathbf{n} \end{split}$$

1-bit quantization $\mathcal{Q}(\cdot)$ maps complex data to $\pm 1 \pm j$

$$\mathbf{r} = \mathcal{Q}(\mathbf{x}) = \mathcal{Q}\left(ilde{\mathbf{\Phi}}\mathbf{h} + \mathbf{n}
ight)$$

The CRB: Do We Really Want an Unbiased Estimator?



Let x(t) be a Gaussian random process, and $r(t) = \mathcal{Q}(x(t))$ be the output of some nonlinear function. Then for a certain constant a, we have

$$r_{xx}(\tau) = ar_{xr}(\tau)$$

for the auto-correlation and cross-correlation functions $r_{xx}(\tau)$ and $r_{xr}(\tau)$, respectively.

Bussgang Theorem: Implications for Channel Estimation

Represent nonlinear quantization by "equivalent" linear operator:

$$egin{aligned} \mathbf{r} &= \mathcal{Q}(\mathbf{x}) = \mathcal{Q}\left(ilde{\mathbf{\Phi}}\mathbf{h} + \mathbf{n}
ight) \ &= \mathbf{A}\mathbf{x} + \mathbf{q} \end{aligned}$$

where

$$\mathbf{AC}_{xx} = \mathbf{C}_{xr}^H$$

Under this model \mathbf{x} and \mathbf{q} are uncorrelated, and \mathbf{A} minimizes the equivalent quantization noise:

$$\mathbf{A} = \arg\min_{\mathbf{A}} \|\mathbf{r} - \mathbf{A}\mathbf{x}\|^2$$

Linear model simplifies algorithm design and analysis

With
$$\mathbf{r} = \mathbf{A}\mathbf{x} + \mathbf{q}$$
 and $\mathbf{A} = \mathbf{C}_{xr}^H \mathbf{C}_{xx}^{-1}$

$$\mathbf{C}_{xr} = \sqrt{\frac{2}{\pi}} \mathbf{C}_{xx} \operatorname{diag}(\mathbf{C}_{xx})^{-\frac{1}{2}}$$
$$\mathbf{A} = \sqrt{\frac{2}{\pi}} \operatorname{diag}((\mathbf{\Phi}^T \mathbf{\Phi}^* \otimes \rho \mathbf{I}) + \mathbf{I})^{-\frac{1}{2}}$$

Channel estimates:

$$\hat{\mathbf{h}}^{\mathtt{BLS}} = \left(\tilde{\mathbf{\Phi}}^{H} \tilde{\mathbf{\Phi}}
ight)^{-1} \tilde{\mathbf{\Phi}}^{H} \mathbf{r}$$
 $\hat{\mathbf{h}}^{\mathtt{BLM}} = \mathbf{C}_{hr} \mathbf{C}_{rr}^{-1} \mathbf{r}_{p} = \left(\tilde{\mathbf{\Phi}}^{H} + \mathbf{C}_{hq}
ight) \mathbf{C}_{rr}^{-1} \mathbf{r}$

Bussgang Channel Estimator Performance

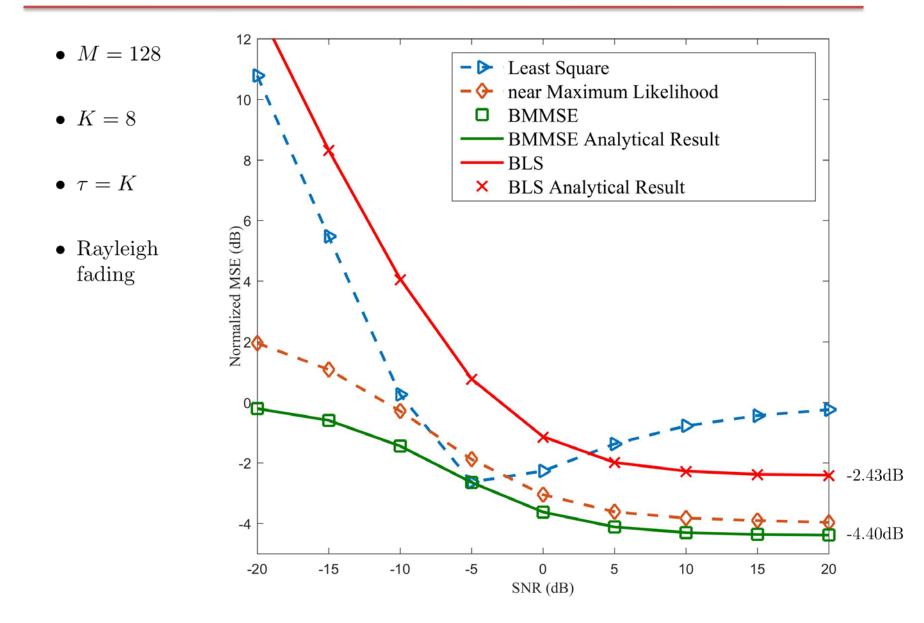
Assume special case of $\tau = K$ and $\Phi \Phi^H = \tau \mathbf{I}$

$$MSE^{BLS} = \frac{\pi(1+\rho K)}{2\rho K} - 1 \quad \xrightarrow[\rho \to \infty]{} \frac{\pi}{2} - 1 \qquad (-2.43 dB)$$

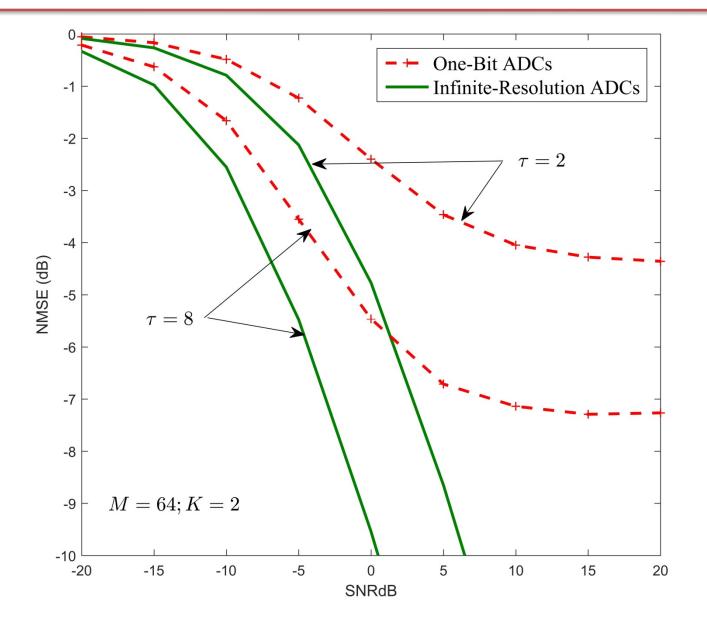
$$MSE^{\text{BLM}} = 1 - \frac{2\rho K}{\pi (1 + \rho K)} \quad \xrightarrow[\rho \to \infty]{} 1 - \frac{2}{\pi} \qquad (-4.40 \text{dB})$$

What if $\tau > K$? What is trade-off in MSE vs. throughput? Look at MSE first, save spectral efficiency for later ...

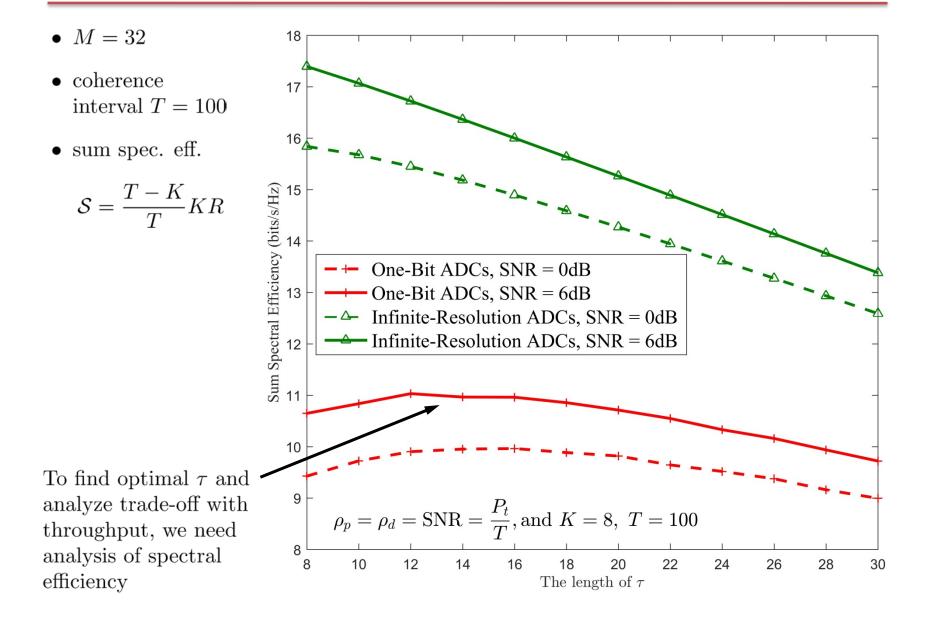
Channel Estimation Simulation Results



Channel Estimation Simulation Results (cont.)



Example: Optimum Training Interval



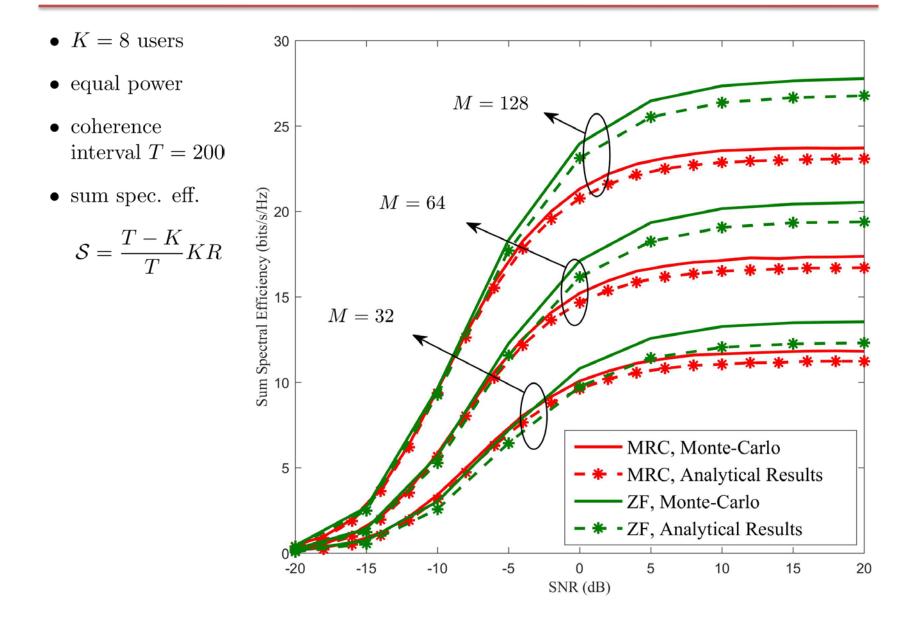
Analysis of Achievable Rate

- Assume special case of $\tau = K$ and $\Phi \Phi^H = \tau \mathbf{I}$
- Allows derivation of lower bound on rate assuming quantization noise is Gaussian
- Allows for possibly different SNR for training ρ_p and data ρ_d
- Quantifies effect of using channel estimates to form MRC and ZF receivers
- Provides simple closed-form expressions

$$\underline{\text{MRC Receiver}}: \qquad R_{\text{MRC}} \ge \log_2 \left(1 + \frac{\rho_d \alpha_d^2 \alpha_p^2 \rho_p K M}{\rho_d \alpha_d^2 K + \alpha_d^2 + (1 - 2/\pi)} \right)$$
$$\underline{\text{ZF Receiver}}: \qquad R_{\text{ZF}} \ge \log_2 \left(1 + \frac{\rho_d \alpha_d^2 \alpha_p^2 \rho_p K (M - K)}{\rho_d \alpha_d^2 K \eta + \alpha_d^2 + (1 - 2/\pi)} \right)$$

$$\alpha_i = \sqrt{\frac{2}{\pi(1+\rho_i K)}} \qquad \eta = 1 - \alpha_p^2 \rho_p K$$

Example: Sum Spectral Efficiency



How Many More Antennas Are Needed with One-Bit ADCs?

Typical Massive MIMOOne-Bit Massive MIMOMRC
$$C\left(\frac{\rho^2 K M_{typ}}{K\rho(K\rho+1)+K\rho+1}\right)$$
 $C\left(\frac{\rho^2 \alpha^4 K M_{one}}{\rho \alpha^2 K+\alpha^2+1-2/\pi}\right)$ ZF $C\left(\frac{\rho^2 K (M_{typ}-K)}{2K\rho+1}\right)$ $C\left(\frac{\rho^2 \alpha^4 K (M_{one}-K)}{\rho \alpha^2 K \eta+\alpha^2+1-2/\pi}\right)$

$$C(x) = \frac{T-K}{T} K \log_2(1+x) \qquad \rho_d = \rho_p = \rho \qquad \alpha = \sqrt{\frac{2}{\pi(1+\rho K)}}$$

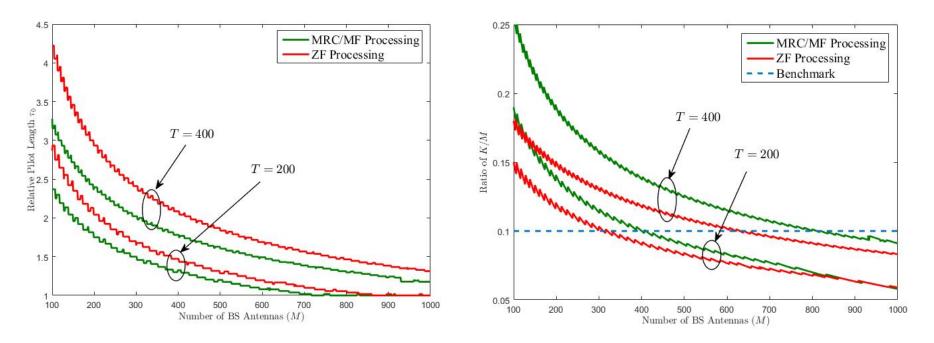
• $C_{typ} = C_{one}$ for MRC when

$$\frac{M_{one}}{M_{typ}} = \frac{\pi^2}{4} \simeq 2.5$$

•
$$C_{typ} = C_{one}$$
 for ZF when

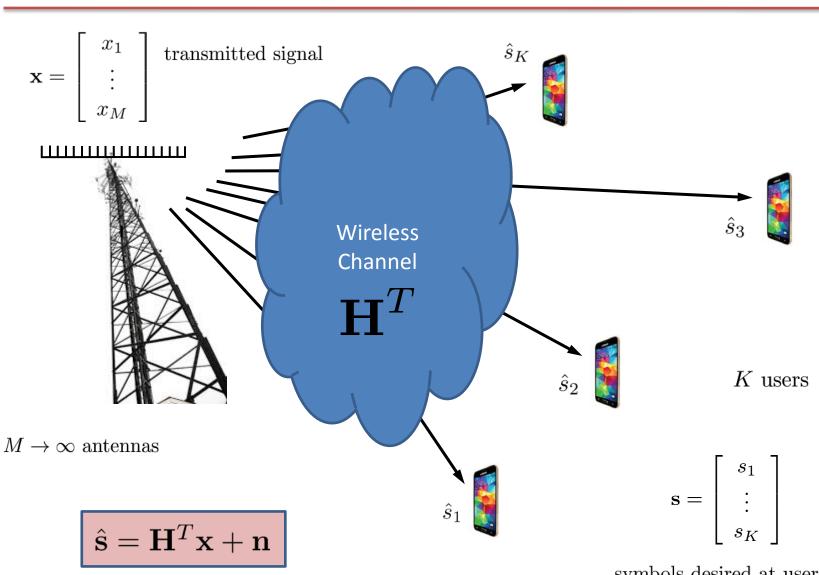
$$\frac{M_{one}}{M_{typ}} = \frac{\pi^2 (1+\rho K)^2 - 4\rho^2 K^2}{4+8\rho K}$$
$$\longrightarrow \frac{\pi^2}{4} \qquad \rho \to 0$$

Example: Joint Optimization of # of Users and Training Interval



- Assumes operating point chosen to achieve SINR duality for uplink and downlink
- $\bullet\,$ Transmit power optimized as well, and decreases with M
- Optimization goal is to minimize weighted product of spectral and energy efficiency
- One-bit quantization benefits from additional training beyond minimum
- But optimal user loading decreases with M for fixed T

Massive MIMO Downlink



symbols desired at users

A "Natural" Approach: ML Encoding

Since \mathbf{x} is constrained to QPSK alphabet due to 1-bit quantization, suggests ML encoding:

$$\mathbf{x} = \arg\min_{x_i \in \pm 1 \pm j} \|\mathbf{s} - \mathbf{H}^T \mathbf{x}\|$$

- Probhibitively complex, especially for a massive antenna array $(\mathbf{H}^T \text{ is } K \times M)$
- Requires special "handling" since \mathbf{H}^T is a fat matrix
- Even a sphere encoding approach is too costly
- We will see the ML encoding is outperformed by something much simpler . . .

Quantized Linear Precoding

Output of linear precoder $\mathbf{x}_P = \mathbf{Ps}$ is 1-bit quantized prior to transmission:

$$\mathbf{x} = \frac{1}{\sqrt{M}} \mathcal{Q}(\mathbf{x}_P)$$
$$\hat{\mathbf{s}} = \frac{1}{\sqrt{M}} \mathbf{H}^T \mathcal{Q}(\mathbf{Ps}) + \mathbf{n}$$

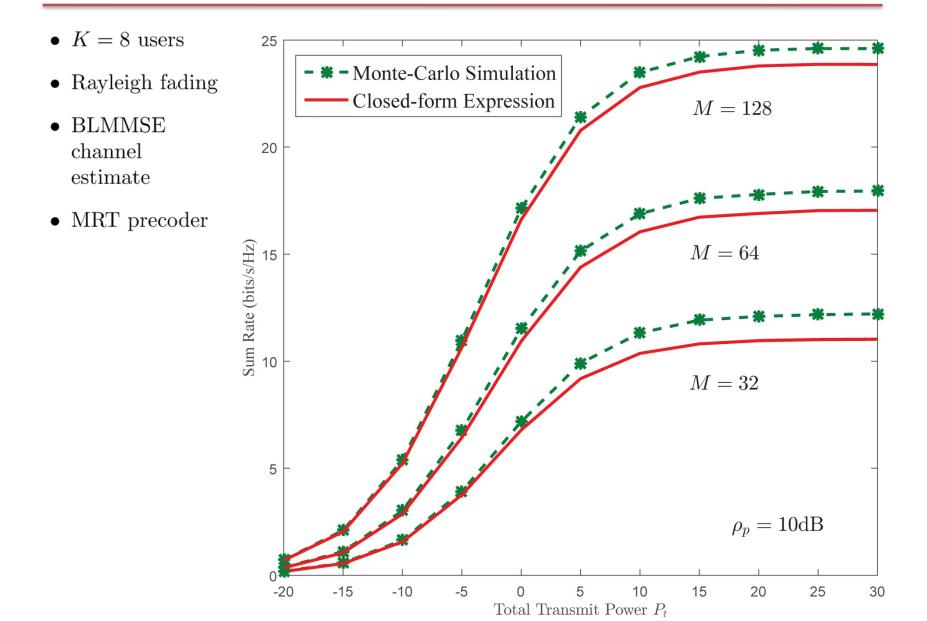
Example: Quantized MRT precoder with BLMMSE channel estimate:

$$\hat{\mathbf{s}} = \sqrt{\frac{P_t}{M}} \mathbf{H}^T \mathbf{x} + \mathbf{n} = \sqrt{\frac{P_t}{M}} \mathbf{H}^T \left(\mathbf{A} \hat{\mathbf{H}}^* \mathbf{s} + \mathbf{q} \right) + \mathbf{n}$$

For BLMMSE channel estimate with $\tau = K$ and training SNR ρ_p , downlink rate for user k is lower bounded by

$$R_k \ge \log_2 \left(1 + \frac{4\rho_p M P_t}{\pi^2 (1 + \rho_p K)(1 + P_t)} \right)$$

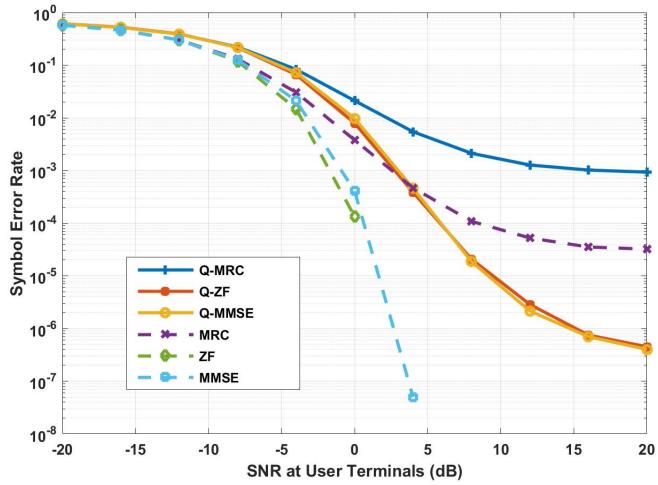
Sum Downlink Rate for Estimated MRT Precoder



Comparison with Unquantized Case

• M = 128

- K = 8 users
- Rayleigh fading
- Perfect CSI



Special Case: Quantized ZF Precoder

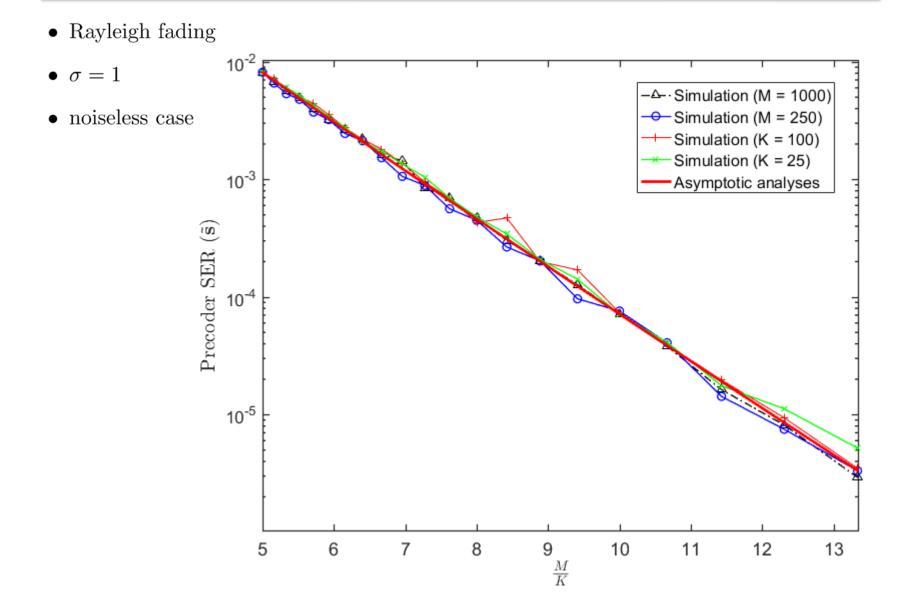
Assume $\mathbf{H}^T = \sigma \tilde{\mathbf{H}}^T$, where elements of $\tilde{\mathbf{H}}^T$ are iid $\mathcal{CN}(0,1)$ Assume $M \gg K \gg 1$, for asymptotic SER:

$$P_e = 2Q\left(\sqrt{\frac{\frac{4\sigma^2(M-K)^2}{MK\pi}}{\frac{2\sigma^2}{M}\left(1-\frac{2}{\pi}\right)\left(M-K\right)+\sigma_n^2}}\right)$$

High SNR error floor:

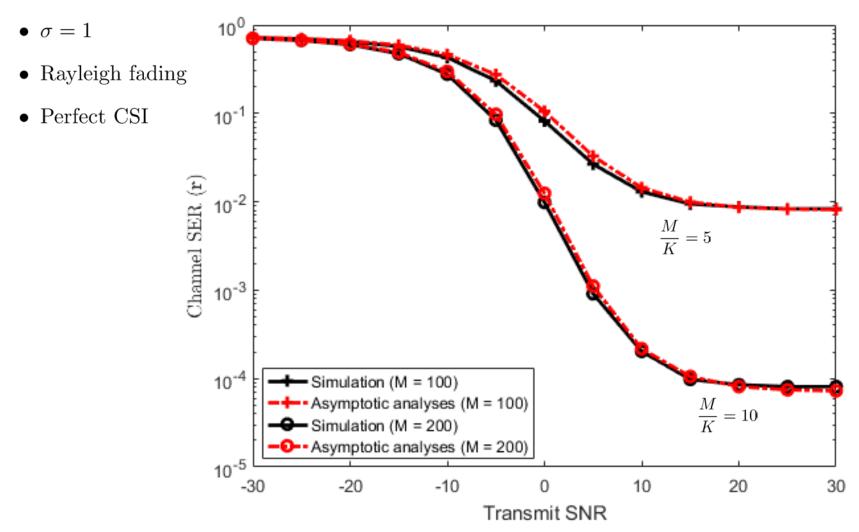
$$P_e \longrightarrow 2Q\left(\sqrt{\frac{\frac{2}{\pi}}{1-\frac{2}{\pi}}\left(\frac{M}{K}-1\right)}\right)$$

Noiseless Case, Impact of Quantization Errors Only



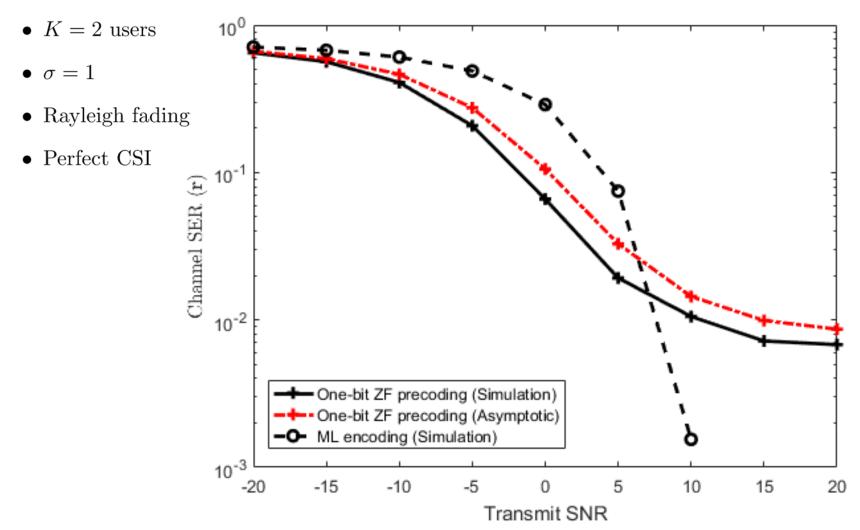
Quantized ZF Precoder Performance with Noise

• K = 20 users



Comparison with ML Encoding

• M = 10



Why Does Quantized ZF Precoding Perform So Well?

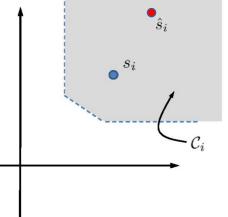
We can show that
$$\mathbf{R}_{\hat{s}s} \simeq \frac{2\sigma}{\sqrt{\pi}} \sqrt{\frac{M}{K}} \mathbf{I}_K$$

As M/K grows, symbols move farther from decision boundaries

ML encoding overconstrains the problem if the desired signal at the receiver is digital. For example, if the elements of **s** should be QPSK (e.g., due to one-bit quantization), then all we need is that s_i lie in the right decision region C_i :

Why not find $\mathbf{x} \in \{\pm 1 \pm j\}^M$ such that

$$\hat{s}_i = (\mathbf{H}^T)_{i:} \mathbf{x} \in \mathcal{C}_i \ \forall i$$

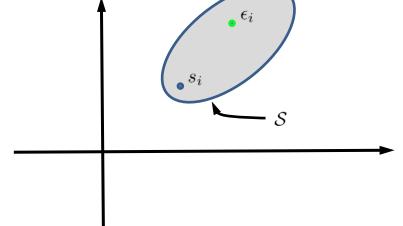


Quantization ZF precoder $\mathcal{Q}(\mathbf{Ps}) = \mathcal{Q}(\mathbf{H}(\mathbf{H}^T\mathbf{H})^{-1}\mathbf{s})$ eliminates scaling due to $(\mathbf{H}^T\mathbf{H})^{-1} \to \beta \mathbf{I}$ scaling which "props up" weak channels and scales down strong channels in order to enforce $\mathbf{s} \simeq \mathbf{H}^T\mathbf{x}$.

1-bit Quantized ZF: $\mathbf{x} = \mathcal{Q} \left(\mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{s} \right)$

- <u>Idea</u>: All we need is a correct detection at the receivers ... we don't necessarily need $\mathbf{s} \simeq \mathbf{H}^T \mathbf{x}$
- \bullet Instead of zero-forcing to ${\bf s},$ try to zero-force to a better point in the correct detection region
- "better" not defined by distance to \mathbf{s} , but rather by distance to avoid probability of error

$$\min_{\boldsymbol{\epsilon}} d\left(\mathbf{s}, \mathbf{H}^T \hat{\mathbf{x}}\right) \quad \text{s.t.} \quad \hat{\mathbf{x}} = \mathcal{Q}\left(\mathbf{H}(\mathbf{H}^T \mathbf{H})^{-1}(\mathbf{s} + \boldsymbol{\epsilon})\right) , \ \boldsymbol{\epsilon} \in \mathcal{S}$$

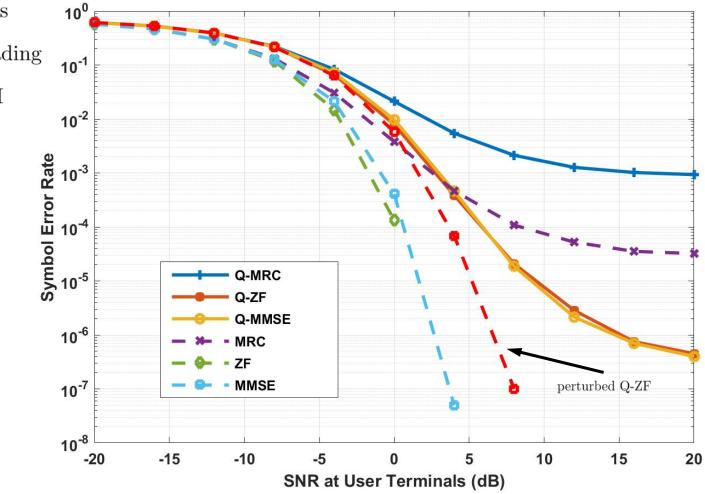


1-bit Quantized ZF: $\mathbf{x} = \mathcal{Q} \left(\mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{s} \right)$

- <u>Idea</u>: All we need is a correct detection at the receivers ... we don't necessarily need $\mathbf{s} \simeq \mathbf{H}^T \mathbf{x}$
- \bullet Instead of zero-forcing to ${\bf s},$ try to zero-force to a better point in the correct detection region
- "better" not defined by distance to $\mathbf{s},$ but rather by distance to avoid probability of error

Example: Performance of Perturbed Quantized ZF Precoder

- M = 128
- K = 8 users
- Rayleigh fading
- Perfect CSI



Conclusions

- Significant advantages in energy and cost for one-bit ADCs & DACs in massive MIMO systems
- Low SNR loss is tolerable, high SNR loss unavoidable but not necessarily critical
- Bussgang decomposition provides framework for tractable one-bit algorithm designs and system performance analyses
 - Channel estimation
 - Optimized training
 - Achievable rates
 - Energy efficiency
 - Number of antennas
- For the downlink, simply quantizing standard linear precoders provides reasonable performance, without enormous ML encoding cost. But there are gains for perturbation precoding!
- We've just scratched the surface, there are many interesting open problems that remain ...