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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Network as graph G = (V, E): encode pairwise relationships

I Interest here not in G itself, but in data associated with nodes in V
⇒ Object of study is a graph signal x

I Q: Graph signals common and interesting as networks are?
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce

I E = Output of sector i is an input to sector j (62 sectors in V)

Oil and Gas Services Finance

PC

CO

OG

AS

MP

RAFR

SC MP

IC

I Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
I Administrative services (AS), Professional services (MP)
I Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)

I Only interactions stronger than a threshold are shown
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce

I E = Output of sector i is an input to sector j (62 sectors in V)

I A few sectors have widespread
strong influence (services,
finance, energy)

I Some sectors have strong
indirect influences (oil)

I The heavy last row is final
consumption

I This is an interesting network ⇒ Signals on this graph are as well
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Disaggregated GDP of the United States

I Signal x = output per sector = disaggregated GDP

⇒ Network structure used to, e.g., reduce GDP estimation noise

I Signal is as interesting as the network itself. Arguably more
I Same is true on brain connectivity and fMRI brain signals, ...
I Gene regulatory networks and gene expression levels, ...
I Online social networks and information cascades, ...
I Alignment of customer preferences and product ratings, ...
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Graph signal processing

I Graph SP: broaden classical SP to graph signals [Shuman et al.’13]

⇒ Our view: GSP well suited to study network (diffusion) processes
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I As.: Signal properties related to topology of G (locality, smoothness)

⇒ Algorithms that fruitfully leverage this relational structure

I Q: Why do we expect the graph structure to be useful in processing x?
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Importance of signal structure in time

I Signal and Information Processing is about exploiting signal structure

I Discrete time described by cyclic graph

⇒ Time n follows time n − 1

⇒ Signal value xn similar to xn−1

I Formalized with the notion of frequency
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I Cyclic structure ⇒ Fourier transform ⇒ x̃ = FHx

(
Fkn =

e j2πkn/N√
N

)
I Fourier transform ⇒ Projection on eigenvector space of cycle
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Covariances and principal components

I Random signal with mean E [x] = 0 and covariance Cx = E
[
xxH

]
⇒ Eigenvector decomposition Cx = VΛVH

I Covariance matrix Cx is a graph

⇒ Not a very good graph, but still

I Precision matrix C−1
x a common graph too

⇒ Conditional dependencies of Gaussian x
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I Covariance matrix structure ⇒ Principal components (PCA) ⇒ x̃ = VHx

I PCA transform ⇒ Projection on eigenvector space of (inverse) covariance

I Q: Can we extend these principles to general graphs and signals?
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Graphs 101

I Formally, a graph G (or a network) is a triplet (V, E ,W )

I V = {1, 2, . . . ,N} is a finite set of N nodes or vertices

I E ⊆ V × V is a set of edges defined as ordered pairs (n,m)
I Write N (n) = {m ∈ V : (m, n) ∈ E} as the in-neighbors of n

I W : E → R is a map from the set of edges to scalar values wnm

I Represents the level of relationship from n to m
I Often weights are strictly positive, W : E → R++

I Unweighted graphs ⇒ wnm ∈ {0, 1}, for all (n,m) ∈ E
I Undirected graphs ⇒ (n,m) ∈ E if and only if (m, n) ∈ E and

wnm = wmn, for all (n,m) ∈ E
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Graphs – examples

0 1 2 3 · · · 23

I Unweighted and directed graphs (e.g., time)
I V = {0, 1, . . . , 23}
I E = {(0, 1), (1, 2), . . . , (22, 23), (23, 0)}
I W : (n,m) 7→ 1, for all (n,m) ∈ E

I Unweighted and undirected graphs (e.g., image)
I V = {1, 2, 3, . . . , 9}
I E = {(1, 2), (2, 3), . . . , (8, 9), (1, 4), . . . , (6, 9)}
I W : (n,m) 7→ 1, for all (n,m) ∈ E
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I Weighted and undirected graphs (e.g., covariance)
I V = {1, 2, 3, 4}
I E = {(1, 1), (1, 2), . . . , (4, 4)} = V × V
I W : (n,m) 7→ σnm = σmn, for all (n,m)
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Adjacency matrix

I Algebraic graph theory: matrices associated with a graph G

⇒ Adjacency A and Laplacian L matrices

⇒ Spectral graph theory: properties of G using spectrum of A or L

I Given G = (V, E ,W ), the adjacency matrix A ∈ RN×N is

Anm =

{
wnm, if (n,m) ∈ E
0, otherwise

I Matrix representation incorporating all information about G

⇒ For unweighted graphs, positive entries represent connected pairs

⇒ For weighted graphs, also denote proximities between pairs
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Degree and k-hop neighbors

I If G is unweighted and undirected, the degree of node i is |N (i)|
⇒ In directed graphs, have out-degree and an in-degree

I Using the adjacency matrix in the undirected case

⇒ For node i : deg(i) =
∑

j∈N (i) Ai j =
∑

j Ai j

⇒ For all N nodes: d = A1 → Degree matrix: D := diag(d)

I Q: Can this be extended to k-hop neighbors? → Powers of A

⇒ [Ak ]ij non-zero only if there exists a path of length k from i to j

⇒ Support of Ak : pairs that can be reached in k hops
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Laplacian of a graph

I Given undirected G with A and D, the Laplacian matrix L ∈ RN×N is

L = D− A

⇒ Equivalently, L can be defined element-wise as

Li j =

 deg(i), if i = j
−wi j , if (i , j) ∈ E
0, otherwise

I Normalized Laplacian: L = D−1/2LD−1/2 (we will focus on L)
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Spectral properties of the Laplacian

I Denote by λi and vi the eigenvalues and eigenvectors of L

I L is positive semi-definite

⇒ xTLx = 1
2

∑
(i,j)∈E wij(xi − xj)

2 ≥ 0, for all x

⇒ All eigenvalues are nonnegative, i.e. λi ≥ 0 for all i

I A constant vector 1 is an eigenvector of L with eigenvalue 0

[L1]i =
∑

j∈N (i)

wij(1− 1) = 0

⇒ Thus, λ1 = 0 and v1 = (1/
√
N) 1

I In connected graphs, it holds that λi > 0 for i = 2, . . . ,N

⇒ Multiplicity{λ = 0} = number of connected components
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Part I: Fundamentals

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes

Part II: Applications
Filter design for network operators
Sampling graph signals
Blind identification of graph filters
Network topology inference

Concluding remarks
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Graph signals

I Consider graph G = (V, E ,W ). Graph signals are mappings x : V → R
⇒ Defined on the vertices of the graph (data tied to nodes)

Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

I May be represented as a vector x ∈ RN

⇒ xn denotes the signal value at the n-th vertex in V
⇒ Implicit ordering of vertices (same as in A or L)

0

1

2 3

4

5

6

7 8

9

x =


x0

x1

x2

...
x9

 =


0.6
0.7
0.3

...
0.7


I Data associated with links of G ⇒ Use line graph of G
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Graph signals – Genetic profiles

I Graphs representing gene-gene interactions

⇒ Each node denotes a single gene (loosely speaking)

⇒ Connected if their coded proteins participate in same metabolism

I Genetic profiles for each patient can be considered as a graph signal

⇒ Signal on each node is 1 if mutated and 0 otherwise

x1 =


0
1
0
...
0


Sample patient 1 with subtype 1
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I To understand a graph signal, the structure of G must be considered
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Graph-shift operator

I To understand and analyze x, useful to account for G ’s structure

I Associated with G is the graph-shift operator S ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

I S can take nonzero values in the edges of G or in its diagonal

I Ex: Adjacency A, degree D, and Laplacian L = D− A matrices
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Relevance of the graph-shift operator

I Q: Why is S called shift? A: Resemblance to time shifts

I S will be building block for GSP algorithms (More soon)

⇒ Same is true in the time domain (filters and delay)
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Local structure of graph-shift operator

S represents a linear transformation that can be computed locally at
the nodes of the graph. More rigorously, if y is defined as y = Sx,
then node i can compute yi if it has access to xj at j ∈ N (i).

I Straightforward because [S]ij 6= 0 only if i = j or (j , i) ∈ E

I What if y = S2x?

⇒ Like powers of
A: neighborhoods

⇒ yi found using
values within 2-hops
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Graph Fourier Transform

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes

Part II: Applications
Filter design for network operators
Sampling graph signals
Blind identification of graph filters
Network topology inference

Concluding remarks
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Discrete Fourier Transform (DFT)

I Let x be a temporal signal, its DFT is x̃ = FHx, with Fkn = 1√
N
e+j 2π

N kn

⇒ Equivalent description, provides insights

⇒ Oftentimes, more parsimonious (bandlimited)

⇒ Facilitates the design of SP algorithms: e.g., filters

I Many other transformations (orthogonal dictionaries) exist

I Q: What transformation is suitable for graph signals?
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Graph Fourier Transform (GFT)

I Useful transformation? ⇒ S involved in generation/description of x

⇒ Let S = VΛV−1 be the shift associated with G

I The Graph Fourier Transform (GFT) of x is defined as

x̃ = V−1x

I While the inverse GFT (iGFT) of x̃ is defined as

x = Vx̃

⇒ Eigenvectors V = [v1, ..., vN ] are the frequency basis (atoms)

I Additional structure

⇒ If S is normal, then V−1 = VH and x̃k = vH
k x =< vk , x >

⇒ Parseval holds, ‖x‖2 = ‖x̃‖2

I GFT ⇒ Projection on eigenvector space of shift operator S
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Is this a reasonable transform?

I Particularized to cyclic graphs ⇒ GFT ≡ Fourier transform

I Particularized to covariance matrices ⇒ GFT ≡ PCA transform

I But really, this is an empirical question. GFT of disaggregated GDP

I GFT transform characterized by a few coefficients

⇒ Notion of bandlimitedness: x =
∑K

k=1 x̃kvk

⇒ Sampling, compression, filtering, pattern recognition
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Eigenvalues as frequencies

I Columns of V are the frequency atoms: x =
∑

k x̃kvk

I Q: What about the eigenvalues λk = Λkk

⇒ When S = Adc , we get λk = e−j
2π
N k

⇒ λk can be viewed as frequencies!!

I In time, well-defined relation between frequency and variation

⇒ Higher k ⇒ higher oscillations

⇒ Bounds on total-variation: TV (x) =
∑

n (xn − xn−1)2

I Q: Does this carry over for graph signals?

⇒ No in general, but if S = L there are interpretations for λk
⇒ {λk}Nk=1 will be very important when analyzing graph filters
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Interpretation of the Laplacian

I Consider a graph G , let x be a signal on G , and set S = L

⇒ y = Sx is now y = Lx ⇒ yi =
∑

j∈N (i) wij(xi − xj)

⇒ j-th term is large if xj is very different from neighboring xi

⇒ yi measures difference of xi relative to its neighborhood

I We can also define the quadratic form xTSx

xTLx =
1

2

∑
(i,j)∈E

wij(xi − xj)
2

⇒ xTLx quantifies the (aggregated) local variation of signal x

⇒ Natural measure of signal smoothness w.r.t. G

I Q: Interpretation of frequencies {λk}Nk=1 when S = L?

⇒ If x = vk , we get xTLx = λk ⇒ local variation of vk

⇒ Frequencies account for local variation, they can be ordered

⇒ Eigenvector associated with eigenvalue 0 is constant
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Frequencies of the Laplacian

I Laplacian eigenvalue λk accounts for the local variation of vk

⇒ Let us plot some of the eigenvectors of L (also graph signals)

I Ex: gene network, N =10, k =1, k =2, k =9
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I Ex: smooth natural images, N = 216, k = 2, ..., 6
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Application: Cancer subtype classification

I Patients diagnosed with same disease exhibit different behaviors

I Each patient has a genetic profile describing gene mutations

I Would be beneficial to infer phenotypes from genotypes

⇒ Targeted treatments, more suitable suggestions, etc.

I Traditional approaches consider different genes to be independent

⇒ Not ideal, as different genes may affect same metabolism

I Alternatively, consider genetic network

⇒ Genetic profiles become graph signals on genetic network

⇒ We will see how this consideration improves subtype classification
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Genetic network

I Undirected and unweighted gene-to-gene interaction graph
I 2458 nodes are genes in human DNA related to breast cancer
I An edge between two genes represents interaction
⇒ Coded proteins participate in the same metabolic process

I Adjacency matrix of the gene-interaction network
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Genetic profiles

I Genetic profile of 240 women with breast cancer

⇒ 44 with serous subtype and 196 with endometrioid subtype

⇒ Patient i has an associated profile xi ∈ {0, 1}2458

I Mutations are very varied across patients

⇒ Some patients present a lot of mutations

⇒ Some genes are consistently mutated across patients

I Q: Can we use genetic profiles to classify patients across subtypes?
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Improving k-nearest neighbor classification

I Distance between genetic profiles ⇒ d(i , j) = ‖xi − xj‖2

⇒ N-fold cross-validation error from k-NN classification

k = 3⇒ 13.3%, k = 5⇒ 12.9%, k = 7⇒ 14.6%

I Q: Can we do any better using graph signal processing?

I Each genetic profile xi is a graph signal on the genetic network

⇒ Look at the frequency components x̃i using the GFT

⇒ Use as shift operator S the Laplacian of the genetic network

Example of signal xi
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Distinguishing Power

I Define the distinguishing power of frequency vk as

DP(vk) =

∣∣∣∣
∑

i :yi=1 x̃i (k)∑
i 1 {yi = 1}

−
∑

i :yi=2 x̃i (k)∑
i 1 {yi = 2}

∣∣∣∣ /∑
i

|x̃i (k)| ,

I Normalized difference between the mean GFT coefficient for vk
⇒ Among patients with serous and endometrioid subtypes

I Distinguishing power is not equal across frequencies
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I The distinguishing power defined is one of many proper heuristics
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Increasing accuracy by selecting the best frequencies

I Keep information in frequencies with higher distinguishing power
⇒ Filter, i.e., multiply x̃i by diag(h̃p) where

[h̃p]k =

{
1, if DP(vk) ≥ p-th percentile of DP

0, otherwise

I Then perform inverse GFT to get the graph signal x̂i
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Graph filters and network processes

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes

Part II: Applications
Filter design for network operators
Sampling graph signals
Blind identification of graph filters
Network topology inference

Concluding remarks
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Linear (shift-invariant) graph filter

I A graph filter H : RN → RN is a map between graph signals

Focus on linear filters
⇒ map represented by an
N × N matrix

DEF1: Polynomial in S of degree L, with coeff. h = [h0, . . . , hL]T

H := h0S0 + h1S1 + . . .+ hLSL =
∑L

l=0 hlS
l [Sandryhaila13]

DEF2: Orthogonal operator in the frequency domain

H := Vdiag
(
h̃
)
V−1, h̃k = g(λk)

I With [Ψ]k,l := λl−1
k , we have h̃ = Ψh ⇒ Defs can be rendered equivalent

⇒ More on this later, now focus on DEF1

I If y := Hx, DEF1 says y linear combination of shifted versions of xMarques, Mateos, Ribeiro, Segarra Graph SP: Fundamentals and Applications 35 / 123



Graph filters as linear network operators

I DEF1 says H =
∑L

l=0 hlS
l

I Suppose H acts on a graph signal x to generate y = Hx

⇒ If we define x(l) := Slx = Sx(l−1)

y =
L∑

l=0

hlx
(l)

y is a linear

combination of

successive shifted

versions of x

I After introducing S, we stressed that y =Sx can be computed locally

⇒ x(l) can be found locally if x(l−1) is known

⇒ The output of the filter can be found in L local steps

I A graph filter represents a linear transformation that

⇒ Accounts for local structure of the graph

⇒ Can be implemented distributedly in L steps

⇒ Only requires info in L-neighborhood [Shuman13, Sandyhaila14]
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An example of a graph filter

I x=[−1, 2, 0, 0, 0, 0]T , h=[1, 1, 0.5]T , y =(
∑L

l=0 hlS)x=
∑L

l=0 hlx
(l)
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Frequency response of a graph filter

I Recalling that S = VΛV−1, we may write

H =
L∑

l=0

hlS
l =

L∑
l=0

hlVΛlV−1 = V

(
L∑

l=0

hlΛ
l

)
V−1

I The application Hx of filter H to x can be split into three parts

⇒ V−1 takes signal x to the graph frequency domain x̃

⇒ H̃ :=
∑L

l=0 hlΛ
l modifies the frequency coefficients to obtain ỹ

⇒ V brings the signal ỹ back to the graph domain y

I Since H̃ is diagonal, define H̃ =: diag(h̃)

⇒ h̃ is the frequency response of the filter H

⇒ Output at frequency k depends only on input at frequency k

ỹk = h̃k x̃k
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Frequency response and filter coefficients

I Relation between h̃ and h in a more friendly manner?

⇒ Since h̃ = diag(
∑L

l=0 hlΛ
l), we have that h̃k =

∑L
l=0 hlλ

l
k

⇒ Define the Vandermonde matrix Ψ as

Ψ :=

 1 λ1 . . . λL
1

...
...

...
1 λN . . . λL

N


Frequency response of a graph filter

If h are the coefficients of a graph filter, its frequency response is

h̃ = Ψh

I Given a desired h̃ , we can find the coefficients h as

h = Ψ−1h̃

⇒ Since Ψ is Vandermonde, invertible as long as λk 6=λk′ for k 6=k ′
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More on the frequency response

I Since h = Ψ−1h̃ ⇒ If all {λk}Nk=1 distinct, then

⇒ Any h̃ can be implemented with at most L+1 =N coefficients

I Since h = Ψh̃ ⇒ If λk = λk′ , then

⇒ The corresponding frequency response will be the same h̃k = h̃k′

I For the particular case when S = Adc , we have that λk = e−j
2π
N (k−1)

Ψ =


1 1 . . . 1

1 e−j
2π(1)(1)

N . . . e−j
2π(1)(N−1)

N

...
...

...

1 e−j
2π(N−1)(1)

N . . . e−j
2π(N−1)(N−1)

N

 = FH

⇒ The frequency response is the DFT of the impulse response

h̃ = FHh
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Frequency response for graph signals and filters

I Suppose that we have a signal x and filter coefficients h

I For time signals, it holds that the output y is

ỹ = diag(FHh)FHx

I For graph signals, the output y in the frequency domain is

ỹ = diag(Ψh)V−1x

I The GFT for filters is different from the GFT for signals

⇒ Symmetry is lost, but both depend on spectrum of S

⇒ Many of the properties are not true for graphs

⇒ Several options to generalize operations
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System identification and impulse response

I Suppose that our goal is to find h given x and y

⇒ Using the previous expressions

h = Ψ−1diag−1(V−1x)V−1y

I In time, if we set x = [1, 0, ..., 0]T = e1 (i.e., x̃ = 1), we have

⇒ h = Fdiag−1(1)FHy = y → h is the impulse response

I In the graph domain

I If we set x = ei , then h = Ψ−1diag−1(ẽi )V−1y, where

⇒ ẽi := V−1ei ≡ how strongly node i expresses each of the freqs.

⇒ Problem if ẽi has zero entries

I Alternatively we can get x̃ = 1 by setting x = V1 and then

⇒ h = Ψ−1diag−1(x̃)V−1y = Ψ−1V−1y
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Implementing graph filters: frequency or space

I Frequency or space?

y = Vdiag(h̃)V−1x vs. y =
∑L

l=0hlS
lx

I In space: leverage the fact that Sx can be computed locally

⇒ Signal x is percolated L times to find {x(l)}Ll=0

⇒ Every node finds its own yi by computing
∑L

l=0 hl [x
(l)]i

I Frequency implementation useful for processing if, e.g.,

⇒ Filter bandlimited and eigenvectors easy to find

⇒ Low complexity [Anis16, Tremblay16]

I Space definition useful for modeling

⇒ Diffusion, percolation, opinion formation, ... (more on this soon)

I More on filter design

⇒ Chebyshev polyn. [Shuman12]; AR-MA [Isufi-Leus15]; Node-var.

[Segarra15]; Time-var. [Isufi-Leus16]; Median filters [Segarra16]
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Linear network processes via graph filters

I Consider a linear dynamics of the form

xt − xt−1 = αJxt−1 ⇒ xt = (I− αJ)xt−1

I If x is network process ⇒ [xt ]i depends only on [xt−1]j , j ∈ N (i)

[S]ij =[J]ij ⇒ xt = (I− αS)xt−1 ⇒ xt = (I− αS)tx0

⇒ xt = Hx0, with H a polynomial of S ⇒ linear graph filter

I If the system has memory ⇒ output weighted sum of previous
exchanges (opinion dynamics) ⇒ still a polynomial of S

y =
∑T

t=0β
txt ⇒ y =

∑T
t=0(βI− βαS)tx0

I Everything holds true if αt or βt are time varying
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Diffusion dynamics and AR (IIR) filters

I Before finite-time dynamics (FIR filters)

I Consider now a diffusion dynamics xt = αSxt−1 + w

xt = αtStx0 +
∑t

t′=0α
tSt′w

⇒ When t →∞: x∞ = (I− αS)−1 w ⇒ AR graph filter

I Higher orders [Isufi-Leus16]

⇒ M successive diffusion dynamics ⇒ AR of order M

⇒ Process is the sum of M parallel diffusions ⇒ ARMA order M

x∞ =
∏M

m=1(I− αmS)−1 w x∞ =
∑M

m=1(I− αmS)−1 w
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General linear network processes

I Combinations of all the previous are possible

xt = Ha
t (S)xt−1 + Hb

t (S)w⇒ xt = HA
t (S)x0 + HB

t (S)w

⇒ y = xt , sequential/parallel application, linear combination

⇒ Expands range of processes that can be modeled via GSP

⇒ Coefficients can change according to some control inputs

I A number of linear processes can be modeled using graph filters

⇒ Theoretical GSP results can be applied to distributed networking

⇒ Deconvolution, filtering, system id, ...

⇒ Beyond linearity possible too (more at the end of the talk)

I Links with control theory (of networks and complex systems)

⇒ Controllability, observability
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Application: Explaining human learning rates

I Why do some people learn faster than others?

⇒ Can we answer this by looking at their brain activity?

I Brain activity during learning of a motor skill in 112 cortical regions

⇒ fMRI while learning a piano pattern for 20 individuals

I Pattern is repeated, reducing the time needed for execution

⇒ Learning rate = rate of decrease in execution time

I Define a functional brain graph

⇒ Based on correlated activity

I fMRI outputs a series of graph signals

⇒ x(t) ∈ R112 describing brain states

re
gi

on

brain signal

time

intermediate

neighbor distance
temporal smooth

then cluster neighbor distance

normalized HighLow

    # entries in           higher than a threshold
    sum ( elementwise α-power in          )
    # changes in 
    # entries in           higher than a threshold
    sum ( elementwise α-power in          )
    approximate entropy (          )
    sample entropy (          )

I Does brain state variability correlate with learning?
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Measuring brain state variability

I We propose three different measures capturing different time scales
⇒ Changes in micro, meso, and macro scales

I Micro: instantaneous changes higher than a threshold α

m1(x) =
T∑
t=1

1

{
‖x(t)− x(t − 1)‖2

‖x(t)‖2
> α

}
I Meso: Cluster brain states and count the changes in clusters

m2(x) =
T∑
t=1

1 {c(t) 6= c(t − 1)}

⇒ where c(t) is the cluster to which x(t) belongs.

I Macro: Sample entropy. Measure of complexity of time series

m3(x) = − log

(∑
t

∑
s 6=t 1{‖x̄3(t)− x̄3(s)‖∞ > α}∑

t

∑
s 6=t 1{‖x̄2(t)− x̄2(s)‖∞ > α}

)
⇒ Where x̄r (t) = [x(t), x(t + 1), . . . , x(t + r − 1)]
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Diffusion as low-pass filtering

I We diffuse each time signal x(t) across the brain graph

xdiff(t) = (I + βL)−1x(t)

⇒ where Laplacian L = VΛV−1 and β represents the diffusion rate

I Analyzing diffusion in the frequency domain

x̃diff(t) = (I + βΛ)−1V−1x(t) = diag(h̃)x̃(t)

⇒ where h̃i = 1/(1 + βλi )

I Diffusion acts as low-pass filtering

I High freq. components are attenuated

I β controls the level of attenuation
Frequency

R
es

po
ns

e
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Computing correlation for three signals

I Variability measures consider the order of brain signal activity

I As a control, we include in our analysis a null signal time series xnull

xnull(t) = xdiff(πt)

⇒ where πt is a random permutation of the time indices

I Correlation between variability (m1, m2, and m3) and learning?

I We consider three time series of brain activity

⇒ The original fMRI data x

⇒ The filtered data xdiff

⇒ The null signal xnull
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Low-pass filtering reveals correlation

I Correlation coeff. between learning rate and brain state variability

Original Filtered Null

m1 0.211 0.568 0.182
m2 0.226 0.611 0.174
m3 0.114 0.382 0.113

I Correlation is clear when the signal is filtered

⇒ Result for original signal similar to null signal

I Scatter plots for original, filtered, and null signals (m2 variability)
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Part II: Applications

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes

Part II: Applications
Filter design for network operators
Sampling graph signals
Blind identification of graph filters
Network topology inference

Concluding remarks
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Application domains

I Design graph filters to approximate desired network operators

I Sampling bandlimited graph signals

I Blind graph filter identification

⇒ Infer diffusion coefficients from observed output

I Network topology inference

⇒ Infer shift from collection of network diffused signals

I Many more (not covered, glad to discuss or redirect):

⇒ Statistical GSP, stationarity and spectral estimation

⇒ Filter banks

⇒ Windowing, convolution, duality...

⇒ Nonlinear GSP
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Distributed network operators

I Design graph filters to implement a given linear transformation

⇒ Implementation is distributed by construction

⇒ Conditions for perfect and approximate implementation

⇒ [Shuman11], [Sandryhaila14], [Safavi15], [Chen15]

I Given a linear transformation B, find the filter coefficients h s. t.

B =
L−1∑
l=0

hlS
l

I Graph-shift operator S is given

⇒ Well-suited for cases where S is a network process

⇒ E.g., diffusion in a social network

⇒ Agents exchange information and weigh info observed

⇒ Choosing h ⇒ fixing the weights
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Conditions for perfect implementation

Perfect implementation of linear graph operators [Segarra15]

The linear transformation B can be implemented using a graph
filter H if the following conditions hold true:
i) Matrices B and S are simultaneously diagonalizable.
ii) If λk1 = λk2 , then γk1 = γk2 ; and L ≥ # {λk}Nk=1 distinct.

I i) ⇒ frequency basis of B and S the same ⇒ necessary

I ii) ⇒ two equal freqs. in S must be equal in B ⇒ necessary

I Restrictive conditions but not impossible
to satisfy ⇒ Consensus Bcon = 11T

favors i) and ii) because it is rank-one

In time:
i) ⇔ B
circulant

I If satisfied: h∗ = Ψ−1γ, where γ = [γ1, ..., γN ]Tare eigvals. of B
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Approximate design

I When perfect reconstruction is infeasible ⇒ minimize error metric

⇒ Design Hx to resemble Bx (or H to resemble B )

⇒ Minimizing ‖(H− B)Rx(H− B)T‖z (with Rx = I if unknown)

I MSE coefficients: h∗ = Θ†Rx
bRx = (ΘT

Rx
ΘRx )−1ΘT

Rx
bRx

⇒ with ΘRx := [vec(IR
1/2
x ), ..., vec(SL−1R

1/2
x )], bRx := vec(BR

1/2
x )

I Worst-case error coefficients:

{h∗, s∗} = argmin
{h,s}

s

s. to

[
sI Vdiag(Ψh)V−1 − B

(Vdiag(Ψh)V−1 − B)T sR−1
x

]
� 0.

I Additional assumptions can be incorporated
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Consensus and rank-1 transformations

Consensus

I Local implementation of the consensus operator Bcon = 11T/N

Proposition [Segarra16]

If G is connected and the desired operator Brk1 is rank one, then there
exists an S such that Brk1 can be written as a graph filter

∑N−1
l=0 hlSl .

I Constructive proof, for consensus S = L

I Consensus is achieved in finite time [Sandryhaila-Kar-Moura14]

I Key: B low-rank (repeated eigenvalues) ⇒ well-suited for approx.

I We compare the performance of: 1) Asymptotic fastest distributed
linear averaging (FDLA), 2) Graph filter approx.
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Finite-time consensus

I Define the graph-shift operator S = W

⇒ Where limk→∞Wk = Bcon with fastest convergence
I Plot average errors across the 100 graphs with 10 nodes

I Compare worst-case and mean error design (50 nodes)
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E
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E
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Mean Error Worst-case
Max Error MSE
Max Error Worst-case

I Smaller error than FDLA for intermediate K

⇒ When K = N − 1 = 9, perfect recovery
I The price to pay is that {λk}Nk=1 need to be known

I Consistent performance of mean error and worst case designs
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Node-variant graph filters: definition

I A generalization of graph filters [Segarra16]:

Hnv :=
∑L−1

l=0 diag(h(l))Sl

⇒ When h(l) = hl1 ⇒ regular (node-invariant) filter

I In general, when Hnv is applied to a signal x

⇒ Each node applies different weights to the shifted signals Slx

⇒ More flexible and still distributed, not shift-invariant
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Node-variant graph filters: frequency response

I Collect the coefficients of node i in hi , such that [hi ]l = [h(l)]i
I Focus on the filter output at node i , eT

i Hnvx

ηT
i = eT

i Hnv =
L−1∑
l=0

[hi ]le
T
i VΛlV−1

I Defining ui := VTei

ηT
i = uT

i

( L−1∑
l=0

[hi ]lΛ
l
)

V−1 = uT
i diag(Ψhi )V−1

I The output of the filter at node i , ηT
i x is the inner product of

⇒ V−1x ⇒ the frequency representation of the input, and

⇒ ui ⇒ how strongly the frequencies are expressed by node i

⇒ Modulated by Ψhi ⇒ Frequency response associated to i
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Perfect reconstruction with node-variant filters

I Node-variant filters can implement a large class of transformations

⇒ Pick h(l) for l = 0, · · · , L− 1 so that B =
∑L−1

l=0 diag(h(l))Sl

⇒ TH: Always possible if V non-zero and {λk} distinct

I Application in distributed processing: analog network coding

⇒ B is a binary matrix (input-output pairs)

I Example: G undirected, with N = 10, S = A, sources 3 and 6

⇒ Node 3 tx to 1, 4, 6, 7, and 10; node 6 to the remaining ones

⇒ Node invariant unable to implement B
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Sampling bandlimited graph signals

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes

Part II: Applications
Filter design for network operators
Sampling graph signals
Blind identification of graph filters
Network topology inference

Concluding remarks

Marques, Mateos, Ribeiro, Segarra Graph SP: Fundamentals and Applications 62 / 123



Motivation and preliminaries

I Sampling and interpolation are cornerstone problems in classical SP
⇒ How recover a signal using only a few observations?
⇒ Need to limit the degrees of freedom: subspace, smoothness

I Graph signals: sampling thoroughly investigated

⇒ Most works assume only a few values are
observed

⇒ [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]

I Alternative approach [Marques16, Segarra16]

⇒ GSP is well-suited for distributed networking
⇒ Incorporate local graph structure into the observation model
⇒ Recover signal using distributed local graph operators
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Sampling bandlimited graph signals: Overview

I Sampling is likely to be most important inverse problem

⇒ How to find x ∈ RN using P < N observations?

I Our focus on bandlimited signals, but other models possible

⇒ x̃ = V−1x sparse

⇒ x =
∑

k∈K x̃kvk , with |K|=K<N

⇒ S involved in generation of x

⇒ Agnostic to the particular form of S

I Two sampling schemes were introduced in the literature

⇒ Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]

⇒ Aggregation [Segarra15], [Marques15]

⇒ Hybrid scheme combining both ⇒ Space-shift sampling

I More involved, theoretical benefits, practical benefits in distr. setups
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Revisiting sampling in time

I There are two ways of interpreting sampling of time signals

I We can either freeze the signal and sample values at different times

I We can fix a point (present) and sample the evolution of the signal

I Both strategies coincide for time signals but not for general graphs
⇒ Give rise to selection and aggregation sampling

Marques, Mateos, Ribeiro, Segarra Graph SP: Fundamentals and Applications 65 / 123



Selection sampling: Definition

I Intuitive generalization to graph signals

⇒ C ∈ {0, 1}P×N (matrix P rows of IN)

⇒ Sampled signal is x̄ = Cx

I Goal: recover x based on x̄

⇒ Assume that the support of K is known (w.l.o.g. K = {k}Kk=1)

⇒ Since x̃k = 0 for k > K , define x̃K := [x̃1, ..., x̃K ]T = ET
K x̃

I Approach: use x̄ to find x̃K , and then recover x as

x = V(EK x̃K ) = (VEK )x̃K = VK x̃K
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Selection sampling: Recovery

I Number of samples P ≥ K

x̄ = Cx = CVK x̃K

⇒ (CVK ) submatrix of V

Recovery of selection sampling

If rank(CVK ) ≥ K , x can be recovered from the P values in x̄ as

x = VK x̃K = VK (CVK )†x̄

I With P = K , hard to check invertibility (by inspection)

⇒ Columns of VK (CVK )−1 are the interpolators

I In time (S = Adc), if the samples in C are equally spaced

⇒ (CVK ) is Vandermonde (DFT) and VK (CVK )−1 are sincs
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Aggregation sampling: Definition

I Idea: incorporating S to the sampling procedure

⇒ Reduces to classical sampling for time signals

I Consider shifted (aggregated) signals y(l) = Slx

⇒ y(l) = Sy(l−1) ⇒ found sequentially with only local exchanges

I Form yi = [y
(0)
i , y

(1)
i , ..., y

(N−1)
i ]T (obtained locally by node i)

I The sampled signal is
ȳi = Cyi

I Goal: recover x based on ȳi
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Aggregation sampling: Recovery

I Goal: recover x based on ȳi ⇒ Same approach than before

⇒ Use ȳi to find x̃K , and then recover x as x = VK x̃K

I Define ūi := VT
Kei and recall Ψkl = λl−1

k

Recovery of aggregation sampling

Signal x can be recovered from the first K samples in ȳi as

x = VK x̃K = VKdiag−1(ūi )(CΨTEK )−1ȳi

provided that [ūi ]k 6= 0 and all {λk}Kk=1 are distinct.

I If C = ET
K , node i can recover x with info from K − 1 hops!

⇒ Node i has to be able to capture frequencies in K
⇒ The frequencies have to distinguishable

I Bandlimited signals: Signals that can be well estimated locally
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Aggregation and selection sampling: Example

I In time (S = Adc), selection and aggregation are equivalent

⇒ Differences for a more general graph?

I Erdős-Rényi
p = 0.2, S = A,
K = 3,
non-smooth

I First 3 observations at node 4: y4 = [0.55, 1.27, 2.94]T

⇒ [y4]1 = x4 = −0.55, [y4]2 = x2 + x3 + x5 + x6 + x7 = 1.27

⇒ For this example, any node guarantees recovery

⇒ Selection sampling fails if, e.g., {1, 3, 4}
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Sampling: Discussion and extensions

I Discussion on aggregation sampling

⇒ Observation matrix: diagonal times Vandermonde

⇒ Very appropriate in distributed scenarios

⇒ Different nodes will lead to different performance (soon)

⇒ Types of signals that are actually bandlimited (role of S)

I Three extensions:

⇒ Sampling in the presence of noise

⇒ Unknown frequency support

⇒ Space-shift sampling (hybrid)
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Presence of noise

I Linear observation model: z̄i = CΨi x̃K + Cwi and x = VK x̃K

I BLUE interpolation (Ψi either selection or aggregation)

ˆ̃x
(i)
K = [ΨH

i CH(R̄(i)
w )−1CΨi ]

−1ΨH
i CH(R̄(i)

w )−1z̄i

⇒ If P = K , then x̂(i) = VK (CΨi )
−1 z̄i

I Error covariances (R
(i)
e ,R̃

(i)
e ) in closed form ⇒ Noise covariances?

⇒ Colored, different models: white noise in zi , in x, or in x̃K

I Metric to optimize?

⇒ trace(R
(i)
e ), λmax(R

(i)
e ), log det(R̃

(i)
e ),

[
trace

(
R̃

(i)−1

e

)]−1

I Select i and C to min. error ⇒ Depends on metric and noise [Marques16]
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Unknown frequency support

I Falls into the class of sparse reconstruction: observation matrix?

⇒ Selec. ⇒ submatrix of unitary VK

⇒ Aggr. ⇒ Vander. × diag
[ui ]k 6= 0 and λk 6=λk′ ⇒ full-spark

I Joint recovery and support identification (noiseless)

x̃∗ := arg min
x̃

||x̃||0

s.t. Cyi = CΨi x̃,

I If full spark ⇒ P = 2K samples suffice

⇒ Different relaxations are possible

⇒ Conditioning will depend on Ψi (e.g., how different {λk} are)

I Noisy case: sampling nodes critical
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Recovery with unknown support: Example

I Erdős-Rényi
p = 0.15, 0.20, 0.25,
K = 3, non-smooth

I Three different shifts: A, (I− A) and 1
2 A2
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Space-shift sampling

I Space-shift sampling (hybrid) ⇒ Multiple nodes and multiple shifts

Selection: 4 nodes, 1 sample Space-shift: 2 nodes, 2 samples Aggregat.: 1 node, 4 samples

I Section and aggregation sampling as particular cases

I With Ū := [diag(ū1), ..., diag(ūN)]T , the sampled signal is

z̄
¯

= C
(

I⊗(ΨTEK )
)

Ūx̃K + Cw
¯

I As before, BLUE and error covariance in close-form
I Optimizing sample selection more challenging
I More structured schemes easier: e.g., message passing

⇒ Node i knows y
(l)
i ⇒ node i knows y

(l′)
j for all j ∈ Ni and l ′ < l
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Sampling the US economy

I 62 economic sectors in USA + 2 artificial sectors

⇒ Graph: average flows in 2007-2010, S = A

⇒ Signal x: production in 2011

⇒ x is approximately bandlimited with K = 4
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Sampling the US economy: Results

I Setup 1: we add different types of noise

⇒ Error depends on sampling node: better if more connected

I Setup 2: we try different shift-space strategies
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More on sampling graph signals

I Beyond bandlimitedness

⇒ Smooth signals [Chen15]

⇒ Parsimonious in kernelized domain [Romero-Giannakis16]

I Strategies to select the sampling nodes

⇒ Random (sketching) [Varma15]

⇒ Optimal reconstruction [Marques16, Chepuri-Leus16]

⇒ Designed based on posterior task [Gama16]

I And more...

⇒ Low-complexity implementations [Tremblay16, Anis16]

⇒ Local implementations [Wang14, Segarra15]

⇒ Unknown spectral decomposition [Anis16]

Marques, Mateos, Ribeiro, Segarra Graph SP: Fundamentals and Applications 78 / 123



Blind identification of graph filters

Motivation and preliminaries
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Diffusion processes as graph filter outputs

I Q: Upon observing a graph signal y, how was this signal generated?

I Postulate the following generative model

⇒ An originally sparse signal x = x(0)

⇒ Diffused via linear graph dynamics S ⇒ x(l) = Sx(l−1)

⇒ Observed y is a linear combination of the diffused signals x(l)

y =
L∑

l=0

hlx
(l) =

L∑
l=0

hlS
lx = Hx

I Model: Observed network process as output of a graph filter

⇒ View few elements in supp(x) =: {i : xi 6= 0} as seeds
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Motivation and problem statement

I Ex: Global opinion/belief profile formed by spreading a rumor

⇒ What was the rumor? Who started it?

⇒ How do people weigh in peers’ opinions to form their own?

Observed Unobserved 

Graph Filter 

y x 

I Problem: Blind identification of graph filters with sparse inputs

I Q: Given S, can we find x and the combination weights h from y = Hx?

⇒ Extends classical blind deconvolution to graphs
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Blind graph filter identification

I Leverage frequency response of graph filters (U := V−1)

y = Hx ⇒ y = Vdiag(Ψh)Ux

⇒ y is a bilinear function of the unknowns h and x

I Problem is ill-posed ⇒ (L + 1) + N unknowns and N observations

⇒ As.: x is S-sparse i.e., ‖x‖0 := |supp(x)| ≤ S

I Blind graph filter identification ⇒ Non-convex feasibility problem

find {h, x}, s. to y = Vdiag
(
Ψh
)
Ux, ‖x‖0 ≤ S
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“Lifting” the bilinear inverse problem

I Key observation: Use the Khatri-Rao product � to write y as

y = V(ΨT �UT )T vec(xhT )

I Reveals y is a linear combination
of the entries of Z := xhT

I Z is of rank-1 and row-sparse ⇒ Linear matrix inverse problem

min
Z

rank(Z), s. to y = V
(
ΨT �UT

)T
vec
(
Z
)
, ‖Z‖2,0 ≤ S

⇒ Pseudo-norm ‖Z‖2,0 counts the nonzero rows of Z

⇒ Matrix “lifting” for blind deconvolution [Ahmed etal’14]

I Rank minimization s. to row-cardinality constraint is NP-hard. Relax!
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Algorithmic approach via convex relaxation

I Key property: `1-norm minimization promotes sparsity [Tibshirani’94]

I Nuclear norm ‖Z‖∗ :=
∑

i σi (Z) a convex proxy of rank [Fazel’01]
I `2,1 norm ‖Z‖2,1 :=

∑
i ‖z

T
i ‖2 surrogate of ‖Z‖2,0 [Yuan-Lin’06]

I Convex relaxation

min
Z
‖Z‖∗ + α‖Z‖2,1, s. to y = V

(
ΨT �UT

)T
vec
(
Z
)

⇒ Scalable algorithm using method of multipliers

I Refine estimates {h, x} via iteratively-reweighted optimization

⇒ Weights αi (k) = (‖zi (k)T‖2 + δ)−1 per row i , per iteration k

I Noisy and partial observations ⇒ Adjust constraints

I Noise in y: ‖y − V
(
ΨT �UT )T vec

(
Z
)
‖ ≤ ε

I Sampling via selection matrix C: yC = CV
(
ΨT �UT )T vec

(
Z
)
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Exact recovery guarantees

I Exact recovery ⇒ Success of the convex relaxation
I Random model on the graph structure [Ling-Stromher’15]
I Probabilistic guarantees depend on graph spectrum

Prec ≥ 1− N−O(ρ−1
U (S)), ρU(S) := max

l∈{1,...,N}
max
Ω∈ΩN

S

‖ul,Ω‖2
2
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I Blind deconvolution (in time) most favorable graph setting

Details in arXiv:1604.07234v1 [cs.IT]
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Numerical tests: Recovery rates

I Recovery rates over an (L,S) grid and 20 trials
I Successful recovery when ‖x∗(h∗)T − xhT‖F < 10−3

I ER (left), ER reweighted `2,1 (center), brain reweighted `2,1 (right)
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I Exact recovery over non-trivial (L,S) region

⇒ Reweighted optimization markedly improves performance

⇒ Encouraging results even for real-world graphs
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Numerical tests: Brain graph

I Human brain graph with N = 66 regions, L = 3 and S = 3
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I Proposed method also outperforms alternating-minimization solver

⇒ Unknown supp(x) ≈ Need twice as many observations

⇒ Stable to Gaussian noise in y (σ2 = 0.01)
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Multiple output signals

I Suppose we have access to P output signals {yp}Pp=1

Observed Unobserved 

Graph Filter 

y1 
x1 

Graph Filter 

yP 
xP 

…
 

…
 

I Goal: Identify common filter H fed by multiple unobserved inputs xp
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Formulation

I As.: {xp}Pp=1 are S-sparse with common support

I Concatenate outputs ȳ := [yT
1 , . . . , y

T
P ]T and inputs x̄ := [xT1 , . . . , x

T
P ]T

I Unknown rank-one matrices Zp := xphT . Stack them

⇒ Vertically in rank one Z̄v := [ZT
1 , ...,Z

T
P ]T = x̄hT ∈ RNP×L

⇒ Horizontally in row sparse Z̄h := [Z1, ...,ZP ] ∈ RN×PL

I Convex formulation

min
{Zp}Pp=1

‖Z̄v‖∗+τ‖Z̄h‖2,1, s. to ȳ =
(

IP ⊗
(

V
(
ΨT �UT

)T))
vec
(
Z̄h

)
⇒ Relax (As.): ‖Z̄h‖2,1 ↔ ‖Z̄v‖2,1 =

∑P
p=1 ‖Zp‖2,1
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Numerical tests: Multiple signals, recovery rates

I Recovery rates over an (L,S) grid and 20 trials
I Successful recovery when ‖ˆ̄xĥT − x̄hT‖F < 10−3

I ER (left), ER reweighted `2,1 (center), brain reweighted `2,1 (right)
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I Leveraging multiple output signals aids the blind identification task
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Blind ID: Takeaways

I Extended blind deconvolution of space/time signals to graphs

⇒ Key: model diffusion process as output of graph filter

I Rank and sparsity minimization subject to model constraints

⇒ “Lifting” and convex relaxation yield efficient algorithms

I Exact recovery conditions ⇒ Success of the convex relaxation

⇒ Probabilistic guarantees that depend on the graph spectrum

I Consideration of multiple sparse inputs aids recovery

I Envisioned application domains

(a) Opinion formation in social networks
(b) Identify sources of epileptic seizure
(c) Trace “patient zero” for an epidemic outbreak

I Unknown shift S ⇒ Network topology inference
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Network topology inference

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
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Motivation and context

I Network topology inference from nodal observations

⇒ Approaches use Pearson correlations to construct graphs

⇒ Partial correlations and conditional dependence

I Paramount importance in neuroscience

⇒ Functional net inferred from activity

I Most GSP works assume that S (hence the graph) is known

⇒ Analyze how the characteristics of S affect signals and filters

I We take the reverse path

⇒ How to use GSP to infer the graph topology?

⇒ [Dong15, Mei15, Pavez16, Pasdeloup16]
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Generating structure of a diffusion process

I Signal x is the response of a linear diffusion process to a white input

x = α0

∞∏
l=1

(I− αlS)w =
∞∑
l=0

βlS
lw

⇒ Common generative model. Heat diffusion if αk constant

I We say the graph shift S explains the structure of signal x

I It follows from Cayley Hamilton that we can write diffusion as

x =

( N−1∑
l=0

hlS
l

)
w := Hw

⇒ H diagonalized by the eigenvectors of the shift operator
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Our approach for topology inference

I We propose a two-step approach for graph topology identification

STEP%1:% STEP%2:%
Iden-fy%the%eigenvectors%
of%the%shi9%

Iden-fy%eigenvalues%to%
obtain%a%suitable%shi9%

A"priori"info,"desired"
topological"features"

Inferred"
network"

Inferred"
eigenvectors"

Input"

I Beyond diffusion ⇒ alternative sources for spectral templates V
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STEP 1: Obtaining the eigenvectors

I The covariance matrix of the signal x is

Cx = E
[(

Hw
(
Hw
)H)]

= HE
[(

wwH
)]

HH = HHH

I Since H is diagonalized by V, so is the covariance Cx

Cx = V

∣∣∣∣ L−1∑
l=0

hlΛ
l

∣∣∣∣2 VH = V diag(|h̃|2) VH

I Any shift with eigenvectors V can explain x

⇒ G and its specific eigenvalues have been obscured by diffusion

Observations

(a) There are many shifts that can explain a signal x

(b) Identifying the shift S is just a matter of identifying the eigenvalues

(c) In correlation methods the eigenvalues are kept unchanged

(d) In precision methods the eigenvalues are inverted
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Other sources of spectral templates

1) Implementation of linear network operators

I Goal: distributed implementation of linear operator B via graph filter

⇒ B and S sharing V is beneficial for implementation

I Given a pre-specified B

⇒ Use its eigenvectors as spectral templates to generate a shift S

⇒ The goal here not to identify a shift, but to design one

Ex.: consensus ⇒ Laplacian of the smallest connected graph

2) Relationship between nodes of a signal

I Particular transforms T are known to work well on specific data

⇒ Such transform assumes an implicit relation among data ⇒ S

⇒ Identification of that relation can provide insights VH = T

DCTs: i–iii
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STEP 2: Obtaining the eigenvalues

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that is optimal in some sense

S∗ := argmin
S,λ

f (S,λ) s. to S =
N∑

k=1

λkvkvH
k , S ∈ S (1)

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

⇒ Can accommodate Laplacian matrices as well

I Problem is convex if we select a convex objective f (S,λ)

⇒ Minimum energy (f (S) = ‖S‖F ), Fast mixing (f (λ) = −λ2)
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Size of the feasibility set

I The feasibility set in (1) is generally small

⇒ Define W :=V � V where � is the Khatri-Rao product

⇒ Denote by D the index set such that vec(S)D = diag(S)

Assume that (1) is feasible, then it holds that rank(WD) ≤ N−1.
If rank(WD) = N − 1, then the feasible set of (1) is a singleton.

I Convex feasibility set ⇒ Search for the optimal solution may be easy

I Simulations will show that rank(WD) = N−1 arises in practice
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Sparse recovery

I Whenever the feasibility set of (1) is non-trivial

⇒ f (S,λ) determines the features of the recovered graph

Ex: Identify the sparsest shift S∗0 that explains observed signal structure

⇒ Set the cost f (S,λ) = ‖S‖0

I Problem is not convex, but can relax to `1 norm minimization

S∗1 := argmin
S,λ

‖S‖1 s. to S =
N∑

k=1

λkvkvH
k , S ∈ S

I Does the solution S∗1 coincide with the `0 solution S∗0?
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Recovery guarantee

I Denoting by mT
i the i-th row of M := (I−WW†)Dc

⇒ Construct R := [m2−m1, . . . ,mN−1−m1,mN , . . . ,m|Dc |]
T

⇒ Denote by K the indices of the support of s∗0 = vec(S∗0)

S∗1 and S∗0 coincide if the two following conditions are satisfied:
1) rank(RK) = |K|; and
2) There exists a constant δ > 0 such that

ψR := ‖IKc (δ−2RRT + ITKc IKc )−1ITK‖∞ < 1.

I Cond. 1) ensures uniqueness of solution S∗1
I Cond. 2) guarantees existence of a dual certificate for `0 optimality
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Noisy and incomplete spectral templates

I We might have access to V̂, a noisy version of the spectral templates

⇒ With d(·, ·) denoting a (convex) distance between matrices

min
{S,λ,Ŝ}

‖S‖1 s. to Ŝ =
∑N

k=1 λk v̂k v̂kT , S ∈ S, d(S, Ŝ) ≤ ε

I Recovery result similar to the noiseless case can be derived

⇒ Conditions under which we are guaranteed d(S∗,S∗0) ≤ Cε

I Partial access to V ⇒ Only K known eigenvectors [v1, . . . , vK ]

min
{S,SK̄ ,λ}

‖S‖1 s. to S = SK̄ +
∑K

k=1λkvkvk
T , S ∈ S, SK̄vk = 0

I Incomplete and noisy scenarios can be combined
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Topology inference in random graphs

I Erdős-Rényi graphs of varying size N ∈ {10, 20, . . . , 50}
⇒ Edge probabilities p ∈ {0.1, 0.2, . . . , 0.9}

I Recovery rates for adjacency (left) and normalized Laplacian (mid)
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I Recovery is easier for intermediate values of p

I Rate of recovery related to the rank(WD) (histogram N =10,p=0.2)

⇒ When rank is N − 1, recovery is guaranteed

⇒ As rank decreases, there is a detrimental effect on recovery
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Sparse recovery guarantee

I Generate 1000 ER random graphs (N = 20, p = 0.1) such that

⇒ Feasible set is not a singleton

⇒ Cond. 1) in sparse recovery theorem is satisfied

I Noiseless case: `1 norm guarantees recovery as long as ψR < 1
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I Condition is sufficient but not necessary

⇒ Tightest possible bound on this matrix norm
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Inferring brain graphs from noisy templates

I Identification of structural brain graphs N = 66

I Test recovery for noisy spectral templates V̂

⇒ Obtained from sample covariances of diffused signals
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I Recovery error decreases with increasing number of observed signals

⇒ More reliable estimate of the covariance ⇒ Less noisy V̂

I Brain of patient 1 is consistently the hardest to identify

⇒ Robustness for identification in noisy scenarios

I Traditional methods like graphical lasso fail to recover S
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Inferring social graphs from incomplete templates

I Identification of multiple social networks N = 32

⇒ Defined on the same node set of students from Ljubljana

I Test recovery for incomplete spectral templates V̂ = [v1, . . . , vK ]

⇒ Obtained from a low-pass diffusion process

⇒ Repeated eigenvalues in Cx introduce rotation ambiguity in V
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I Recovery error decreases with increasing nr. of spectral templates

⇒ Performance improvement is sharp and precipitous
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Performance comparisons

I Comparison with graphical lasso and sparse correlation methods
I Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2
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I Graphical lasso implicitly assumes a filter H1 = (ρI + S)−1/2

⇒ For this filter spectral templates work, but not as well (MLE)

I For general diffusion filters H2 spectral templates still work fine
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Inferring direct relations

I Our method can be used to sparsify a given network

I Keep direct and important edges or relations

⇒ Discard indirect relations that can be explained by direct ones
I Use eigenvectors V̂ of given network as noisy templates

I Infer contact between amino-acid residues in BPT1 BOVIN

⇒ Use mutual information of amino-acid covariation as input

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Ground truth Mutual info. Network deconv. Our approach

I Network deconvolution assumes a specific filter model [Feizi13]

⇒ We achieve better performance by being agnostic to this
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Topology ID: Takeaways

I Network topology inference cornerstone problem in Network Science
I Most GSP works analyze how S affect signals and filters
I Here, reverse path: How to use GSP to infer the graph topology?

I Our GSP approach to network topology inference

⇒ Two step approach: i) Obtain V; ii) Estimate S given V

I How to obtain the spectral templates V

⇒ Based on covariance of diffused signals

⇒ Other sources too: net operators, data transforms

I Infer S via convex optimization

⇒ Objectives promotes desirable properties

⇒ Constraints encode structure a priori info and structure

⇒ Formulations for perfect and imperfect templates

⇒ Sparse recovery results for both adjacency and Laplacian
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Wrapping up

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
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Filter design for network operators
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Concluding remarks
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Concluding remarks

I Network science and big data pose new challenges

⇒ GSP can contribute to solve some of those challenges

⇒ Well suited for network (diffusion) processes

I Central elements in GSP: graph-shift operator and Fourier transform

I Graph filters: operate graph signals

⇒ Polynomials of the shift operator that can be implemented locally

I Network diffusion/percolations processes via graph filters

⇒ Successive/parallel combination of local linear dynamics

⇒ Possibly time-varying diffusion coefficients

⇒ Accurate to model certain setups

⇒ GSP yields insights on how those processes behave
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Concluding remarks

I GSP results can be applied to solve practical problems

⇒ Filter design (design of distributed operators)

⇒ Sampling, interpolation (network control)

⇒ Blind deconvolution (source ID), shift design (network topology ID)
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Looking ahead

I First step to challenging problems: social nets, brain signals

I Motivates further research:

⇒ Statistical modeling

⇒ Space-time variation

⇒ Changing topologies

⇒ Nonlinear approaches

⇒ Local, reduced-complexity algorithms

I Thanks!

⇒ Contact: antonio.garcia.marques@urjc.es gmateosb@ece.rochester.edu
ssegarra@seas.upenn.edu aribeiro@seas.upenn.edu

⇒ Slides on stationarity available at:
http://tsc.urjc.es/~amarques/papers/ssamglar_sam16_slides.pdf
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