Graph Signal Processing: Fundamentals and Applications to Diffusion Processes

A. G. Marques ${ }^{\dagger}$, G. Mateos ${ }^{\star}$, A. Ribeiro, and S. Segarra
${ }^{\dagger}$ King Juan Carlos University - antonio.garcia.marques@urjc.es
*University of Rochester - gmateosb@ece.rochester.edu
Thanks: Weiyu Huang and Geert Leus

IEEE SAM Tutorial
Rio de Janeiro, Brazil
July 10, 2016

Network Science analytics

Internet

Clean energy and grid analytics

- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- Network as graph $G=(\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- Interest here not in G itself, but in data associated with nodes in \mathcal{V} \Rightarrow Object of study is a graph signal \mathbf{x}
- Q: Graph signals common and interesting as networks are?

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $\mathcal{E}=$ Output of sector i is an input to sector j (62 sectors in \mathcal{V})

Oil and Gas

Finance

- Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
- Administrative services (AS), Professional services (MP)
- Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
- Only interactions stronger than a threshold are shown

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $\mathcal{E}=$ Output of sector i is an input to sector j (62 sectors in \mathcal{V})

- A few sectors have widespread strong influence (services, finance, energy)
- Some sectors have strong indirect influences (oil)
- The heavy last row is final consumption
- This is an interesting network \Rightarrow Signals on this graph are as well

Disaggregated GDP of the United States

- Signal $\mathbf{x}=$ output per sector $=$ disaggregated GDP
\Rightarrow Network structure used to, e.g., reduce GDP estimation noise

- Signal is as interesting as the network itself. Arguably more
- Same is true on brain connectivity and fMRI brain signals, ...
- Gene regulatory networks and gene expression levels, ...
- Online social networks and information cascades, ...
- Alignment of customer preferences and product ratings, ...

Graph signal processing

- Graph SP: broaden classical SP to graph signals [Shuman et al.'13] \Rightarrow Our view: GSP well suited to study network (diffusion) processes

- As.: Signal properties related to topology of G (locality, smoothness)
\Rightarrow Algorithms that fruitfully leverage this relational structure
- Q: Why do we expect the graph structure to be useful in processing \mathbf{x} ?

Importance of signal structure in time

- Signal and Information Processing is about exploiting signal structure
- Discrete time described by cyclic graph
\Rightarrow Time n follows time $n-1$
\Rightarrow Signal value x_{n} similar to x_{n-1}
- Formalized with the notion of frequency

- Cyclic structure \Rightarrow Fourier transform $\Rightarrow \tilde{\mathbf{x}}=\mathbf{F}^{H} \mathbf{x}$ \square
- Fourier transform \Rightarrow Projection on eigenvector space of cycle

Covariances and principal components

- Random signal with mean $\mathbb{E}[\mathbf{x}]=0$ and covariance $\mathbf{C}_{x}=\mathbb{E}\left[\mathbf{x x}^{H}\right]$
\Rightarrow Eigenvector decomposition $\mathrm{C}_{\mathrm{x}}=\mathrm{V} \boldsymbol{\wedge} \mathbf{V}^{H}$
- Covariance matrix \mathbf{C}_{x} is a graph
\Rightarrow Not a very good graph, but still
- Precision matrix \mathbf{C}_{x}^{-1} a common graph too
\Rightarrow Conditional dependencies of Gaussian \mathbf{x}

- Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{\mathbf{x}}=\mathbf{V}^{H} \mathbf{x}$
- PCA transform \Rightarrow Projection on eigenvector space of (inverse) covariance
- Q: Can we extend these principles to general graphs and signals?

Graphs 101

- Formally, a graph G (or a network) is a triplet $(\mathcal{V}, \mathcal{E}, W)$
- $\mathcal{V}=\{1,2, \ldots, N\}$ is a finite set of N nodes or vertices
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges defined as ordered pairs (n, m)
- Write $\mathcal{N}(n)=\{m \in \mathcal{V}:(m, n) \in \mathcal{E}\}$ as the in-neighbors of n
- $W: \mathcal{E} \rightarrow \mathbb{R}$ is a map from the set of edges to scalar values $w_{n m}$
- Represents the level of relationship from n to m
- Often weights are strictly positive, $W: \mathcal{E} \rightarrow \mathbb{R}_{++}$
- Unweighted graphs $\Rightarrow w_{n m} \in\{0,1\}$, for all $(n, m) \in \mathcal{E}$
- Undirected graphs $\Rightarrow(n, m) \in \mathcal{E}$ if and only if $(m, n) \in \mathcal{E}$ and

$$
w_{n m}=w_{m n}, \text { for all }(n, m) \in \mathcal{E}
$$

Graphs - examples

- Unweighted and directed graphs (e.g., time)

- $\mathcal{V}=\{0,1, \ldots, 23\}$
- $\mathcal{E}=\{(0,1),(1,2), \ldots,(22,23),(23,0)\}$
- $W:(n, m) \mapsto 1$, for all $(n, m) \in \mathcal{E}$
- Unweighted and undirected graphs (e.g., image)

> V $=\{1,2,3, \ldots, 9\}$
> $\mathcal{E}=\{(1,2),(2,3), \ldots,(8,9),(1,4), \ldots,(6,9)\}$
> $W:(n, m) \mapsto 1$, for all $(n, m) \in \mathcal{E}$

- Weighted and undirected graphs (e.g., covariance)
- $\mathcal{V}=\{1,2,3,4\}$
- $\mathcal{E}=\{(1,1),(1,2), \ldots,(4,4)\}=\mathcal{V} \times \mathcal{V}$
- $W:(n, m) \mapsto \sigma_{n m}=\sigma_{m n}$, for all (n, m)

Adjacency matrix

- Algebraic graph theory: matrices associated with a graph G
\Rightarrow Adjacency \mathbf{A} and Laplacian \mathbf{L} matrices
\Rightarrow Spectral graph theory: properties of G using spectrum of \mathbf{A} or \mathbf{L}
- Given $G=(\mathcal{V}, \mathcal{E}, W)$, the adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ is

$$
A_{n m}= \begin{cases}w_{n m}, & \text { if }(n, m) \in \mathcal{E} \\ 0, & \text { otherwise }\end{cases}
$$

- Matrix representation incorporating all information about G
\Rightarrow For unweighted graphs, positive entries represent connected pairs
\Rightarrow For weighted graphs, also denote proximities between pairs

Degree and k-hop neighbors

- If G is unweighted and undirected, the degree of node i is $|\mathcal{N}(i)|$
\Rightarrow In directed graphs, have out-degree and an in-degree
- Using the adjacency matrix in the undirected case
\Rightarrow For node $i: \operatorname{deg}(i)=\sum_{j \in \mathcal{N}(i)} A_{i j}=\sum_{j} A_{i j}$
\Rightarrow For all N nodes: $\mathbf{d}=\mathbf{A} 1 \rightarrow$ Degree matrix: $\mathbf{D}:=\operatorname{diag}(\mathbf{d})$
- Q: Can this be extended to k-hop neighbors? \rightarrow Powers of \mathbf{A}
$\Rightarrow\left[\mathbf{A}^{k}\right]_{i j}$ non-zero only if there exists a path of length k from i to j
\Rightarrow Support of \mathbf{A}^{k} : pairs that can be reached in k hops

$\left[A^{2}\right]_{3,5}$

Laplacian of a graph

- Given undirected G with \mathbf{A} and \mathbf{D}, the Laplacian matrix $\mathbf{L} \in \mathbb{R}^{N \times N}$ is

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}
$$

\Rightarrow Equivalently, L can be defined element-wise as

$$
L_{i j}=\left\{\begin{array}{lc}
\operatorname{deg}(i), & \text { if } i=j \\
-w_{i j}, & \text { if }(i, j) \in \mathcal{E} \\
0, & \text { otherwise }
\end{array}\right.
$$

- Normalized Laplacian: $\mathcal{L}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}$ (we will focus on L)

$$
\mathbf{L}=\left[\begin{array}{cccc}
3 & -1 & 0 & -2 \\
-1 & 6 & -3 & -2 \\
0 & -3 & 4 & -1 \\
-2 & -2 & -1 & 5
\end{array}\right]
$$

Spectral properties of the Laplacian

- Denote by λ_{i} and \mathbf{v}_{i} the eigenvalues and eigenvectors of \mathbf{L}
- \mathbf{L} is positive semi-definite
$\Rightarrow \mathbf{x}^{T} \mathbf{L} \mathbf{x}=\frac{1}{2} \sum_{(i, j) \in \mathcal{E}} w_{i j}\left(x_{i}-x_{j}\right)^{2} \geq 0$, for all \mathbf{x}
\Rightarrow All eigenvalues are nonnegative, i.e. $\lambda_{i} \geq 0$ for all i
- A constant vector $\mathbf{1}$ is an eigenvector of \mathbf{L} with eigenvalue 0

$$
[\mathbf{L} 1]_{i}=\sum_{j \in \mathcal{N}(i)} w_{i j}(1-1)=0
$$

\Rightarrow Thus, $\lambda_{1}=0$ and $\mathbf{v}_{1}=(1 / \sqrt{N}) \mathbf{1}$

- In connected graphs, it holds that $\lambda_{i}>0$ for $i=2, \ldots, N$
\Rightarrow Multiplicity $\{\lambda=0\}=$ number of connected components

Part I: Fundamentals

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Graph signals

- Consider graph $G=(\mathcal{V}, \mathcal{E}, W)$. Graph signals are mappings $x: \mathcal{V} \rightarrow \mathbb{R}$ \Rightarrow Defined on the vertices of the graph (data tied to nodes)

Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

- May be represented as a vector $\mathbf{x} \in \mathbb{R}^{N}$
$\Rightarrow x_{n}$ denotes the signal value at the n-th vertex in \mathcal{V}
\Rightarrow Implicit ordering of vertices (same as in \mathbf{A} or \mathbf{L})

- Data associated with links of $G \Rightarrow$ Use line graph of G

Graph signals - Genetic profiles

- Graphs representing gene-gene interactions
\Rightarrow Each node denotes a single gene (loosely speaking)
\Rightarrow Connected if their coded proteins participate in same metabolism
- Genetic profiles for each patient can be considered as a graph signal
\Rightarrow Signal on each node is 1 if mutated and 0 otherwise

Sample patient 1 with subtype 1

- To understand a graph signal, the structure of G must be considered

Graph-shift operator

- To understand and analyze \mathbf{x}, useful to account for G's structure
- Associated with G is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
$\Rightarrow S_{i j}=0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (captures local structure in G)
- S can take nonzero values in the edges of G or in its diagonal

$$
\mathbf{S}=\left(\begin{array}{cccccc}
S_{11} & S_{12} & 0 & 0 & S_{15} & 0 \\
S_{21} & S_{22} & S_{23} & 0 & S_{25} & 0 \\
0 & S_{23} & S_{33} & S_{34} & 0 & 0 \\
0 & 0 & S_{43} & S_{44} & S_{45} & S_{46} \\
S_{51} & S_{52} & 0 & S_{54} & S_{55} & 0 \\
0 & 0 & 0 & S_{64} & 0 & S_{66}
\end{array}\right)
$$

- Ex: Adjacency A, degree D, and Laplacian $\mathbf{L}=\mathbf{D}$ - \mathbf{A} matrices

Relevance of the graph-shift operator

- Q: Why is S called shift? A: Resemblance to time shifts

- S will be building block for GSP algorithms (More soon)
\Rightarrow Same is true in the time domain (filters and delay)

Local structure of graph-shift operator

S represents a linear transformation that can be computed locally at the nodes of the graph. More rigorously, if \mathbf{y} is defined as $\mathbf{y}=\mathbf{S x}$, then node i can compute y_{i} if it has access to x_{j} at $j \in \mathcal{N}(i)$.

- Straightforward because $[\mathbf{S}]_{i j} \neq 0$ only if $i=j$ or $(j, i) \in \mathcal{E}$

$$
\Rightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
S_{11} & S_{12} & 0 & 0 & S_{15} & 0 \\
S_{21} & S_{22} & S_{23} & 0 & S_{25} & 0 \\
\hline 0 & S_{32} & S_{33} & S_{34} & 0 & 0 \\
0 & 0 & S_{43} & S_{44} & S_{45} & S_{46} \\
S_{51} & S_{52} & 0 & S_{54} & S_{55} & 0 \\
0 & 0 & 0 & S_{64} & 0 & S_{66}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)
$$

- What if $\mathbf{y}=\mathbf{S}^{2} \mathbf{x}$?
\Rightarrow Like powers of
A: neighborhoods
$\Rightarrow y_{i}$ found using values within 2-hops

$$
\left[\mathbf{S}^{2}\right]_{3,5}=S_{3,2} S_{2,5}+S_{3,4} S_{4,5}
$$

Graph Fourier Transform

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Discrete Fourier Transform (DFT)

- Let \mathbf{x} be a temporal signal, its DFT is $\tilde{\mathbf{x}}=\mathbf{F}^{H} \mathbf{x}$, with $F_{k n}=\frac{1}{\sqrt{N}} e^{+j \frac{2 \pi}{N} k n}$
\Rightarrow Equivalent description, provides insights
\Rightarrow Oftentimes, more parsimonious (bandlimited)
\Rightarrow Facilitates the design of SP algorithms: e.g., filters
- Many other transformations (orthogonal dictionaries) exist

ANALYSIS

projection matrix

SYNTHESIS

- Q: What transformation is suitable for graph signals?

Graph Fourier Transform (GFT)

- Useful transformation? $\Rightarrow \mathbf{S}$ involved in generation/description of \mathbf{x}
\Rightarrow Let $\mathbf{S}=\mathbf{V} \wedge \mathbf{V}^{-1}$ be the shift associated with G
- The Graph Fourier Transform (GFT) of \mathbf{x} is defined as

$$
\tilde{\mathbf{x}}=\mathbf{V}^{-1} \mathbf{x}
$$

- While the inverse GFT (iGFT) of $\tilde{\mathbf{x}}$ is defined as

$$
x=V \tilde{x}
$$

\Rightarrow Eigenvectors $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right]$ are the frequency basis (atoms)

- Additional structure
\Rightarrow If \mathbf{S} is normal, then $\mathbf{V}^{-1}=\mathbf{V}^{H}$ and $\tilde{x}_{k}=\mathbf{v}_{k}^{H} \mathbf{x}=\left\langle\mathbf{v}_{k}, \mathbf{x}\right\rangle$
\Rightarrow Parseval holds, $\|\mathbf{x}\|^{2}=\|\tilde{\mathbf{x}}\|^{2}$
- GFT \Rightarrow Projection on eigenvector space of shift operator S

Is this a reasonable transform?

- Particularized to cyclic graphs \Rightarrow GFT \equiv Fourier transform
- Particularized to covariance matrices \Rightarrow GFT \equiv PCA transform
- But really, this is an empirical question. GFT of disaggregated GDP

- GFT transform characterized by a few coefficients
\Rightarrow Notion of bandlimitedness: $\mathbf{x}=\sum_{k=1}^{K} \tilde{x}_{k} \mathbf{v}_{k}$
\Rightarrow Sampling, compression, filtering, pattern recognition

Eigenvalues as frequencies

- Columns of \mathbf{V} are the frequency atoms: $\mathbf{x}=\sum_{k} \tilde{x}_{k} \mathbf{v}_{k}$
- Q: What about the eigenvalues $\lambda_{k}=\Lambda_{k k}$
\Rightarrow When $\mathbf{S}=\mathbf{A}_{d c}$, we get $\lambda_{k}=e^{-j \frac{2 \pi}{N} k}$
$\Rightarrow \lambda_{k}$ can be viewed as frequencies!!
- In time, well-defined relation between frequency and variation
\Rightarrow Higher $k \Rightarrow$ higher oscillations
\Rightarrow Bounds on total-variation: $T V(\mathbf{x})=\sum_{n}\left(x_{n}-x_{n-1}\right)^{2}$

- Q: Does this carry over for graph signals?
\Rightarrow No in general, but if $\mathbf{S}=\mathbf{L}$ there are interpretations for λ_{k}
$\Rightarrow\left\{\lambda_{k}\right\}_{k=1}^{N}$ will be very important when analyzing graph filters

Interpretation of the Laplacian

- Consider a graph G, let \mathbf{x} be a signal on G, and set $\mathbf{S}=\mathbf{L}$
$\Rightarrow \mathbf{y}=\mathbf{S} \mathbf{x}$ is now $\mathbf{y}=\mathbf{L x} \Rightarrow y_{i}=\sum_{j \in \mathcal{N}(i)} w_{i j}\left(x_{i}-x_{j}\right)$
$\Rightarrow j$-th term is large if x_{j} is very different from neighboring x_{i}
$\Rightarrow y_{i}$ measures difference of x_{i} relative to its neighborhood
- We can also define the quadratic form $\mathbf{x}^{\top} \mathbf{S} \mathbf{x}$

$$
\mathbf{x}^{T} \mathbf{L} \mathbf{x}=\frac{1}{2} \sum_{(i, j) \in \mathcal{E}} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

$\Rightarrow \mathbf{x}^{\top} \mathbf{L x}$ quantifies the (aggregated) local variation of signal \mathbf{x}
\Rightarrow Natural measure of signal smoothness w.r.t. G

- Q: Interpretation of frequencies $\left\{\lambda_{k}\right\}_{k=1}^{N}$ when $\mathbf{S}=\mathbf{L}$?
\Rightarrow If $\mathbf{x}=\mathbf{v}_{k}$, we get $\mathbf{x}^{T} \mathbf{L} \mathbf{x}=\lambda_{k} \Rightarrow$ local variation of \mathbf{v}_{k}
\Rightarrow Frequencies account for local variation, they can be ordered
\Rightarrow Eigenvector associated with eigenvalue 0 is constant

Frequencies of the Laplacian

- Laplacian eigenvalue λ_{k} accounts for the local variation of \mathbf{v}_{k} \Rightarrow Let us plot some of the eigenvectors of \mathbf{L} (also graph signals)

Ex: gene network, $N=10, k=1, k=2, k=9$

Ex: smooth natural images, $N=2^{16}, k=2, \ldots, 6$

Application: Cancer subtype classification

- Patients diagnosed with same disease exhibit different behaviors
- Each patient has a genetic profile describing gene mutations
- Would be beneficial to infer phenotypes from genotypes
\Rightarrow Targeted treatments, more suitable suggestions, etc.
- Traditional approaches consider different genes to be independent
\Rightarrow Not ideal, as different genes may affect same metabolism
- Alternatively, consider genetic network
\Rightarrow Genetic profiles become graph signals on genetic network
\Rightarrow We will see how this consideration improves subtype classification

Genetic network

- Undirected and unweighted gene-to-gene interaction graph
- 2458 nodes are genes in human DNA related to breast cancer
- An edge between two genes represents interaction
\Rightarrow Coded proteins participate in the same metabolic process
- Adjacency matrix of the gene-interaction network

Genetic profiles

- Genetic profile of 240 women with breast cancer
$\Rightarrow 44$ with serous subtype and 196 with endometrioid subtype
\Rightarrow Patient i has an associated profile $\mathbf{x}_{i} \in\{0,1\}^{2458}$
- Mutations are very varied across patients
\Rightarrow Some patients present a lot of mutations
\Rightarrow Some genes are consistently mutated across patients

- Q: Can we use genetic profiles to classify patients across subtypes?

Improving k-nearest neighbor classification

- Distance between genetic profiles $\Rightarrow d(i, j)=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}$
$\Rightarrow N$-fold cross-validation error from k-NN classification

$$
k=3 \Rightarrow 13.3 \%, \quad k=5 \Rightarrow 12.9 \%, \quad k=7 \Rightarrow 14.6 \%
$$

- Q: Can we do any better using graph signal processing?
- Each genetic profile \mathbf{x}_{i} is a graph signal on the genetic network
\Rightarrow Look at the frequency components $\tilde{\mathbf{x}}_{i}$ using the GFT
\Rightarrow Use as shift operator S the Laplacian of the genetic network

Example of signal x_{i}

Frequency representation $\tilde{\mathbf{x}}_{i}$

Distinguishing Power

- Define the distinguishing power of frequency \mathbf{v}_{k} as

$$
D P\left(\mathbf{v}_{k}\right)=\left|\frac{\sum_{i: y_{i}=1} \tilde{\mathbf{x}}_{i}(k)}{\sum_{i} \mathbf{1}\left\{y_{i}=1\right\}}-\frac{\sum_{i: y_{i}=2} \tilde{\mathbf{x}}_{i}(k)}{\sum_{i} \mathbf{1}\left\{y_{i}=2\right\}}\right| / \sum_{i}\left|\tilde{\mathbf{x}}_{i}(k)\right|,
$$

- Normalized difference between the mean GFT coefficient for \mathbf{v}_{k} \Rightarrow Among patients with serous and endometrioid subtypes
- Distinguishing power is not equal across frequencies

- The distinguishing power defined is one of many proper heuristics

Increasing accuracy by selecting the best frequencies

- Keep information in frequencies with higher distinguishing power \Rightarrow Filter, i.e., multiply $\tilde{\mathbf{x}}_{i}$ by $\operatorname{diag}\left(\tilde{\mathbf{h}}^{p}\right)$ where

$$
\left[\tilde{\mathbf{h}}^{p}\right]_{k}= \begin{cases}1, & \text { if } D P\left(\mathbf{v}_{k}\right) \geq p \text {-th percentile of } D P \\ 0, & \text { otherwise }\end{cases}
$$

- Then perform inverse GFT to get the graph signal $\hat{\mathbf{x}}_{i}$

Graph filters and network processes

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Linear (shift-invariant) graph filter

- A graph filter $H: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a map between graph signals

Focus on linear filters
\Rightarrow map represented by an
$N \times N$ matrix

DEF1: Polynomial in S of degree L, with coeff. $\mathbf{h}=\left[h_{0}, \ldots, h_{L}\right]^{T}$

$$
\mathbf{H}:=h_{0} \mathbf{S}^{0}+h_{1} \mathbf{S}^{1}+\ldots+h_{L} \mathbf{S}^{L}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{\prime} \quad \text { [Sandryhaila13] }
$$

DEF2: Orthogonal operator in the frequency domain

$$
\mathbf{H}:=\mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{-1}, \quad \tilde{h}_{k}=g\left(\lambda_{k}\right)
$$

- With $[\Psi]_{k, l}:=\lambda_{k}^{l-1}$, we have $\tilde{\mathbf{h}}=\Psi \mathbf{h} \Rightarrow$ Defs can be rendered equivalent \Rightarrow More on this later, now focus on DEF1

Graph filters as linear network operators

- DEF1 says $\mathbf{H}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{\prime}$
- Suppose H acts on a graph signal \mathbf{x} to generate $\mathbf{y}=\mathbf{H x}$
\Rightarrow If we define $\mathbf{x}^{(/)}:=\mathbf{S}^{\prime} \mathbf{x}=\mathbf{S} \mathbf{x}^{(/-1)}$

$$
\mathbf{y}=\sum_{l=0}^{L} h_{l} \mathbf{x}^{(I)}
$$

y is a linear combination of successive shifted versions of \mathbf{x}

- After introducing \mathbf{S}, we stressed that $\mathbf{y}=\mathbf{S x}$ can be computed locally
$\Rightarrow \mathbf{x}^{(l)}$ can be found locally if $\mathbf{x}^{(l-1)}$ is known
\Rightarrow The output of the filter can be found in L local steps
- A graph filter represents a linear transformation that
\Rightarrow Accounts for local structure of the graph
\Rightarrow Can be implemented distributedly in L steps
\Rightarrow Only requires info in L-neighborhood [Shuman13, Sandyhaila14]

An example of a graph filter

- $\mathbf{x}=[-1,2,0,0,0,0]^{T}, \mathbf{h}=[1,1,0.5]^{T}, \mathbf{y}=\left(\sum_{l=0}^{L} h_{l} \mathbf{S}\right) \mathbf{x}=\sum_{l=0}^{L} h_{l} \mathbf{x}^{(l)}$

$$
\begin{aligned}
& \mathbf{S}=\mathbf{A}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \quad \mathbf{y}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{l} \mathbf{x}=\sum_{l=0}^{L} h_{l} \mathbf{x}^{(l)} \\
& \square \\
& \mathbf{y}=h_{0} \mathbf{x}^{(0)}+h_{1} \mathbf{x}^{(1)}+h_{2} \mathbf{x}^{(2)}
\end{aligned}
$$

Given $\mathbf{x}=[-1,2,0,0,0,0]^{T}$ and $\mathbf{h}=[1,1,0.5]^{T} \Rightarrow$ Find $\left\{\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right\} \Rightarrow$ Find \mathbf{y}

Frequency response of a graph filter

- Recalling that $\mathrm{S}=\mathbf{V} \wedge \mathbf{V}^{-1}$, we may write

$$
\mathbf{H}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{\prime}=\sum_{l=0}^{L} h_{l} \mathbf{V} \boldsymbol{\Lambda}^{\prime} \mathbf{V}^{-1}=\mathbf{V}\left(\sum_{l=0}^{L} h_{l} \boldsymbol{\Lambda}^{\prime}\right) \mathbf{V}^{-1}
$$

- The application Hx of filter H to \mathbf{x} can be split into three parts
$\Rightarrow \mathbf{V}^{-1}$ takes signal \mathbf{x} to the graph frequency domain $\tilde{\mathbf{x}}$
$\Rightarrow \tilde{\mathbf{H}}:=\sum_{l=0}^{L} h_{l} \boldsymbol{\Lambda}^{\prime}$ modifies the frequency coefficients to obtain $\tilde{\mathbf{y}}$
$\Rightarrow \mathbf{V}$ brings the signal $\tilde{\mathbf{y}}$ back to the graph domain \mathbf{y}
- Since $\tilde{\mathbf{H}}$ is diagonal, define $\tilde{\mathbf{H}}=: \operatorname{diag}(\tilde{\mathbf{h}})$
$\Rightarrow \tilde{\mathbf{h}}$ is the frequency response of the filter \mathbf{H}
\Rightarrow Output at frequency k depends only on input at frequency k

$$
\tilde{y}_{k}=\tilde{h}_{k} \tilde{x}_{k}
$$

Frequency response and filter coefficients

- Relation between $\tilde{\mathbf{h}}$ and \mathbf{h} in a more friendly manner?
\Rightarrow Since $\tilde{\mathbf{h}}=\operatorname{diag}\left(\sum_{l=0}^{L} h_{l} \Lambda^{\prime}\right)$, we have that $\tilde{h}_{k}=\sum_{l=0}^{L} h_{l} \lambda_{k}^{\prime}$
\Rightarrow Define the Vandermonde matrix Ψ as

$$
\Psi:=\left(\begin{array}{cccc}
1 & \lambda_{1} & \ldots & \lambda_{1}^{L} \\
\vdots & \vdots & & \vdots \\
1 & \lambda_{N} & \ldots & \lambda_{N}^{L}
\end{array}\right)
$$

Frequency response of a graph filter
If h are the coefficients of a graph filter, its frequency response is

$$
\tilde{\mathbf{h}}=\psi \mathbf{h}
$$

- Given a desired $\tilde{\mathbf{h}}$, we can find the coefficients \mathbf{h} as

$$
\mathbf{h}=\Psi^{-1} \tilde{\mathbf{h}}
$$

\Rightarrow Since Ψ is Vandermonde, invertible as long as $\lambda_{k} \neq \lambda_{k^{\prime}}$ for $k \neq k^{\prime}$

More on the frequency response

- Since $\mathbf{h}=\Psi^{-1} \tilde{\mathbf{h}} \Rightarrow$ If all $\left\{\lambda_{k}\right\}_{k=1}^{N}$ distinct, then
\Rightarrow Any $\tilde{\mathbf{h}}$ can be implemented with at most $L+1=N$ coefficients
- Since $\mathbf{h}=\Psi \tilde{\mathbf{h}} \Rightarrow \operatorname{If} \lambda_{\boldsymbol{k}}=\lambda_{k^{\prime}}$, then
\Rightarrow The corresponding frequency response will be the same $\tilde{h}_{k}=\tilde{h}_{k^{\prime}}$
- For the particular case when $\mathbf{S}=\mathbf{A}_{d c}$, we have that $\lambda_{k}=e^{-j \frac{2 \pi}{N}(k-1)}$

$$
\Psi=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & e^{-j \frac{2 \pi(1)(1)}{N}} & \cdots & e^{-j \frac{2 \pi(1)(N-1)}{N}} \\
\vdots & \vdots & & \vdots \\
1 & e^{-j \frac{2 \pi(N-1)(1)}{N}} & \ldots & e^{-j \frac{2 \pi(N-1)(N-1)}{N}}
\end{array}\right)=F^{H}
$$

\Rightarrow The frequency response is the DFT of the impulse response

$$
\tilde{\mathbf{h}}=F^{H} \mathbf{h}
$$

Frequency response for graph signals and filters

- Suppose that we have a signal \mathbf{x} and filter coefficients \mathbf{h}
- For time signals, it holds that the output \mathbf{y} is

$$
\tilde{\mathbf{y}}=\operatorname{diag}\left(\mathbf{F}^{H} \mathbf{h}\right) \mathbf{F}^{H} \mathbf{x}
$$

- For graph signals, the output \mathbf{y} in the frequency domain is

$$
\tilde{\mathbf{y}}=\operatorname{diag}(\Psi \mathbf{h}) \mathbf{V}^{-1} \mathbf{x}
$$

- The GFT for filters is different from the GFT for signals \Rightarrow Symmetry is lost, but both depend on spectrum of \mathbf{S}
\Rightarrow Many of the properties are not true for graphs
\Rightarrow Several options to generalize operations

System identification and impulse response

- Suppose that our goal is to find \mathbf{h} given \mathbf{x} and \mathbf{y}
\Rightarrow Using the previous expressions

$$
\mathbf{h}=\boldsymbol{\Psi}^{-1} \operatorname{diag}^{-1}\left(\mathbf{V}^{-1} \mathbf{x}\right) \mathbf{V}^{-1} \mathbf{y}
$$

- In time, if we set $\mathbf{x}=[1,0, \ldots, 0]^{T}=\mathbf{e}_{1}$ (i.e., $\tilde{\mathbf{x}}=\mathbf{1}$), we have $\Rightarrow \mathbf{h}=\mathbf{F d i a g}^{-1}(\mathbf{1}) \mathbf{F}^{H} \mathbf{y}=\mathbf{y} \rightarrow \mathbf{h}$ is the impulse response
- In the graph domain
- If we set $\mathbf{x}=\mathbf{e}_{i}$, then $\mathbf{h}=\boldsymbol{\Psi}^{-1} \operatorname{diag}^{-1}\left(\tilde{\mathbf{e}}_{i}\right) \mathbf{V}^{-1} \mathbf{y}$, where
$\Rightarrow \tilde{\mathbf{e}}_{i}:=\mathbf{V}^{-1} \mathbf{e}_{i} \equiv$ how strongly node i expresses each of the freqs.
\Rightarrow Problem if $\tilde{\mathbf{e}}_{i}$ has zero entries
- Alternatively we can get $\tilde{\mathbf{x}}=\mathbf{1}$ by setting $\mathbf{x}=\mathbf{V} 1$ and then

$$
\Rightarrow \mathbf{h}=\boldsymbol{\Psi}^{-1} \operatorname{diag}^{-1}(\tilde{\mathbf{x}}) \mathbf{V}^{-1} \mathbf{y}=\boldsymbol{\Psi}^{-1} \mathbf{V}^{-1} \mathbf{y}
$$

Implementing graph filters: frequency or space

- Frequency or space?

$$
\mathbf{y}=\mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{-1} \mathbf{x} \quad \text { vs. } \quad \mathbf{y}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{\prime} \mathbf{x}
$$

- In space: leverage the fact that $\mathbf{S x}$ can be computed locally
\Rightarrow Signal \mathbf{x} is percolated L times to find $\left\{\mathbf{x}^{(I)}\right\}_{l=0}^{L}$
\Rightarrow Every node finds its own y_{i} by computing $\sum_{l=0}^{L} h_{l}\left[\mathbf{x}^{(l)}\right]_{i}$
- Frequency implementation useful for processing if, e.g.,
\Rightarrow Filter bandlimited and eigenvectors easy to find
\Rightarrow Low complexity [Anis16, Tremblay16]
- Space definition useful for modeling
\Rightarrow Diffusion, percolation, opinion formation, ... (more on this soon)
- More on filter design
\Rightarrow Chebyshev polyn. [Shuman12]; AR-MA [Isufi-Leus15]; Node-var. [Segarra15]; Time-var. [Isufi-Leus16]; Median filters [Segarra16]

Linear network processes via graph filters

- Consider a linear dynamics of the form

$$
\mathbf{x}_{t}-\mathbf{x}_{t-1}=\alpha \mathbf{J} \mathbf{x}_{t-1} \Rightarrow \mathbf{x}_{t}=(\mathbf{I}-\alpha \mathbf{J}) \mathbf{x}_{t-1}
$$

- If \mathbf{x} is network process $\Rightarrow\left[\mathbf{x}_{t}\right]_{i}$ depends only on $\left[\mathbf{x}_{t-1}\right]_{j}, j \in \mathcal{N}(i)$

$$
[\mathrm{S}]_{i j}=[\mathrm{J}]_{i j} \Rightarrow \mathbf{x}_{t}=(\mathbf{I}-\alpha \mathbf{S}) \mathbf{x}_{t-1} \Rightarrow \mathbf{x}_{t}=(\mathbf{I}-\alpha \mathbf{S})^{t} \mathbf{x}_{0}
$$

$\Rightarrow \mathbf{x}_{t}=\mathbf{H} \mathbf{x}_{0}$, with \mathbf{H} a polynomial of $\mathbf{S} \Rightarrow$ linear graph filter

- If the system has memory \Rightarrow output weighted sum of previous exchanges (opinion dynamics) \Rightarrow still a polynomial of \mathbf{S}

$$
\mathbf{y}=\sum_{t=0}^{T} \beta^{t} \mathbf{x}_{t} \Rightarrow \mathbf{y}=\sum_{t=0}^{T}(\beta \mathbf{I}-\beta \alpha \mathbf{S})^{t} \mathbf{x}_{0}
$$

- Everything holds true if α_{t} or β_{t} are time varying

Diffusion dynamics and AR (IIR) filters

- Before finite-time dynamics (FIR filters)
- Consider now a diffusion dynamics $\mathbf{x}_{t}=\alpha \mathbf{S} \mathbf{x}_{t-1}+\mathbf{w}$

$$
\begin{gathered}
\mathbf{x}_{t}=\alpha^{t} \mathbf{S}^{t} \mathbf{x}_{0}+\sum_{t^{\prime}=0}^{t} \alpha^{t} \mathbf{S}^{t^{\prime}} \mathbf{w} \\
\Rightarrow \text { When } t \rightarrow \infty: \quad \mathbf{x}_{\infty}=(\mathbf{I}-\alpha \mathbf{S})^{-1} \mathbf{w} \Rightarrow \text { AR graph filter }
\end{gathered}
$$

- Higher orders [Isufi-Leus16]
$\Rightarrow M$ successive diffusion dynamics $\Rightarrow A R$ of order M
\Rightarrow Process is the sum of M parallel diffusions \Rightarrow ARMA order M

$$
\mathbf{x}_{\infty}=\prod_{m=1}^{M}\left(\mathbf{I}-\alpha_{m} \mathbf{S}\right)^{-1} \mathbf{w} \quad \mathbf{x}_{\infty}=\sum_{m=1}^{M}\left(\mathbf{I}-\alpha_{m} \mathbf{S}\right)^{-1} \mathbf{w}
$$

General linear network processes

- Combinations of all the previous are possible

$$
\mathbf{x}_{t}=\mathbf{H}_{t}^{a}(\mathbf{S}) \mathbf{x}_{t-1}+\mathbf{H}_{t}^{b}(\mathbf{S}) \mathbf{w} \Rightarrow \mathbf{x}_{t}=\mathbf{H}_{t}^{A}(\mathrm{~S}) \mathbf{x}_{0}+\mathbf{H}_{t}^{B}(\mathrm{~S}) \mathbf{w}
$$

$\Rightarrow \mathbf{y}=\mathbf{x}_{t}$, sequential/parallel application, linear combination

\Rightarrow Expands range of processes that can be modeled via GSP
\Rightarrow Coefficients can change according to some control inputs

- A number of linear processes can be modeled using graph filters
\Rightarrow Theoretical GSP results can be applied to distributed networking
\Rightarrow Deconvolution, filtering, system id, ...
\Rightarrow Beyond linearity possible too (more at the end of the talk)
- Links with control theory (of networks and complex systems)
\Rightarrow Controllability, observability

Application: Explaining human learning rates

- Why do some people learn faster than others?
\Rightarrow Can we answer this by looking at their brain activity?
- Brain activity during learning of a motor skill in 112 cortical regions \Rightarrow fMRI while learning a piano pattern for 20 individuals
- Pattern is repeated, reducing the time needed for execution
\Rightarrow Learning rate $=$ rate of decrease in execution time
- Define a functional brain graph
\Rightarrow Based on correlated activity
- fMRI outputs a series of graph signals
$\Rightarrow \mathbf{x}(t) \in \mathbb{R}^{112}$ describing brain states

- Does brain state variability correlate with learning?

Measuring brain state variability

- We propose three different measures capturing different time scales \Rightarrow Changes in micro, meso, and macro scales
- Micro: instantaneous changes higher than a threshold α

$$
m_{1}(\mathbf{x})=\sum_{t=1}^{T} \mathbf{1}\left\{\frac{\|\mathbf{x}(t)-\mathbf{x}(t-1)\|_{2}}{\|\mathbf{x}(t)\|_{2}}>\alpha\right\}
$$

- Meso: Cluster brain states and count the changes in clusters

$$
m_{2}(\mathbf{x})=\sum_{t=1}^{T} \mathbf{1}\{\mathbf{c}(t) \neq \mathbf{c}(t-1)\}
$$

\Rightarrow where $\mathbf{c}(t)$ is the cluster to which $\mathbf{x}(t)$ belongs.

- Macro: Sample entropy. Measure of complexity of time series

$$
\begin{aligned}
& \quad m_{3}(\mathbf{x})=-\log \left(\frac{\sum_{t} \sum_{s \neq t} \mathbf{1}\left\{\left\|\overline{\mathbf{x}}_{3}(t)-\overline{\mathbf{x}}_{3}(s)\right\|_{\infty}>\alpha\right\}}{\sum_{t} \sum_{s \neq t} \mathbf{1}\left\{\left\|\overline{\mathbf{x}}_{2}(t)-\overline{\mathbf{x}}_{2}(s)\right\|_{\infty}>\alpha\right\}}\right) \\
& \Rightarrow \text { Where } \overline{\mathbf{x}}_{r}(t)=[\mathbf{x}(t), \mathbf{x}(t+1), \ldots, \mathbf{x}(t+r-1)]
\end{aligned}
$$

Diffusion as low-pass filtering

- We diffuse each time signal $\mathbf{x}(t)$ across the brain graph

$$
\mathbf{x}_{\mathrm{diff}}(t)=(\mathbf{I}+\beta \mathbf{L})^{-1} \mathbf{x}(t)
$$

\Rightarrow where Laplacian $\mathbf{L}=\mathbf{V} \wedge \mathbf{V}^{-1}$ and β represents the diffusion rate

- Analyzing diffusion in the frequency domain

$$
\begin{aligned}
& \quad \tilde{\mathbf{x}}_{\text {diff }}(t)=(\mathbf{I}+\beta \boldsymbol{\Lambda})^{-1} \mathbf{V}^{-1} \mathbf{x}(t)=\operatorname{diag}(\tilde{\mathbf{h}}) \tilde{\mathbf{x}}(t) \\
& \Rightarrow \text { where } \tilde{h}_{i}=1 /\left(1+\beta \lambda_{i}\right)
\end{aligned}
$$

- Diffusion acts as low-pass filtering
- High freq. components are attenuated
- β controls the level of attenuation

Computing correlation for three signals

- Variability measures consider the order of brain signal activity
- As a control, we include in our analysis a null signal time series $x_{\text {null }}$

$$
\mathbf{x}_{\mathrm{null}}(t)=\mathbf{x}_{\mathrm{diff}}\left(\pi_{t}\right)
$$

\Rightarrow where π_{t} is a random permutation of the time indices

- Correlation between variability (m_{1}, m_{2}, and m_{3}) and learning?
- We consider three time series of brain activity
\Rightarrow The original fMRI data x
\Rightarrow The filtered data $\mathrm{x}_{\text {diff }}$
\Rightarrow The null signal $\mathrm{x}_{\text {null }}$

Low-pass filtering reveals correlation

- Correlation coeff. between learning rate and brain state variability

	Original	Filtered	Null
m_{1}	0.211	$\mathbf{0 . 5 6 8}$	0.182
m_{2}	0.226	$\mathbf{0 . 6 1 1}$	0.174
m_{3}	0.114	$\mathbf{0 . 3 8 2}$	0.113

- Correlation is clear when the signal is filtered
\Rightarrow Result for original signal similar to null signal
- Scatter plots for original, filtered, and null signals (m_{2} variability)

Part II: Applications

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Application domains

- Design graph filters to approximate desired network operators
- Sampling bandlimited graph signals
- Blind graph filter identification
\Rightarrow Infer diffusion coefficients from observed output
- Network topology inference
\Rightarrow Infer shift from collection of network diffused signals

- Many more (not covered, glad to discuss or redirect):
\Rightarrow Statistical GSP, stationarity and spectral estimation
\Rightarrow Filter banks
\Rightarrow Windowing, convolution, duality...
\Rightarrow Nonlinear GSP

Distributed network operators

- Design graph filters to implement a given linear transformation
\Rightarrow Implementation is distributed by construction
\Rightarrow Conditions for perfect and approximate implementation
\Rightarrow [Shuman11], [Sandryhaila14], [Safavi15], [Chen15]
- Given a linear transformation B, find the filter coefficients h s. t.

$$
\mathbf{B}=\sum_{l=0}^{L-1} h_{l} \mathbf{S}^{\prime}
$$

$$
B=\left[\begin{array}{lll}
{\left[\begin{array}{ll}
1 \\
& \\
& \\
& \\
&
\end{array}\right]}
\end{array}\right.
$$

- Graph-shift operator S is given
\Rightarrow Well-suited for cases where S is a network process
\Rightarrow E.g., diffusion in a social network
\Rightarrow Agents exchange information and weigh info observed
\Rightarrow Choosing $\mathbf{h} \Rightarrow$ fixing the weights

Conditions for perfect implementation

Perfect implementation of linear graph operators [Segarra15]

The linear transformation B can be implemented using a graph filter \mathbf{H} if the following conditions hold true:
i) Matrices B and S are simultaneously diagonalizable.
ii) If $\lambda_{k_{1}}=\lambda_{k_{2}}$, then $\gamma_{k_{1}}=\gamma_{k_{2}}$; and $L \geq \#\left\{\lambda_{k}\right\}_{k=1}^{N}$ distinct.

- i) \Rightarrow frequency basis of B and S the same \Rightarrow necessary
- ii) \Rightarrow two equal freqs. in S must be equal in $B \Rightarrow$ necessary
- Restrictive conditions but not impossible In time: to satisfy \Rightarrow Consensus $\mathrm{B}_{\text {con }}=\mathbf{1 1}^{T}$
i) $\Leftrightarrow B$ favors i) and ii) because it is rank-one circulant
- If satisfied: $\mathbf{h}^{*}=\boldsymbol{\Psi}^{-1} \gamma$, where $\gamma=\left[\gamma_{1}, \ldots, \gamma_{N}\right]^{T}$ are eigvals. of \mathbf{B}

Approximate design

- When perfect reconstruction is infeasible \Rightarrow minimize error metric
\Rightarrow Design $\mathbf{H x}$ to resemble Bx (or \mathbf{H} to resemble \mathbf{B})
\Rightarrow Minimizing $\left\|(\mathbf{H}-\mathbf{B}) \mathbf{R}_{\mathbf{x}}(\mathbf{H}-\mathbf{B})^{T}\right\|_{z}$ (with $\mathbf{R}_{x}=\mathbf{I}$ if unknown)
- MSE coefficients: $\mathbf{h}^{*}=\Theta_{\mathbf{R}_{x}}^{\dagger} \mathbf{b}_{\mathbf{R}_{x}}=\left(\Theta_{\mathbf{R}_{x}}^{T} \Theta_{\mathbf{R}_{x}}\right)^{-1} \Theta_{\mathbf{R}_{x}}^{T} \mathbf{b}_{\mathbf{R}_{x}}$
\Rightarrow with $\boldsymbol{\Theta}_{\mathbf{R}_{\mathrm{x}}}:=\left[\operatorname{vec}\left(\mathbf{I}_{\mathrm{x}}^{1 / 2}\right), \ldots, \operatorname{vec}\left(\mathbf{S}^{L-1} \mathbf{R}_{\mathrm{x}}^{1 / 2}\right)\right], \mathbf{b}_{\mathbf{R}_{\mathrm{x}}}:=\operatorname{vec}\left(\mathbf{B R}_{\mathrm{x}}^{1 / 2}\right)$
- Worst-case error coefficients:

$$
\begin{aligned}
& \left\{\mathbf{h}^{*}, s^{*}\right\}=\underset{\{\mathbf{h}, s\}}{\operatorname{argmin}} s \\
& \text { s. to }\left[\begin{array}{cc}
s \mathbf{I} \\
\left(\mathbf{V} \operatorname{diag}(\Psi \mathbf{h}) \mathbf{V}^{-1}-\mathbf{B}\right)^{T} & \mathbf{V} \operatorname{diag}(\Psi \mathbf{h}) \mathbf{V}^{-1}-\mathbf{B} \\
s \mathbf{R}_{\mathbf{x}}^{-1}
\end{array}\right] \succeq 0 .
\end{aligned}
$$

- Additional assumptions can be incorporated

Consensus and rank- 1 transformations

Consensus

- Local implementation of the consensus operator $\mathrm{B}_{\mathrm{con}}=\mathbf{1 1}^{T} / \mathrm{N}$

Proposition [Segarra16]
If \mathcal{G} is connected and the desired operator $\mathrm{B}_{\mathrm{rk} 1}$ is rank one, then there exists an \mathbf{S} such that $\mathbf{B}_{\mathrm{rk} 1}$ can be written as a graph filter $\sum_{l=0}^{N-1} h_{l} \mathbf{S}^{\prime}$.

- Constructive proof, for consensus $\mathbf{S}=\mathbf{L}$
- Consensus is achieved in finite time [Sandryhaila-Kar-Moura14]
- Key: B low-rank (repeated eigenvalues) \Rightarrow well-suited for approx.
- We compare the performance of: 1) Asymptotic fastest distributed linear averaging (FDLA), 2) Graph filter approx.

Finite-time consensus

- Define the graph-shift operator $\mathbf{S}=\mathrm{W}$
\Rightarrow Where $\lim _{k \rightarrow \infty} \mathbf{W}^{k}=\mathbf{B}_{\text {con }}$ with fastest convergence
- Plot average errors across the 100 graphs with 10 nodes
- Compare worst-case and mean error design (50 nodes)

- Smaller error than FDLA for intermediate K
\Rightarrow When $K=N-1=9$, perfect recovery
- The price to pay is that $\left\{\lambda_{k}\right\}_{k=1}^{N}$ need to be known
- Consistent performance of mean error and worst case designs

Node-variant graph filters: definition

- A generalization of graph filters [Segarra16]:

$$
\mathbf{H}_{\mathrm{nv}}:=\sum_{l=0}^{L-1} \operatorname{diag}\left(\mathbf{h}^{(/)}\right) \mathbf{S}^{\prime}
$$

\Rightarrow When $\mathbf{h}^{(I)}=h_{l} \mathbf{1} \Rightarrow$ regular (node-invariant) filter

$$
\mathbf{x}^{(0)}=\mathbf{x}=\left(\begin{array}{r}
-1 \\
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \quad \mathbf{x}^{(1)}=\mathbf{S} \mathbf{x}^{(0)}=\left(\begin{array}{r}
2 \\
-1 \\
2 \\
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{x}^{(2)}=\mathbf{S} \mathbf{x}^{(1)}=\left(\begin{array}{r}
0 \\
3 \\
-1 \\
3 \\
1 \\
0
\end{array}\right)
$$

$$
\mathbf{y}=h^{(0)} \mathbf{x}^{(0)}+h^{(1)} \mathbf{x}^{(1)}+h^{(2)} \mathbf{x}^{(2)}
$$

$$
y_{i}=h_{i}^{(0)} x_{i}^{(0)}+h_{i}^{(1)} x_{i}^{(1)}+h_{i}^{(2)} x_{i}^{(2)}
$$

- In general, when \mathbf{H}_{nv} is applied to a signal \mathbf{x}
\Rightarrow Each node applies different weights to the shifted signals $\mathbf{S}^{\prime} \mathbf{x}$
\Rightarrow More flexible and still distributed, not shift-invariant

Node-variant graph filters: frequency response

- Collect the coefficients of node i in \mathbf{h}_{i}, such that $\left[\mathbf{h}_{i}\right]_{I}=\left[\mathbf{h}^{(/)}\right]_{i}$
- Focus on the filter output at node $i, \mathbf{e}_{i}^{T} \mathbf{H}_{\mathrm{nv}} \mathbf{x}$

$$
\boldsymbol{\eta}_{i}^{T}=\mathbf{e}_{i}^{T} \mathbf{H}_{\mathrm{nv}}=\sum_{l=0}^{L-1}\left[\mathbf{h}_{i}\right] / \mathbf{e}_{i}^{T} \mathbf{V} \Lambda^{\prime} \mathbf{V}^{-1}
$$

- Defining $\mathbf{u}_{i}:=\mathbf{V}^{\top} \mathbf{e}_{i}$

$$
\boldsymbol{\eta}_{i}^{T}=\mathbf{u}_{i}^{T}\left(\sum_{l=0}^{L-1}\left[\mathbf{h}_{i}\right] / \boldsymbol{\Lambda}^{\prime}\right) \mathbf{V}^{-1}=\mathbf{u}_{i}^{T} \operatorname{diag}\left(\boldsymbol{\Psi} \mathbf{h}_{i}\right) \mathbf{V}^{-1}
$$

- The output of the filter at node $i, \boldsymbol{\eta}_{i}^{T} \mathbf{x}$ is the inner product of $\Rightarrow \mathbf{V}^{-1} \mathbf{x} \Rightarrow$ the frequency representation of the input, and $\Rightarrow \mathbf{u}_{i} \Rightarrow$ how strongly the frequencies are expressed by node i \Rightarrow Modulated by $\boldsymbol{\psi} \mathbf{h}_{i} \Rightarrow$ Frequency response associated to i

Perfect reconstruction with node-variant filters

- Node-variant filters can implement a large class of transformations $\Rightarrow \operatorname{Pick} \mathbf{h}^{(I)}$ for $I=0, \cdots, L-1$ so that $\mathbf{B}=\sum_{l=0}^{L-1} \operatorname{diag}\left(\mathbf{h}^{(I)}\right) \mathbf{S}^{\prime}$
$\Rightarrow \mathrm{TH}$: Always possible if \mathbf{V} non-zero and $\left\{\lambda_{k}\right\}$ distinct
- Application in distributed processing: analog network coding $\Rightarrow \mathbf{B}$ is a binary matrix (input-output pairs)
- Example: G undirected, with $N=10, \mathbf{S}=\mathbf{A}$, sources 3 and 6 \Rightarrow Node 3 tx to 1, 4, 6, 7, and 10; node 6 to the remaining ones
\Rightarrow Node invariant unable to implement B

$t=0$

$t=1$

$t=2$

$t=3$

Sampling bandlimited graph signals

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Motivation and preliminaries

- Sampling and interpolation are cornerstone problems in classical SP
\Rightarrow How recover a signal using only a few observations?
\Rightarrow Need to limit the degrees of freedom: subspace, smoothness
- Graph signals: sampling thoroughly investigated
\Rightarrow Most works assume only a few values are observed
\Rightarrow [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]

- Alternative approach [Marques16, Segarra16]
\Rightarrow GSP is well-suited for distributed networking
\Rightarrow Incorporate local graph structure into the observation model
\Rightarrow Recover signal using distributed local graph operators

Sampling bandlimited graph signals: Overview

- Sampling is likely to be most important inverse problem
\Rightarrow How to find $\mathbf{x} \in \mathbb{R}^{N}$ using $P<N$ observations?
- Our focus on bandlimited signals, but other models possible
$\Rightarrow \tilde{\mathbf{x}}=\mathbf{V}^{-1} \mathbf{x}$ sparse
$\Rightarrow \mathbf{x}=\sum_{k \in \mathcal{K}} \tilde{x}_{k} \mathbf{v}_{k}$, with $|\mathcal{K}|=K<N$
$\Rightarrow \mathbf{S}$ involved in generation of \mathbf{x}
\Rightarrow Agnostic to the particular form of \mathbf{S}

- Two sampling schemes were introduced in the literature
\Rightarrow Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]
\Rightarrow Aggregation [Segarra15], [Marques15]
\Rightarrow Hybrid scheme combining both \Rightarrow Space-shift sampling
- More involved, theoretical benefits, practical benefits in distr. setups

Revisiting sampling in time

- There are two ways of interpreting sampling of time signals
- We can either freeze the signal and sample values at different times

- We can fix a point (present) and sample the evolution of the signal

- Both strategies coincide for time signals but not for general graphs \Rightarrow Give rise to selection and aggregation sampling

Selection sampling: Definition

- Intuitive generalization to graph signals

$$
\Rightarrow \mathbf{C} \in\{0,1\}^{P \times N} \text { (matrix } P \text { rows of } \mathbf{I}_{N} \text {) }
$$

\Rightarrow Sampled signal is $\overline{\mathbf{x}}=\mathbf{C x}$

- Goal: recover x based on $\overline{\mathrm{x}}$
\Rightarrow Assume that the support of \mathcal{K} is known (w.l.o.g. $\mathcal{K}=\{k\}_{k=1}^{K}$)
\Rightarrow Since $\tilde{x}_{k}=0$ for $k>K$, define $\tilde{\mathbf{x}}_{K}:=\left[\tilde{x}_{1}, \ldots, \tilde{x}_{K}\right]^{T}=\mathbf{E}_{K}^{T} \tilde{\mathbf{x}}$

- Approach: use $\overline{\mathbf{x}}$ to find $\tilde{\mathbf{x}}_{K}$, and then recover \mathbf{x} as

$$
\mathbf{x}=\mathbf{V}\left(\mathbf{E}_{K} \tilde{\mathbf{x}}_{K}\right)=\left(\mathbf{V E} \mathbf{E}_{K}\right) \tilde{\mathbf{x}}_{K}=\mathbf{V}_{K} \tilde{\mathbf{x}}_{K}
$$

Selection sampling: Recovery

- Number of samples $P \geq K$

$$
\overline{\mathbf{x}}=\mathbf{C} \mathbf{x}=\mathbf{C} \mathbf{V}_{K} \tilde{\mathbf{x}}_{K}
$$

$\Rightarrow\left(\mathbf{C V}_{K}\right)$ submatrix of \mathbf{V}

Recovery of selection sampling
If $\operatorname{rank}\left(\mathbf{C V}_{K}\right) \geq K, \mathbf{x}$ can be recovered from the P values in $\overline{\mathbf{x}}$ as

$$
\mathbf{x}=\mathbf{V}_{K} \tilde{\mathbf{x}}_{K}=\mathbf{V}_{K}\left(\mathbf{C} \mathbf{V}_{K}\right)^{\dagger} \overline{\mathbf{x}}
$$

- With $P=K$, hard to check invertibility (by inspection)
\Rightarrow Columns of $\mathbf{V}_{K}\left(\mathbf{C} \mathbf{V}_{K}\right)^{-1}$ are the interpolators
- In time ($\mathbf{S}=\mathbf{A}_{d c}$), if the samples in \mathbf{C} are equally spaced
$\Rightarrow\left(\mathbf{C V} \mathbf{V}_{K}\right)$ is Vandermonde (DFT) and $\mathbf{V}_{K}\left(\mathbf{C} \mathbf{V}_{K}\right)^{-1}$ are sincs

Aggregation sampling: Definition

- Idea: incorporating \mathbf{S} to the sampling procedure
\Rightarrow Reduces to classical sampling for time signals
- Consider shifted (aggregated) signals $\mathbf{y}^{(1)}=\mathbf{S}^{\prime} \mathbf{x}$
$\Rightarrow \mathbf{y}^{(I)}=\mathbf{S} \mathbf{y}^{(I-1)} \Rightarrow$ found sequentially with only local exchanges
- Form $\mathbf{y}_{i}=\left[y_{i}^{(0)}, y_{i}^{(1)}, \ldots, y_{i}^{(N-1)}\right]^{T}$ (obtained locally by node i)

- The sampled signal is

$$
\overline{\mathbf{y}}_{i}=\mathbf{C y} \mathbf{y}_{i}
$$

- Goal: recover \mathbf{x} based on $\overline{\mathbf{y}}_{i}$

Aggregation sampling: Recovery

- Goal: recover \mathbf{x} based on $\overline{\mathbf{y}}_{i} \Rightarrow$ Same approach than before \Rightarrow Use $\overline{\mathbf{y}}_{i}$ to find $\tilde{\mathbf{x}}_{K}$, and then recover \mathbf{x} as $\mathbf{x}=\mathbf{V}_{K} \tilde{\mathbf{x}}_{K}$
- Define $\overline{\mathbf{u}}_{i}:=\mathbf{V}_{K}^{T} \mathbf{e}_{i}$ and recall $\Psi_{k l}=\lambda_{k}^{I-1}$

Recovery of aggregation sampling

Signal \mathbf{x} can be recovered from the first K samples in $\overline{\mathbf{y}}_{i}$ as

$$
\mathbf{x}=\mathbf{V}_{K} \tilde{\mathbf{x}}_{K}=\mathbf{V}_{K} \operatorname{diag}^{-1}\left(\overline{\mathbf{u}}_{i}\right)\left(\mathbf{C} \boldsymbol{\Psi}^{T} \mathbf{E}_{K}\right)^{-1} \overline{\mathbf{y}}_{i}
$$

provided that $\left[\overline{\mathbf{u}}_{i}\right]_{k} \neq 0$ and all $\left\{\lambda_{k}\right\}_{k=1}^{K}$ are distinct.

- If $\mathbf{C}=\mathbf{E}_{K}^{T}$, node i can recover \mathbf{x} with info from $K-1$ hops!
\Rightarrow Node i has to be able to capture frequencies in \mathcal{K}
\Rightarrow The frequencies have to distinguishable
- Bandlimited signals: Signals that can be well estimated locally

Aggregation and selection sampling: Example

- In time $\left(\mathbf{S}=\mathbf{A}_{d c}\right)$, selection and aggregation are equivalent
\Rightarrow Differences for a more general graph?
- Erdős-Rényi
$p=0.2, \mathbf{S}=\mathbf{A}$,
$K=3$, non-smooth

- First 3 observations at node 4: $\mathbf{y}_{4}=[0.55,1.27,2.94]^{T}$
$\Rightarrow\left[\mathbf{y}_{4}\right]_{1}=x_{4}=-0.55,\left[\mathbf{y}_{4}\right]_{2}=x_{2}+x_{3}+x_{5}+x_{6}+x_{7}=1.27$
\Rightarrow For this example, any node guarantees recovery
\Rightarrow Selection sampling fails if, e.g., $\{1,3,4\}$

Sampling: Discussion and extensions

- Discussion on aggregation sampling
\Rightarrow Observation matrix: diagonal times Vandermonde
\Rightarrow Very appropriate in distributed scenarios
\Rightarrow Different nodes will lead to different performance (soon)
\Rightarrow Types of signals that are actually bandlimited (role of \mathbf{S})
- Three extensions:
\Rightarrow Sampling in the presence of noise
\Rightarrow Unknown frequency support
\Rightarrow Space-shift sampling (hybrid)

Presence of noise

- Linear observation model: $\overline{\mathbf{z}}_{i}=\mathbf{C} \boldsymbol{\Psi}_{i} \tilde{\mathbf{x}}_{K}+\mathbf{C} \mathbf{w}_{i}$ and $\mathbf{x}=\mathbf{V}_{K} \tilde{\mathbf{x}}_{K}$
- BLUE interpolation ($\boldsymbol{\Psi}_{i}$ either selection or aggregation)

$$
\begin{aligned}
& \hat{\tilde{\mathbf{x}}}_{K}^{(i)}=\left[\boldsymbol{\Psi}_{i}^{H} \mathbf{C}^{H}\left(\overline{\mathbf{R}}_{w}^{(i)}\right)^{-1} \mathbf{C} \boldsymbol{\Psi}_{i}\right]^{-1} \boldsymbol{\Psi}_{i}^{H} \mathbf{C}^{H}\left(\overline{\mathbf{R}}_{w}^{(i)}\right)^{-1} \overline{\mathbf{z}}_{i} \\
& \Rightarrow \text { If } P=K \text {, then } \hat{\mathbf{x}}^{(i)}=\mathbf{V}_{K}\left(\mathbf{C} \boldsymbol{\Psi}_{i}\right)^{-1} \overline{\mathbf{z}}_{i}
\end{aligned}
$$

- Error covariances $\left(\mathbf{R}_{e}^{(i)}, \tilde{\mathbf{R}}_{e}^{(i)}\right)$ in closed form \Rightarrow Noise covariances?
\Rightarrow Colored, different models: white noise in \mathbf{z}_{i}, in \mathbf{x}, or in $\tilde{\mathbf{x}}_{K}$
- Metric to optimize?

$$
\Rightarrow \operatorname{trace}\left(\mathbf{R}_{e}^{(i)}\right), \lambda_{\max }\left(\mathbf{R}_{e}^{(i)}\right), \log \operatorname{det}\left(\tilde{\mathbf{R}}_{e}^{(i)}\right),\left[\operatorname{trace}\left(\tilde{\mathbf{R}}_{e}^{(i)^{-1}}\right)\right]^{-1}
$$

- Select i and \mathbf{C} to min. error \Rightarrow Depends on metric and noise [Marques16]

Unknown frequency support

- Falls into the class of sparse reconstruction: observation matrix?
\Rightarrow Selec. \Rightarrow submatrix of unitary $\mathbf{V}_{\mathcal{K}}$
\Rightarrow Aggr. \Rightarrow Vander. \times diag

$$
\left[\mathbf{u}_{i}\right]_{k} \neq 0 \text { and } \lambda_{k} \neq \lambda_{k^{\prime}} \Rightarrow \text { full-spark }
$$

- Joint recovery and support identification (noiseless)

$$
\begin{aligned}
& \tilde{\mathbf{x}}^{*}:= \arg \min _{\tilde{\mathbf{x}}} \quad\|\tilde{\mathbf{x}}\|_{0} \\
& \text { s.t. } \quad \mathbf{C y}_{i}=\mathbf{C} \Psi_{i} \tilde{\mathbf{x}},
\end{aligned}
$$

- If full spark $\Rightarrow P=2 K$ samples suffice
\Rightarrow Different relaxations are possible
\Rightarrow Conditioning will depend on $\boldsymbol{\Psi}_{i}$ (e.g., how different $\left\{\lambda_{k}\right\}$ are)
- Noisy case: sampling nodes critical

Recovery with unknown support: Example

- Erdős-Rényi

$$
p=0.15,0.20,0.25
$$

$K=3$, non-smooth

- Three different shifts: $\mathbf{A},(\mathbf{I}-\mathbf{A})$ and $\frac{1}{2} \mathbf{A}^{2}$

Space-shift sampling

- Space-shift sampling (hybrid) \Rightarrow Multiple nodes and multiple shifts

Selection: 4 nodes, 1 sample

Space-shift: 2 nodes, 2 samples

Aggregat.: 1 node, 4 samples

- Section and aggregation sampling as particular cases
- With $\overline{\mathbf{U}}:=\left[\operatorname{diag}\left(\overline{\mathbf{u}}_{1}\right), \ldots, \operatorname{diag}\left(\overline{\mathbf{u}}_{N}\right)\right]^{T}$, the sampled signal is

$$
\underline{\underline{\mathbf{z}}}=\mathbf{C}\left(\mathbf{I} \otimes\left(\boldsymbol{\Psi}^{T} \mathbf{E}_{K}\right)\right) \overline{\mathbf{U}}_{\tilde{\mathbf{x}}}^{K}+\mathbf{C} \underline{\mathbf{w}}
$$

- As before, BLUE and error covariance in close-form
- Optimizing sample selection more challenging
- More structured schemes easier: e.g., message passing
\Rightarrow Node i knows $y_{i}^{(I)} \Rightarrow$ node i knows $y_{j}^{\left(I^{\prime}\right)}$ for all $j \in \mathcal{N}_{i}$ and $I^{\prime}<I$

Sampling the US economy

- 62 economic sectors in USA +2 artificial sectors
\Rightarrow Graph: average flows in 2007-2010, $\mathbf{S}=\mathbf{A}$
\Rightarrow Signal x: production in 2011
$\Rightarrow \mathbf{x}$ is approximately bandlimited with $K=4$

Sampling the US economy: Results

- Setup 1: we add different types of noise
\Rightarrow Error depends on sampling node: better if more connected

- Setup 2: we try different shift-space strategies

	Sampling strategy			Min. error	Median error
$[\mathbf{x}]_{i}$	$[\mathbf{S x}]_{i}$	$\left[\mathbf{S}^{\mathbf{2}} \mathbf{x}\right]_{i}$	$\left[\mathbf{S}^{\mathbf{3}} \mathbf{x}\right]_{i}$.0035	.019
$[\mathbf{x}]_{i}$	$[\mathbf{x}]_{j}$	$[\mathbf{x}]_{k}$	$[\mathbf{x}]_{l}$.0039	4.2
$[\mathbf{S x}]_{i}$	$[\mathbf{S x}]_{j}$	$[\mathbf{S x}]_{k}$	$[\mathbf{S x}]_{l}$.0035	.030
$\left[\mathbf{S}^{\mathbf{2}} \mathbf{x}\right]_{i}$	$\left[\mathbf{S}^{\mathbf{2}} \mathbf{x}\right]_{j}$	$\left[\mathbf{S}^{\mathbf{2}} \mathbf{x}\right]_{k}$	$\left[\mathbf{S}^{2} \mathbf{x}\right]_{l}$.0035	.0055
$\left[\mathbf{S}^{\mathbf{3}} \mathbf{x}\right]_{i}$	$\left[\mathbf{S}^{\mathbf{3}} \mathbf{x}\right]_{j}$	$\left[\mathbf{S}^{\mathbf{3}} \mathbf{x}\right]_{k}$	$\left[\mathbf{S}^{\mathbf{3}} \mathbf{x}\right]_{l}$.0035	.0040
$[\mathbf{x}]_{i}$	$[\mathbf{S x}]_{i}$	$[\mathbf{x}]_{j}$	$[\mathbf{S x}]_{j}$.0035	.039

More on sampling graph signals

- Beyond bandlimitedness
\Rightarrow Smooth signals [Chen15]
\Rightarrow Parsimonious in kernelized domain [Romero-Giannakis16]
- Strategies to select the sampling nodes
\Rightarrow Random (sketching) [Varma15]
\Rightarrow Optimal reconstruction [Marques16, Chepuri-Leus16]
\Rightarrow Designed based on posterior task [Gama16]
- And more...
\Rightarrow Low-complexity implementations [Tremblay16, Anis16]
\Rightarrow Local implementations [Wang14, Segarra15]
\Rightarrow Unknown spectral decomposition [Anis16]

Blind identification of graph filters

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Diffusion processes as graph filter outputs

- Q: Upon observing a graph signal \mathbf{y}, how was this signal generated?
- Postulate the following generative model
\Rightarrow An originally sparse signal $x=\mathbf{x}^{(0)}$
\Rightarrow Diffused via linear graph dynamics $\mathbf{S} \Rightarrow \mathbf{x}^{(I)}=\mathbf{S} \mathbf{x}^{(I-1)}$
\Rightarrow Observed \mathbf{y} is a linear combination of the diffused signals $\mathbf{x}^{(1)}$

$$
\mathbf{y}=\sum_{l=0}^{L} h_{l} \mathbf{x}^{(l)}=\sum_{l=0}^{L} h_{l} \mathbf{S}^{\prime} \mathrm{x}=\mathrm{H} \mathbf{x}
$$

- Model: Observed network process as output of a graph filter \Rightarrow View few elements in $\operatorname{supp}(\mathrm{x})=:\left\{i: x_{i} \neq 0\right\}$ as seeds

Motivation and problem statement

- Ex: Global opinion/belief profile formed by spreading a rumor
\Rightarrow What was the rumor? Who started it?
\Rightarrow How do people weigh in peers' opinions to form their own?

- Problem: Blind identification of graph filters with sparse inputs
- Q: Given S, can we find x and the combination weights h from $y=H x$?
\Rightarrow Extends classical blind deconvolution to graphs

Blind graph filter identification

- Leverage frequency response of graph filters ($\mathbf{U}:=\mathbf{V}^{-1}$)

$$
\mathbf{y}=\mathbf{H x} \Rightarrow \mathbf{y}=\mathbf{V} \operatorname{diag}(\boldsymbol{\Psi} \mathbf{h}) \mathbf{U} \mathbf{x}
$$

$\Rightarrow \mathbf{y}$ is a bilinear function of the unknowns \mathbf{h} and \mathbf{x}

- Problem is ill-posed $\Rightarrow(L+1)+N$ unknowns and N observations
\Rightarrow As.: x is S-sparse i.e., $\|\mathbf{x}\|_{0}:=|\operatorname{supp}(\mathbf{x})| \leq S$
- Blind graph filter identification \Rightarrow Non-convex feasibility problem

$$
\text { find }\{\mathbf{h}, \mathbf{x}\}, \quad \text { s. to } \mathbf{y}=\mathbf{V} \operatorname{diag}(\boldsymbol{\Psi} \mathbf{h}) \mathbf{U} \mathbf{x},\|\mathbf{x}\|_{0} \leq S
$$

"Lifting" the bilinear inverse problem

- Key observation: Use the Khatri-Rao product \odot to write \mathbf{y} as

$$
\mathbf{y}=\mathbf{V}\left(\Psi^{T} \odot \mathbf{U}^{T}\right)^{T} \operatorname{vec}\left(\mathbf{x h}^{T}\right)
$$

- Reveals \mathbf{y} is a linear combination of the entries of $\mathbf{Z}:=\mathbf{x h}^{\top}$

- Z is of rank- 1 and row-sparse \Rightarrow Linear matrix inverse problem

$$
\min _{\mathbf{Z}} \operatorname{rank}(\mathbf{Z}), \quad \text { s. to } \mathbf{y}=\mathbf{V}\left(\boldsymbol{\Psi}^{T} \odot \mathbf{U}^{T}\right)^{T} \operatorname{vec}(\mathbf{Z}), \quad\|\mathbf{Z}\|_{2,0} \leq S
$$

\Rightarrow Pseudo-norm \|Z $\|_{2,0}$ counts the nonzero rows of \mathbf{Z}
\Rightarrow Matrix "lifting" for blind deconvolution [Ahmed etal'14]

- Rank minimization s. to row-cardinality constraint is NP-hard. Relax!

Algorithmic approach via convex relaxation

- Key property: ℓ_{1}-norm minimization promotes sparsity [Tibshirani'94]
- Nuclear norm $\|\mathbf{Z}\|_{*}:=\sum_{i} \sigma_{i}(\mathbf{Z})$ a convex proxy of rank [Fazel'01]
- $\ell_{2,1}$ norm $\|Z\|_{2,1}:=\sum_{i}\left\|\mathbf{z}_{i}^{T}\right\|_{2}$ surrogate of $\|\mathbf{Z}\|_{2,0}$ [Yuan-Lin'06]
- Convex relaxation

$$
\min _{\mathbf{Z}}\|\mathbf{Z}\|_{*}+\alpha\|\mathbf{Z}\|_{2,1}, \quad \text { s. to } \mathbf{y}=\mathbf{V}\left(\boldsymbol{\Psi}^{T} \odot \mathbf{U}^{T}\right)^{T} \operatorname{vec}(\mathbf{Z})
$$

\Rightarrow Scalable algorithm using method of multipliers

- Refine estimates $\{\mathbf{h}, \mathbf{x}\}$ via iteratively-reweighted optimization
\Rightarrow Weights $\alpha_{i}(k)=\left(\left\|\mathbf{z}_{i}(k)^{T}\right\|_{2}+\delta\right)^{-1}$ per row i, per iteration k
- Noisy and partial observations \Rightarrow Adjust constraints
- Noise in $\mathbf{y}:\left\|\mathbf{y}-\mathbf{V}\left(\boldsymbol{\Psi}^{T} \odot \mathbf{U}^{T}\right)^{T} \operatorname{vec}(\mathbf{Z})\right\| \leq \varepsilon$
- Sampling via selection matrix $\mathbf{C}: \mathbf{y}_{C}=\mathbf{C V}\left(\boldsymbol{\Psi}^{T} \odot \mathbf{U}^{T}\right)^{T} \operatorname{vec}(Z)$

Exact recovery guarantees

- Exact recovery \Rightarrow Success of the convex relaxation
- Random model on the graph structure [Ling-Stromher'15]
- Probabilistic guarantees depend on graph spectrum

$$
P_{\mathrm{rec}} \geq 1-N^{-O\left(\rho_{\mathbf{u}}^{-1}(S)\right)}, \quad \rho_{\mathbf{u}}(S):=\max _{I \in\{1, \ldots, N\}} \max _{\Omega \in \Omega_{S}^{N}}\left\|\mathbf{u}_{l, \Omega}\right\|_{2}^{2}
$$

- Blind deconvolution (in time) most favorable graph setting

Numerical tests: Recovery rates

- Recovery rates over an (L, S) grid and 20 trials
- Successful recovery when $\left\|\mathbf{x}^{*}\left(\mathbf{h}^{*}\right)^{T}-\mathbf{x h}^{T}\right\|_{\mathrm{F}}<10^{-3}$
- ER (left), ER reweighted $\ell_{2,1}$ (center), brain reweighted $\ell_{2,1}$ (right)

- Exact recovery over non-trivial (L, S) region
\Rightarrow Reweighted optimization markedly improves performance
\Rightarrow Encouraging results even for real-world graphs

Numerical tests: Brain graph

- Human brain graph with $N=66$ regions, $L=3$ and $S=3$

- Proposed method also outperforms alternating-minimization solver
\Rightarrow Unknown $\operatorname{supp}(\mathbf{x}) \approx$ Need twice as many observations
\Rightarrow Stable to Gaussian noise in $\mathbf{y}\left(\sigma^{2}=0.01\right)$

Multiple output signals

- Suppose we have access to P output signals $\left\{\mathbf{y}_{p}\right\}_{p=1}^{P}$

- Goal: Identify common filter \mathbf{H} fed by multiple unobserved inputs x_{p}

Formulation

- As.: $\left\{\mathrm{x}_{p}\right\}_{p=1}^{P}$ are S-sparse with common support
- Concatenate outputs $\overline{\mathbf{y}}:=\left[\mathbf{y}_{1}^{T}, \ldots, \mathbf{y}_{P}^{T}\right]^{T}$ and inputs $\overline{\mathrm{x}}:=\left[\mathrm{x}_{1}^{T}, \ldots, \mathrm{x}_{P}^{T}\right]^{T}$
- Unknown rank-one matrices $Z_{p}:=x_{p} \mathbf{h}^{T}$. Stack them
\Rightarrow Vertically in rank one $\overline{\mathbf{Z}}_{v}:=\left[\mathbf{Z}_{1}^{T}, \ldots, \mathbf{Z}_{P}^{T}\right]^{T}=\overline{\mathrm{x}} \mathrm{h}^{T} \in \mathbb{R}^{N P \times L}$
\Rightarrow Horizontally in row sparse $\overline{\mathbf{Z}}_{h}:=\left[\mathbf{Z}_{1}, \ldots, \mathrm{Z}_{P}\right] \in \mathbb{R}^{N \times P L}$
- Convex formulation

$$
\begin{aligned}
& \min _{\left\{\mathbf{Z}_{p}\right\}_{p=1}^{P}}\left\|\overline{\mathbf{Z}}_{v}\right\|_{*}+\tau\left\|\overline{\mathbf{Z}}_{h}\right\|_{2,1}, \quad \text { s. to } \overline{\mathbf{y}}=\left(\mathbf{I}_{P} \otimes\left(\mathbf{V}\left(\Psi^{T} \odot \mathbf{U}^{T}\right)^{T}\right)\right) \operatorname{vec}\left(\overline{\mathbf{Z}}_{h}\right) \\
& \Rightarrow \operatorname{Relax}(\mathbf{A s .}):\left\|\overline{\mathbf{Z}}_{h}\right\|_{2,1} \leftrightarrow\left\|\overline{\mathbf{Z}}_{v}\right\|_{2,1}=\sum_{p=1}^{P}\left\|\mathbf{Z}_{p}\right\|_{2,1}
\end{aligned}
$$

Numerical tests: Multiple signals, recovery rates

- Recovery rates over an (L, S) grid and 20 trials
- Successful recovery when $\left\|\hat{\overline{\mathbf{x}}} \hat{\mathbf{h}}^{T}-\overline{\mathbf{x}} \mathbf{h}^{T}\right\|_{\mathrm{F}}<10^{-3}$
- ER (left), ER reweighted $\ell_{2,1}$ (center), brain reweighted $\ell_{2,1}$ (right)

- Leveraging multiple output signals aids the blind identification task

Blind ID: Takeaways

- Extended blind deconvolution of space/time signals to graphs
\Rightarrow Key: model diffusion process as output of graph filter
- Rank and sparsity minimization subject to model constraints
\Rightarrow "Lifting" and convex relaxation yield efficient algorithms
- Exact recovery conditions \Rightarrow Success of the convex relaxation \Rightarrow Probabilistic guarantees that depend on the graph spectrum
- Consideration of multiple sparse inputs aids recovery
- Envisioned application domains
(a) Opinion formation in social networks
(b) Identify sources of epileptic seizure
(c) Trace "patient zero" for an epidemic outbreak
- Unknown shift S \Rightarrow Network topology inference

Network topology inference

Motivation and preliminaries
Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Motivation and context

- Network topology inference from nodal observations
\Rightarrow Approaches use Pearson correlations to construct graphs
\Rightarrow Partial correlations and conditional dependence
- Paramount importance in neuroscience
\Rightarrow Functional net inferred from activity

- Most GSP works assume that \mathbf{S} (hence the graph) is known
\Rightarrow Analyze how the characteristics of \mathbf{S} affect signals and filters
- We take the reverse path
\Rightarrow How to use GSP to infer the graph topology?
\Rightarrow [Dong15, Mei15, Pavez16, Pasdeloup16]

Generating structure of a diffusion process

- Signal \mathbf{x} is the response of a linear diffusion process to a white input

$$
\mathbf{x}=\alpha_{0} \prod_{l=1}^{\infty}\left(\mathbf{I}-\alpha_{l} \mathbf{S}\right) \mathbf{w}=\sum_{l=0}^{\infty} \beta_{l} \mathbf{S}^{\prime} \mathbf{w}
$$

\Rightarrow Common generative model. Heat diffusion if α_{k} constant

- We say the graph shift \mathbf{S} explains the structure of signal x
- It follows from Cayley Hamilton that we can write diffusion as

$$
\mathbf{x}=\left(\sum_{l=0}^{N-1} h_{l} \mathbf{S}^{\prime}\right) \mathbf{w}:=\mathbf{H} \mathbf{w}
$$

$\Rightarrow \mathbf{H}$ diagonalized by the eigenvectors of the shift operator

Our approach for topology inference

- We propose a two-step approach for graph topology identification

- Beyond diffusion \Rightarrow alternative sources for spectral templates \mathbf{V}

STEP 1: Obtaining the eigenvectors

- The covariance matrix of the signal \mathbf{x} is

$$
\mathbf{C}_{x}=\mathbb{E}\left[\left(\mathbf{H} \mathbf{w}(\mathbf{H} \mathbf{w})^{H}\right)\right]=\mathbf{H} \mathbb{E}\left[\left(\mathbf{w} \mathbf{w}^{H}\right)\right] \mathbf{H}^{H}=\mathbf{H} \mathbf{H}^{H}
$$

- Since \mathbf{H} is diagonalized by \mathbf{V}, so is the covariance \mathbf{C}_{x}

$$
\mathbf{C}_{x}=\mathbf{V}\left|\sum_{l=0}^{L-1} h_{l} \boldsymbol{\Lambda}^{\prime}\right|^{2} \mathbf{V}^{H}=\mathbf{V} \operatorname{diag}\left(|\tilde{\mathbf{h}}|^{2}\right) \mathbf{V}^{H}
$$

- Any shift with eigenvectors \mathbf{V} can explain \mathbf{x}
$\Rightarrow \mathrm{G}$ and its specific eigenvalues have been obscured by diffusion
Observations
(a) There are many shifts that can explain a signal \mathbf{x}
(b) Identifying the shift \mathbf{S} is just a matter of identifying the eigenvalues
(c) In correlation methods the eigenvalues are kept unchanged
(d) In precision methods the eigenvalues are inverted

Other sources of spectral templates

1) Implementation of linear network operators

- Goal: distributed implementation of linear operator B via graph filter $\Rightarrow \mathbf{B}$ and \mathbf{S} sharing \mathbf{V} is beneficial for implementation
- Given a pre-specified B
\Rightarrow Use its eigenvectors as spectral templates to generate a shift S
\Rightarrow The goal here not to identify a shift, but to design one
Ex.: consensus \Rightarrow Laplacian of the smallest connected graph

2) Relationship between nodes of a signal

- Particular transforms T are known to work well on specific data
\Rightarrow Such transform assumes an implicit relation among data $\Rightarrow \mathbf{S}$
\Rightarrow Identification of that relation can provide insights $\mathbf{V}^{H}=\mathbf{T}$

DCTs: i-iii

STEP 2: Obtaining the eigenvalues

- We can use extra knowledge/assumptions to choose one graph
\Rightarrow Of all graphs, select one that is optimal in some sense

$$
\begin{equation*}
\mathbf{S}^{*}:=\underset{\mathbf{s}, \boldsymbol{\lambda}}{\operatorname{argmin}} f(\mathbf{S}, \boldsymbol{\lambda}) \quad \text { s. to } \quad \mathbf{S}=\sum_{k=1}^{N} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{H}, \mathbf{S} \in \mathcal{S} \tag{1}
\end{equation*}
$$

- Set \mathcal{S} contains all admissible scaled adjacency matrices

$$
\mathcal{S}:=\left\{\mathbf{S} \mid S_{i j} \geq 0, \quad \mathbf{S} \in \mathcal{M}^{N}, S_{i i}=0, \quad \sum_{j} S_{1 j}=1\right\}
$$

\Rightarrow Can accommodate Laplacian matrices as well

- Problem is convex if we select a convex objective $f(\mathbf{S}, \boldsymbol{\lambda})$
\Rightarrow Minimum energy $\left(f(\mathbf{S})=\|\mathbf{S}\|_{F}\right)$, Fast mixing $\left(f(\boldsymbol{\lambda})=-\lambda_{2}\right)$

Size of the feasibility set

- The feasibility set in (1) is generally small
\Rightarrow Define $\mathbf{W}:=\mathbf{V} \odot \mathbf{V}$ where \odot is the Khatri-Rao product
\Rightarrow Denote by \mathcal{D} the index set such that $\operatorname{vec}(\mathbf{S})_{\mathcal{D}}=\operatorname{diag}(\mathbf{S})$

Assume that (1) is feasible, then it holds that $\operatorname{rank}\left(\mathbf{W}_{\mathcal{D}}\right) \leq N-1$. If $\operatorname{rank}\left(\mathrm{W}_{\mathcal{D}}\right)=N-1$, then the feasible set of (1) is a singleton.

- Convex feasibility set \Rightarrow Search for the optimal solution may be easy
- Simulations will show that $\operatorname{rank}\left(\mathbf{W}_{\mathcal{D}}\right)=N-1$ arises in practice

Sparse recovery

- Whenever the feasibility set of (1) is non-trivial
$\Rightarrow f(\mathbf{S}, \boldsymbol{\lambda})$ determines the features of the recovered graph
Ex: Identify the sparsest shift \mathbf{S}_{0}^{*} that explains observed signal structure \Rightarrow Set the cost $f(\mathbf{S}, \boldsymbol{\lambda})=\|\mathbf{S}\|_{0}$
- Problem is not convex, but can relax to ℓ_{1} norm minimization

$$
\mathbf{S}_{1}^{*}:=\underset{\mathbf{s}, \boldsymbol{\lambda}}{\operatorname{argmin}}\|\mathbf{S}\|_{1} \quad \text { s. to } \quad \mathbf{S}=\sum_{k=1}^{N} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{H}, \mathbf{S} \in \mathcal{S}
$$

- Does the solution \mathbf{S}_{1}^{*} coincide with the ℓ_{0} solution \mathbf{S}_{0}^{*} ?

Recovery guarantee

- Denoting by \mathbf{m}_{i}^{T} the i-th row of $\mathbf{M}:=\left(\mathbf{I}-\mathbf{W} \mathbf{W}^{\dagger}\right)_{\mathcal{D}^{c}}$
\Rightarrow Construct R:= $\left[\mathbf{m}_{2}-\mathbf{m}_{1}, \ldots, \mathbf{m}_{N-1}-\mathbf{m}_{1}, \mathbf{m}_{N}, \ldots, \mathbf{m}_{\left|\mathcal{D}^{c}\right|}\right]^{T}$
\Rightarrow Denote by \mathcal{K} the indices of the support of $\mathrm{s}_{0}^{*}=\operatorname{vec}\left(\mathbf{S}_{0}^{*}\right)$
\mathbf{S}_{1}^{*} and \mathbf{S}_{0}^{*} coincide if the two following conditions are satisfied:

1) $\operatorname{rank}\left(\mathrm{R}_{\mathcal{K}}\right)=|\mathcal{K}|$; and
2) There exists a constant $\delta>0$ such that

$$
\psi_{\mathbf{R}}:=\left\|\mathbf{I}_{\mathcal{K}^{c}}\left(\delta^{-2} \mathbf{R} \mathbf{R}^{T}+\mathbf{I}_{\mathcal{K}^{c}}^{T} \mathbf{I}_{\mathcal{K}^{c}}\right)^{-1} \mathbf{I}_{\mathcal{K}}^{T}\right\|_{\infty}<1 .
$$

- Cond. 1) ensures uniqueness of solution \mathbf{S}_{1}^{*}
- Cond. 2) guarantees existence of a dual certificate for ℓ_{0} optimality

Noisy and incomplete spectral templates

- We might have access to $\hat{\mathbf{V}}$, a noisy version of the spectral templates
\Rightarrow With $d(\cdot, \cdot)$ denoting a (convex) distance between matrices

$$
\min _{\{\mathbf{S}, \lambda, \hat{\mathbf{S}}\}}\|\mathbf{S}\|_{1} \quad \text { s. to } \hat{\mathbf{S}}=\sum_{k=1}^{N} \lambda_{k} \hat{\mathbf{v}}_{k} \hat{\mathbf{v}}_{k}^{T}, \quad \mathbf{S} \in \mathcal{S}, \quad d(\mathbf{S}, \hat{\mathbf{S}}) \leq \epsilon
$$

- Recovery result similar to the noiseless case can be derived \Rightarrow Conditions under which we are guaranteed $d\left(\mathbf{S}^{*}, \mathbf{S}_{0}^{*}\right) \leq C \epsilon$
- Partial access to $\mathrm{V} \Rightarrow$ Only K known eigenvectors $\left[v_{1}, \ldots, v_{K}\right.$]

$$
\min _{\left\{\mathbf{S}, \mathbf{S}_{\bar{K}}, \boldsymbol{\lambda}\right\}}\|\mathbf{S}\|_{1} \text { s. to } \mathbf{S}=\mathbf{S}_{\bar{K}}+\sum_{k=1}^{K} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}, \mathbf{S} \in \mathcal{S}, \quad \mathbf{S}_{\bar{K}} \mathbf{v}_{k}=\mathbf{0}
$$

- Incomplete and noisy scenarios can be combined

Topology inference in random graphs

- Erdős-Rényi graphs of varying size $N \in\{10,20, \ldots, 50\}$
\Rightarrow Edge probabilities $p \in\{0.1,0.2, \ldots, 0.9\}$
- Recovery rates for adjacency (left) and normalized Laplacian (mid)

- Recovery is easier for intermediate values of p
- Rate of recovery related to the $\operatorname{rank}\left(\mathbf{W}_{\mathcal{D}}\right)$ (histogram $N=10, p=0.2$)
\Rightarrow When rank is $N-1$, recovery is guaranteed
\Rightarrow As rank decreases, there is a detrimental effect on recovery

Sparse recovery guarantee

- Generate 1000 ER random graphs ($N=20, p=0.1$) such that \Rightarrow Feasible set is not a singleton
\Rightarrow Cond. 1) in sparse recovery theorem is satisfied
- Noiseless case: ℓ_{1} norm guarantees recovery as long as $\psi_{\mathbf{R}}<1$

- Condition is sufficient but not necessary
\Rightarrow Tightest possible bound on this matrix norm

Inferring brain graphs from noisy templates

- Identification of structural brain graphs $N=66$
- Test recovery for noisy spectral templates $\hat{\mathbf{V}}$
\Rightarrow Obtained from sample covariances of diffused signals

- Recovery error decreases with increasing number of observed signals
\Rightarrow More reliable estimate of the covariance \Rightarrow Less noisy $\hat{\mathbf{V}}$
- Brain of patient 1 is consistently the hardest to identify
\Rightarrow Robustness for identification in noisy scenarios
- Traditional methods like graphical lasso fail to recover S

Inferring social graphs from incomplete templates

- Identification of multiple social networks $N=32$
\Rightarrow Defined on the same node set of students from Ljubljana
- Test recovery for incomplete spectral templates $\hat{\mathbf{V}}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{K}\right]$
\Rightarrow Obtained from a low-pass diffusion process
\Rightarrow Repeated eigenvalues in $\mathbf{C}_{\mathbf{x}}$ introduce rotation ambiguity in \mathbf{V}

- Recovery error decreases with increasing nr. of spectral templates
\Rightarrow Performance improvement is sharp and precipitous

Performance comparisons

- Comparison with graphical lasso and sparse correlation methods
- Evaluated on 100 realizations of ER graphs with $N=20$ and $p=0.2$

- Graphical lasso implicitly assumes a filter $\mathbf{H}_{1}=(\rho \mathbf{I}+\mathbf{S})^{-1 / 2}$
\Rightarrow For this filter spectral templates work, but not as well (MLE)
- For general diffusion filters \mathbf{H}_{2} spectral templates still work fine

Inferring direct relations

- Our method can be used to sparsify a given network
- Keep direct and important edges or relations
\Rightarrow Discard indirect relations that can be explained by direct ones
- Use eigenvectors \hat{V} of given network as noisy templates
- Infer contact between amino-acid residues in BPT1 BOVIN
\Rightarrow Use mutual information of amino-acid covariation as input

Ground truth

Mutual info.

Network deconv.

Our approach

- Network deconvolution assumes a specific filter model [Feizi13]
\Rightarrow We achieve better performance by being agnostic to this

Topology ID: Takeaways

- Network topology inference cornerstone problem in Network Science
- Most GSP works analyze how \mathbf{S} affect signals and filters
- Here, reverse path: How to use GSP to infer the graph topology?
- Our GSP approach to network topology inference
\Rightarrow Two step approach: i) Obtain \mathbf{V}; ii) Estimate \mathbf{S} given \mathbf{V}
- How to obtain the spectral templates \mathbf{V}
\Rightarrow Based on covariance of diffused signals
\Rightarrow Other sources too: net operators, data transforms
- Infer S via convex optimization
\Rightarrow Objectives promotes desirable properties
\Rightarrow Constraints encode structure a priori info and structure
\Rightarrow Formulations for perfect and imperfect templates
\Rightarrow Sparse recovery results for both adjacency and Laplacian

Wrapping up

Motivation and preliminaries

Part I: Fundamentals
Graph signals and the shift operator
Graph Fourier Transform (GFT)
Graph filters and network processes
Part II: Applications
Filter design for network operators
Sampling graph signals Blind identification of graph filters
Network topology inference
Concluding remarks

Concluding remarks

- Network science and big data pose new challenges
\Rightarrow GSP can contribute to solve some of those challenges
\Rightarrow Well suited for network (diffusion) processes
- Central elements in GSP: graph-shift operator and Fourier transform
- Graph filters: operate graph signals
\Rightarrow Polynomials of the shift operator that can be implemented locally
- Network diffusion/percolations processes via graph filters
\Rightarrow Successive/parallel combination of local linear dynamics
\Rightarrow Possibly time-varying diffusion coefficients
\Rightarrow Accurate to model certain setups
\Rightarrow GSP yields insights on how those processes behave

Concluding remarks

- GSP results can be applied to solve practical problems
\Rightarrow Filter design (design of distributed operators)
\Rightarrow Sampling, interpolation (network control)
\Rightarrow Blind deconvolution (source ID), shift design (network topology ID)

Interpolate a brain signal from local observations

Smooth an observed network profile

Compress a signal in
an irregular domain

Predict the evolution of a network process

Localize the source of a rumor

Infer the topology where the signals reside

Looking ahead

- First step to challenging problems: social nets, brain signals
- Motivates further research:
\Rightarrow Statistical modeling
\Rightarrow Space-time variation
\Rightarrow Changing topologies
\Rightarrow Nonlinear approaches
\Rightarrow Local, reduced-complexity algorithms
- Thanks!
\Rightarrow Contact: antonio.garcia.marques@urjc.es gmateosb@ece.rochester.edu ssegarra@seas.upenn.edu aribeiro@seas.upenn.edu
\Rightarrow Slides on stationarity available at:
http://tsc.urjc.es/~amarques/papers/ssamglar_sam16_slides.pdf

References

We include a list of our published work in graph signal processing (GSP) categorized by topic. We also include relevant works by other authors. This latter list is not intended to be exhaustive but rather its purpose is to guide the interested reader to pertinent publications in different areas of graph signal processing.

References: our work

Sampling bandlimited graph signals

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Sampling of Graph Signals with Successive Local Aggregations", IEEE Trans. on Signal Process., vol. 64, no. 7, pp. 1832-1843, Apr. 2016.
S. Segarra, A. G. Marques, G. Leus and A. Ribeiro, "Space-shift sampling of graph signals", Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal Process., Shanghai, China, March 20-25, 2016.
S. Segarra, A. G. Marques, G. Leus and A. Ribeiro, "Aggregation Sampling of Graph Signals in the Presence of Noise", Proc. of IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, Dec. 13-16, 2015.
S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, "Sampling of Graph Signals: Successive Local Aggregations at a Single Node", Proc. of 49th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 8-11, 2015.
F. Gama, A. G. Marques, G. Mateos, and A. Ribeiro, "Rethinking Sketching as Sampling: Efficient Approximate Solution to Linear Inverse Problems", Proc. of IEEE of Global Conf. on Signal and Info. Process., Washington DC, Dec. 7-9, 2016.
F. Gama, A. G. Marques, G. Mateos, and A. Ribeiro, "Rethinking Sketching as Sampling: Linear Transforms of Graph Signals", Proc. of 50th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 6-9, 2016.

References: our work

Interpolating graph signals

S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, "Reconstruction of Graph Signals: Percolation from a Single Seeding Node", Proc. of IEEE of Global Conf. on Signal and Info. Process., Orlando, FL, Dec. 14-16, 2015.
S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, "Interpolation of Graph Signals Using Shift-Invariant Graph Filters", Proc. of European Signal Process. Conf., Nice, France, Aug. 31-Sep. 4, 2015.
S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, "Reconstruction of Graph Signals through Percolation from Seeding Nodes", IEEE Trans. on Signal Process., vol. 64, no. 16, pp. 4363 4378, Aug. 2016.

Graph filter design and network operators

S. Segarra, A. G. Marques, and A. Ribeiro, "Distributed Implementation of Network Linear Operators using Graph Filters", Proc. of 53rd Allerton Conf. on Commun. Control and Computing, Univ. of Illinois at U-C, Monticello, IL, Sept. 30- Oct. 2, 2015.
S. Segarra, A. G. Marques, and A. Ribeiro, "Distributed Network Linear Operators using Node Variant Graph Filters", Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal Process., Shanghai, China, March 20-25, 2016.

References: our work

Blind graph deconvolution

S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, "Blind Identification of Graph Filters with Sparse Inputs: Unknown support", Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal Process., Shanghai, China, March 20-25, 2016.
S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, "Blind Identification of Graph Filters with Sparse Inputs", Proc. of IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, Dec. 13-16, 2015.
S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, "Blind Identification of Graph Filters", IEEE Trans. Signal Process. (arXiv:1604.07234 [cs.IT])

GSP-Based Network Topology Inference

S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, "Network Topology Identification from Imperfect Spectral Templates", Proc. of 50th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 6-9, 2016.
S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, "Network Topology Identification from Spectral Templates", Proc. of IEEE Intl. Wrksp. on Statistical Signal Process., Palma de Mallorca, Spain, June 26-29, 2016.
S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, "Network Topology Inference from Spectral Templates", IEEE Trans. Signal Process., (submitted).

References: our work

Stationary Graph Processes

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary Graph Processes and Spectral Estimation", IEEE Trans. Signal Process. (arXiv:1603.04667 [cs.SY])
S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, "Stationary Graph Processes: Nonparametric Power Spectral Estimation ", Proc. of IEEE Sensor Array and Multichannel Signal Process.
Wrksp., Rio de Janeiro, Brazil, July 10-13, 2016.

Median Graph Filters

S. Segarra, A. Marques, G. Arce, and Alejandro Ribeiro, "Center-weighted Median Graph Filters", Proc. of IEEE of Global Conf. on Signal and Info. Process., Washington DC, Dec. 7-9, 2016.

References: GSP

General references

D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending highdimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, Mar. 2013.
A. Sandryhaila and J. Moura, Discrete signal processing on graphs, IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644-1656, Apr. 2013.
A. Sandryhaila and J. Moura, Discrete signal processing on graphs: Frequency analysis, IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042-3054, June 2014.
A. Sandryhaila and J. M. F. Moura, Big Data analysis with signal processing on graphs, IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80-90, 2014.
M. Rabbat and V. Gripon, Towards a spectral characterization of signals supported on small-world networks, in IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), May 2014, pp. 4793-4797.
A. Agaskar, Y.M. Lu, A spectral graph uncertainty principle, IEEE Trans. Info. Theory, vol. 59, no. 7, pp. 4338-4356, 2013.

References: GSP

Filtering

D. I. Shuman, P. Vandergheynst, and P. Frossard, Distributed signal processing via Chebyshev polynomial approximation, CoRR, vol. abs/1111.5239, 2011.
S. Safavi and U. Khan, Revisiting finite-time distributed algorithms via successive nulling of eigenvalues, IEEE Signal Process. Lett., vol. 22, no. 1, pp. 54-57, Jan. 2015.

Sampling

A. Anis, A. Gadde, and A. Ortega, Towards a sampling theorem for signals on arbitrary graphs, in IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), May 2014, pp. 3864-3868.
I. Shomorony and A. S. Avestimehr, Sampling large data on graphs, arXiv preprint arXiv:1411.3017, 2014.
S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, Discrete signal processing on graphs: Sampling theory, IEEE. Trans. Signal Process., vol. 63, no. 24, pp. 6510-6523, Dec. 2015.
M. Tsitsvero, Mikhail, S. Barbarossa, and P. Di Lorenzo. Signals on graphs: Uncertainty principle and sampling, arXiv preprint arXiv:1507.08822, 2015.

References: GSP

Interpolation and Reconstruction

S. Narang, A. Gadde, and A. Ortega, Signal processing techniques for interpolation in graph structured data, in IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), May 2013, pp. 5445-5449.
S. Narang, A. Gadde, E. Sanou, and A. Ortega, Localized iterative methods for interpolation in graph structured data, in Global Conf. on Signal and Info. Process. (GlobalSIP), Dec. 2013, pp. 491-494.
S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, Signal recovery on graphs: Variation on Graphs, IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4609-4624, Sep. 2015.
X. Wang, P. Liu, and Y. Gu, Local-set-based graph signal reconstruction, IEEE Trans. Signal Process., vol. 63, no. 9, pp. 2432-2444, Sept. 2015.
X. Wang, M. Wang, and Y. Gu, A distributed tracking algorithm for reconstruction of graph signals, IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 728-740, June 2015.
D. Romero, M. Meng, and G. Giannakis. Kernel-based Reconstruction of Graph Signals, arXiv preprint arXiv:1605.07174, 2016.

References: GSP

Topology Inference

V. Kalofolias, How to learn a graph from smooth signals, arXiv preprint arXiv:1601.02513, 2016.
X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, Learning laplacian matrix in smooth graph signal representations, arXiv preprint arXiv:1406.7842, 2014.
B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, M. Rabbat, Characterization and inference of weighted graph topologies from observations of diffused signals, arXiv preprint arXiv:1605.02569, 2016.
J. Mei and J. Moura, Signal processing on graphs: Estimating the structure of a graph, in IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2015, pp. 54955499.
E. Pavez and A. Ortega, Generalized Laplacian precision matrix esti- mation for graph signal processing, in IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), Shanghai, China, Mar. 20-25, 2016.

Stationarity

N. Perraudin and P. Vandergheynst, Stationary signal processing on graphs, arXiv preprint arXiv:1601.02522, 2016.
B. Girault, Stationary graph signals using an isometric graph translation," Proc. IEEE European Signal Process. Conf. (EUSIPCO), 2015.

GlobalSIP'16 Symposium on Networks

Symposium on Signal and Information Processing over Networks

Topics of interest

- Graph-signal transforms and filters
- Non-linear graph SP
- Statistical graph SP
- Prediction and learning in graphs
- Network topology inference
- Network tomography
- Control of network processes
- Signals in high-order graphs
- Graph algorithms for network analytics
- Graph-based distributed SP algorithms
- Graph-based image and video processing
- Communications, sensor and power networks
- Neuroscience and other medical fields
- Web, economic and social networks

Symposium dates: December 8-9, 2016

Organizers:
Michael Rabbat (McGill Univ.)
Gonzalo Mateos (Univ. of Rochester)
Antonio Marques (King Juan Carlos Univ.)

