Skip to main content

Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite and second-order cone programs. However, these methods are excessively slow for high dimensions.

Gaussian Weighting Reversion Strategy for Accurate Online Portfolio Selection

In this paper, we design and implement a new on-line portfolio selection strategy based on reversion mechanism and weighted on-line learning. Our strategy, called “Gaussian Weighting Reversion” (GWR), improves the reversion estimator to form optimal portfolios and effectively overcomes the shortcomings of existing on-line portfolio selection strategies.

Sequential Random Distortion Testing of Non-Stationary Processes

In this work, we propose a non-parametric sequential hypothesis test based on random distortion testing (RDT). RDT addresses the problem of testing whether or not a random signal, Ξ , observed in independent and identically distributed (i.i.d) additive noise deviates by more than a specified tolerance, τ , from a fixed model, ξ0 .