2019 IEEE SPS Winter School on Biomedical Signal and Image Processing
November 12-14, 2019
Early Registration Deadline: TBA
Location: Bangalore, India
Website
Over the last years, several stationarity tests have been proposed. One of these methods uses time-frequency representations and stationarized replicas of the signal (known as surrogates) for testing wide-sense stationarity. In this letter, we propose a procedure to improve the original surrogate test.
In this letter, we propose a heuristic method to address sensor bias estimation to improve track-to-track association accuracy. A novel multi-parameter cost function is derived from rigid transformation function and it is minimized by the covariance matrix adaptation evolution strategies algorithm.
Diacritics restoration is a necessary component in order to develop Arabic text to speech systems. When diacritics are present, the phonetic transcription algorithm can be implemented based on a few rules. Restoring Arabic diacritics based on language model scoring is the dominant approach. A fixed vocabulary is usually used to build the language model used for scoring.
We study the problem of distributed filtering for state space models over networks, which aims to collaboratively estimate the states by a network of nodes. Most of existing works on this problem assume that both process and measurement noises are Gaussian and their covariances are known in advance. In some cases, this assumption breaks down and no longer holds.
Expander recovery is an iterative algorithm designed to recover sparse signals measured with binary matrices with linear complexity. In the paper, we study the expander recovery performance of the bipartite graph with girth greater than 4, which can be associated with a binary matrix with column correlations equal to either 0 or 1.
A key challenge in designing distributed particle filters is to minimize the communication overhead without compromising tracking performance. In this paper, we present two distributed particle filters that achieve robust performance with low communication overhead.
November 12-14, 2019
Early Registration Deadline: TBA
Location: Bangalore, India
Website
This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may be locally unobservable for the unknown parameter.
May 26-28, 2020
Location: Changed to--Virtual Conference
September 15-16, 2020
NOTE: Location changed to--Virtual Conference