Skip to main content

Detection In the Wild Challenge Workshop 2019

Object detection is of significant value to the Computer Vision and Pattern Recognition communities as it is one of the fundamental vision problems. In this workshop, we will introduce two new benchmarks for the object detection task: Objects365 and CrowdHuman, both of which are designed and collected in the wild. Objects365 benchmark targets to address the large-scale detection with 365 object categories.

Challenge on Learned Image Compression (CLIC)

The domain of image compression has traditionally used approaches discussed in forums such as ICASSP, ICIP and other very specialized venues like PCS, DCC, and ITU/MPEG expert groups. This workshop and challenge will be the first computer-vision event to explicitly focus on these fields. Many techniques discussed at computer-vision meetings have relevance for lossy compression.

 

New Trends in Image Restoration and Enhancement workshop and challenges on image and video restoration and enhancement (NITRE)

Image restoration and image enhancement are key computer vision tasks, aiming at the restoration of degraded image content, the filling in of missing information, or the needed transformation and/or manipulation to achieve a desired target (with respect to perceptual quality, contents, or performance of apps working on such images). Recent years have witnessed an increased interest from the vision and graphics communities in these fundamental topics of research. Not only has there been a constantly growing flow of related papers, but also substantial progress has been achieved.

The Robotic Vision Probabilistic Object Detection Challenge

This workshop will bring together the participants of the first Robotic Vision Challenge, a new competition targeting both the computer vision and robotics communities. The new challenge focuses on probabilistic object detection. The novelty is the probabilistic aspect for detection: A new metric evaluates both the spatial and semantic uncertainty of the object detector and segmentation system. Providing reliable uncertainty information is essential for robotics applications where actions triggered by erroneous but high-confidence perception can lead to catastrophic results.

Low-Power Image Recognition Challenge (LPIRC 2019)

Computer vision technologies have made impressive progress in recent years, but often at the expense of increasingly complex models needing more and more computational and storage resources. This workshop aims to improve the energy efficiency of computer vision solutions for running on systems with stringent resources, for example, mobile phones, drones, or renewable energy systems. Efficient computer vision can enable many new applications (e.g., wildlife observation) powered by ambient renewable energy (e.g., solar, vibration, and wind).

The 2019 Scene Understanding and Modeling Challenge

The SUMO Challenge targets the development of algorithms for comprehensive understanding of 3D indoor scenes from 360° RGB-D panoramas. The target 3D models of indoor scenes include all visible layout elements and objects complete with pose, semantic information, and texture. Algorithms submitted are evaluated at 3 levels of complexity corresponding to 3 tracks of the challenge: oriented 3D bounding boxes, oriented 3D voxel grids, and oriented 3D meshes. SUMO Challenge results will be presented at the 2019 SUMO Challenge Workshop, at CVPR.

AI for Prosthetics Challenge - Reinforcement learning with musculoskeletal models

In this competition, you are tasked with developing a controller to enable a physiologically-based human model with a prosthetic leg to walk and run. You are provided with a human musculoskeletal model, a physics-based simulation environment OpenSim where you can synthesize physically and physiologically accurate motion, and datasets of normal gait kinematics. You are scored based on how well your agent adapts to the requested velocity vector changing in real time.

AutoML for Lifelong Machine Learning

In many real-world machine learning applications, AutoML is strongly needed due to the limited machine learning expertise of developers. Moreover, batches of data in many real-world applications may be arriving daily, weekly, monthly, or yearly, for instance, and the data distributions are changing relatively slowly over time. This presents a continuous learning or Lifelong Machine Learning challenge for an AutoML system.