Skip to main content

Liver Cell Segmentation (PAIP 2019)

The goal of the challenge is to evaluate new and existing algorithms for automated detection of liver cancer in whole-slide images (WSIs). There are two tasks and therefore two leaderboards for evaluating the performance of the algorithms. Participants can choose to join both or either tasks according to their interests.

CHAOS : Combined (CT-MR) Healthy Abdominal Organ Segmentation

CHAOS has two separate but related aims:

  1. Segmentation of liver from computed tomography (CT) data sets, which are acquired at portal phase after contrast agent injection for pre-evaluation of living donated liver transplantation donors (15 training + 15 test sets).
  2. Segmentation of four abdominal organs (i.e. liver, spleen, right and left kidneys) from magnetic resonance imaging (MRI) data sets acquired with two different sequences (T1-DUAL and T2-SPIR) (15 training + 15 test sets).

Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology (ACDC@LungHP)

Digital pathology has been gradually introduced in clinical practice. Although the digital pathology scanner could give very high resolution whole-slide images (WSI) (up to 160nm per pixel), the manual analysis of WSI is still a time-consuming task for the pathologists. Automatic analysis algorithms offer a way to reduce the burden for pathologists. Our proposed challenge will focus on automatic detection and classification of lung cancer using Whole-slide Histopathology. This subject is highly clinical relevant because lung cancer is the top cause of cancer-related death in the world.

Automatic Non-rigid Histological Image Registration (ANHIR)

In digital pathology, it is often useful to align spatially close but differently stained tissue sections in order to obtain the combined information. The images are large, in general, their appearance and their local structure are different, and they are related through a nonlinear transformation. The proposed challenge focuses on comparing the accuracy and approximative speed of automatic non-linear registration methods for this task. Registration accuracy will be evaluated using manually annotated landmarks.