Skip to main content

Panoramic Background Image Generation for PTZ Cameras

Being able to cover a wide range of views, pan-tilt-zoom (PTZ) cameras have been widely deployed in visual surveillance systems. To achieve a global-view perception of a surveillance scene, it is necessary to generate its panoramic background image, which can be used for the subsequent applications such as road segmentation, active tracking, and so on.

Why Botnets Work: Distributed Brute-Force Attacks Need No Synchronization

In September 2017, the McAfee Labs quarterly report estimated that brute-force attacks represent 20% of total network attacks, making them the most prevalent type of attack ex-aequo with browser-based vulnerabilities. These attacks have sometimes catastrophic consequences, and understanding their fundamental limits may play an important role in the risk assessment of password-secured systems and in the design of better security protocols. 

Analysis of Rolling Shutter Effect on ENF-Based Video Forensics

Electric network frequency (ENF) is a time-varying signal of the frequency of mains electricity in a power grid. It continuously fluctuates around a nominal value (50/60 Hz) due to changes in the supply and demand of power over time. Depending on these ENF variations, the luminous intensity of a mains-powered light source also fluctuates. 

Shortlisting the Influential Members of Criminal Organizations and Identifying Their Important Communication Channels

Low-level criminals, who do the legwork in a criminal organization, are the most likely to be arrested, whereas the high-level ones tend to avoid attention. But crippling the work of criminal organizations is not possible unless investigators can identify the most influential, high-level members and monitor their communication channels.

Outlier Dirichlet Mixture Mechanism: Adversarial Statistical Learning for Anomaly Detection in the Fog

Current anomaly detection systems (ADSs) apply statistical and machine learning algorithms to discover zero-day attacks, but such algorithms are vulnerable to advanced persistent threat actors. In this paper, we propose an adversarial statistical learning mechanism for anomaly detection, outlier Dirichlet mixture-based ADS (ODM-ADS), which has three new capabilities.