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At a Cocktail PartyAt a Cocktail Party

？

Reverberation

more
clearly!

Morning!

Hello!
！Mixing

When two people talk to a computerWhen two people talk to a computer

Hello!

Morning!

Hello!
Hello!

Hello!

Morning!

Morning!

Morning!
Morning!Morning!Hello!

Hello!

I cannot 
understand!
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VIDEOVIDEO

Blind Source Separation in a Real EnvironmentBlind Source Separation in a Real Environment
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？

Reverberation

more
clearly!

Morning!

Hello!
！

Target signal must be extracted from 
mixed signals （source separation）

Mixing

Task of Blind Source SeparationTask of Blind Source Separation

Hello!

Morning!

Hello!
Hello!

Hello!

Morning!

Morning!

Morning!

Speech recognition（Robots, Car navi. …) 
People（ＴＶ conferences, Hearing aids, …）

Morning!Morning!Hello!
Hello!

Observed signal XSource signal Ｓ Separated signal Y

＋

＋

Hello!

Morning!

Separation system W
Estimate S1 and S2
using only X1 and X2

Y1

Y2

Hello!

＋

＋

Morning!

S1

S2

H11

H21

H12

H22

Model of Blind Source SeparationModel of Blind Source Separation

Mixing system H
Delay
Attenuation
Reverberation

Hello!Morning!

Hello!Morning!

X1

X2

W21

W12

W22

W11

Source S
Independent

BlindBlind
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Blind Source Separation using Blind Source Separation using 
Independent Component AnalysisIndependent Component Analysis

H W

Hello!

Morning!

Observed signals X1
and X2 are correlated

Extract Y1 and Y2 so 
that they are mutually 
independent 

Source signals S1 and 
S2 are statistically 
independent

No need for information on the source signals or mixing system
(location or room acoustics)   ⇒ Blind Source Separation

No need for information on the source signals or mixing system
(location or room acoustics)   ⇒ Blind Source Separation
No need for information on the source signals or mixing system
(location or room acoustics)   ⇒ Blind Source Separation

BlindBlind Source Separation using Source Separation using 
Independent Component AnalysisIndependent Component Analysis

Unsupervised Learning by ICAUnsupervised Learning by ICA

H11

H21

H22

S1

S2

Mixing system H

Y1
W11

W12

W21

W22

H12

X1

X2 Y2

Separation system W

Estimate W so that Y1
and Y2 become 
mutually independent 

Source signals S1 and 
S2 are statistically 
independent

Observed signal XSource signal Ｓ Separated signal Y
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WhatWhat’’s ICA?s ICA?

ICA: Independent Component AnalysisICA: Independent Component Analysis
- Statistical method
- Neural Network, Communication 

BSS: Blind Source SeparationBSS: Blind Source Separation
- Sounds
- Images
- CDMA wireless communication signals
- fMRI and EEG signals

Speech Recognition
People

Background TheoryBackground Theory

- Minimization of Mutual Information
(Minimization of Kullback-Leibler Divergence)

All solutions are
identical

- Maximization of Non-Gaussianity

- Maximization of Likelihood
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Background TheoryBackground Theory

All solutions are identical

),()(),( 21

2

1
21 YYHYHYYI

i
i −=∑

=

Minimization of 
Mutual Information

Maximization of 
Non-Gaussianity

Maximization of 
Likelihood

Marginal
Entropy

Joint
Entropy

Mutual
Information

H(・)：Entropy

Background TheoryBackground Theory

- Maximization of Non-Gaussianity

• Make the output  pdf  away from Gaussian
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Central Limit TheoremCentral Limit Theorem

Mix independent components ⇒ Gaussian

Find independent component ⇒ Non-Gaussian

maximization of negentropy
maximization of |kurtosis|

Wave forms

A
m

pl
itu

de

s
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Wave forms

Histograms

Amplitude

Gaussian

Complex-valued mixtures, f = 453 Hz

Im
ag

in
ar

y

Real



ICASSP 2007 Tutorial  - Audio Source Separation based on Independent Component Analysis          
Shoji Makino and Hiroshi Sawada (NTT Communication Science Laboratories, NTT Corporation) 11

Absolute values of complex-valued mixtures, f = 453 Hz

A
bs

ol
ut

e 
va

lu
es

 

s

Histograms

Absolute values of complex-valued mixtures, f = 453 Hz

Rayleigh

Absolute values 
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Central Limit TheoremCentral Limit Theorem

Mix independent components ⇒ Gaussian

Find independent component ⇒ Non-Gaussian

Non-Gaussianity measures
Negentropy

Kurtosis

Maximization of NegeMaximization of Negentropiesntropies

00.0120.0250.0870.225Negentropy N

1.411.401.391.331.19Entropy H

Gaussian16821# sources N

)()()( gauss yHxHyN −=

∑
=

=
n

i i
i p

pyH
1

1log)(
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Maximization of KurtosisMaximization of Kurtosis

00.390.701.82.1Kurtosis

Gaussian16821N

224 })|{|(3}|{|)( yEyEykurt −=

Background TheoryBackground Theory

- Minimization of Mutual Information
(Minimization of Kullback-Leibler Divergence)

• Make the output “decorrelated”
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H(Y2)H(Y1)

H(Y1,Y2)

),()(),( 21

2

1
21 YYHYHYYI

i
i −=∑

=

Marginal
Entropy

Joint
Entropy

Mutual
Information

Mutual InformationMutual Information

H(・)：Entropy

H(Y2)H(Y1)

H(Y1,Y2)

I(Y1,Y2)
Mutual 

Information

),()(),( 21

2

1
21 YYHYHYYI

i
i −=∑

=

Mutual InformationMutual Information

H(・)：EntropyMarginal
Entropy

Joint
Entropy

Mutual
Information
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H(Y2)H(Y1)
I(Y1,Y2)=0

Mutual 
Information

),()(),( 21

2

1
21 YYHYHYYI

i
i −=∑

=

H(Y1,Y2)

Minimization of Mutual InformationMinimization of Mutual Information

H(・)：EntropyMarginal
Entropy

Joint
Entropy

Mutual
Information

),()(),( 21

2

1
21 YYHYHYYI

i
i −=∑

=

Marginal
Entropy

Joint
Entropy

Mutual
Information

∫∫ += 2
2

21
1

1 )(
1log)(

)(
1log)( dY

Yp
YpdY

Yp
Yp

∫− 21
21

21 ),(
1log),( dYdY

YYp
YYp

∫= 21
21

21
21 )()(

),(log),( dYdY
YpYp

YYpYYp

Kullbuck-Leibler
Divergence

Minimization of Mutual InformationMinimization of Mutual Information
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∫= 21
21

21
2121 )()(

),(log),(),( dYdY
YpYp

YYpYYpYYI

Mutual
Information

Kullbuck-Leibler
Divergence

- Search for Ｗ which minimizes Mutual Information I
- Gradient of W can be derived by differenciating I

with W, using y = Wx;

WW
W

W T2,1 )( −

∂
∂

−∝Δ
YYI ( )W(Y)YI ][E Tφ−=

Y
Y(Y)

d
)(logd p

−=φwhere

Minimization of Mutual InformationMinimization of Mutual Information

How can we separate speech?How can we separate speech?

Diagonalize RY

⎥
⎦

⎤
⎢
⎣

⎡
〉〈〉〈
〉〈〉〈

=
2212

2111

)()(
)()(
YYYY
YYYY

RY φφ
φφ

S H X W
Y1

Y2
〈⋅〉 averaging operator

)(⋅φ activation function
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0)( 12 =〉〈 YYφ0)( 21 =〉〈 YYφ

Mutual independence

At the Convergence PointAt the Convergence Point

⎥
⎦

⎤
⎢
⎣

⎡
*0
0*

Average amplitude of Y

111)( cYY =〉〈φ 222 )( cYY =〉〈φ⎥
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*
*
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4 equations for 4 unknowns Wij

1
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1 d
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21111
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μ 0

⎥
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=
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＋

＋

Y1

Y2

X1

X2

W

ICA Learning RuleICA Learning Rule

Update W so that Y1 and Y2 become mutually independent
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)tanh()( 11 YY =φ

Higher Order Statistics (HOS)

0)( 21 =〉〈 YYφ

0)( 21 =〉〈 YYφ

Second Second Order StatisticsOrder Statistics vs.vs. Higher Higher Order StatisticsOrder Statistics

Second Order Statistics (SOS)

11)( YY =φ 021 =〉〈 YY

0)
15
2

3 2

5
1

3
1

1 =〉+−〈 YYYY Λ

for multiple
time blocks

nonstationary
sources

Tailor
expansion

0)tanh( 21 =〉〈 YY

Convolutive mixture
Hij are FIR filters > 1000 taps
- sounds in a room

Instantaneous vs. ConvolutiveInstantaneous vs. Convolutive

Instantaneous mixture
Hij are scalars
- sounds with mixer
- images
- wireless communication signals
- fMRI and EEG signals

＋

＋

Hello!

Morning!

S1

S2

H11

H21

H12

H22

Well studied, good results

Difficult problem, relatively new
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Mixing Filters and Separation FiltersMixing Filters and Separation Filters

Y1

Y2

S1

S2

X1

X2

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H11

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H21

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H12

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H22

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W11

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W22

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W21

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W12

Time 
Domain

Y1

Y2

S1

S2

X1

X2

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H11

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H21

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H12

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H22

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W21

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W22

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W11

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W12

Mixing Filters and Separation FiltersMixing Filters and Separation Filters

Time 
Domain in a Matrix
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Time

Time-domain signal

Time
Fr

eq
ue

nc
y

Frequency-domain 
time-series signal

Short Time DFT (Spectrogram)Short Time DFT (Spectrogram)

Convolutive mixture 
in time domain

Multiple instantaneous mixtures 
in frequency domain

Frequency-domain 
time-series signal

Fr
eq

ue
nc

y

Time

4000

0

Observed signal X2

Apply instantaneous 
ICA approach to 
each frequency bin

4000

0

Fr
eq

ue
nc

y

Time

Observed signal X1

Frequency

Frequency Domain BSSFrequency Domain BSS
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Y1
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Mixing Filters and Separation FiltersMixing Filters and Separation Filters

Frequency
Domain

Y1

Y2

S1

S2

X1
100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H11

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H21

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H12

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

H22

W11(f) W12(f)

W21(f) W22(f)
W11(f) W12(f)

W21(f) W22(f)
W11(f) W12(f)

W21(f) W22(f)
W11(f) W12(f)

W21(f) W22(f)
W11(f) W12(f)

W21(f) W22(f)
W11(f) W12(f)

W21(f) W22(f)

Frequency

X2

Mixing Filters and Separation FiltersMixing Filters and Separation Filters

Frequency
Domain in many Matrices
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)(ty)(tx

Mixed
signals

Separated
signals

Separation
filters

Flow of Frequency Domain BSSFlow of Frequency Domain BSS
Time domain

ScalingPermutation Spectral
smoothing

Frequency domain

),( tfX
STFT

)( fW
ICA

separation 
matrix

)( fW
IDFT

)(lw )(lw

Permutation Spectral
smoothing

Physical Interpretation of BSSPhysical Interpretation of BSS

BSS = Two sets of ABF
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Adaptive Beamformer (ABF)Adaptive Beamformer (ABF)

•• StrategyStrategy
Minimize the output when only a jammer is 
active but a target is not active

(b)

•• AssumptionsAssumptions
Direction and absence period of a target is 
known

Target S1

Jammer S2

C１S１

０Target S1
C１S１
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⎦
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=⎥⎦
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⎡
c

c
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2221
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0
0

Two Sets of ABFsTwo Sets of ABFs

０

C１S１S１

S２

(a) ABF for target S1
and jammer S2

C２S２

０

S１

S２

(b) ABF for target S2
and jammer S1
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Blind Source Separation (BSS)Blind Source Separation (BSS)

•• StrategyStrategy
Minimize the SOSSOS or HOS of the outputs

•• AssumptionsAssumptions
Two sources are mutually independent

Hello!

Morning!

０

C１S１

０

C２S２

C１S１

C２S２

   

)()(),()()(

)(),()(),(

*
22

*
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*
2111
⎥
⎦

⎤
⎢
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⎡
=

=

=

∗
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∗

YYYY
YYYY

E

k

kk

S ωωωωω

ωωωω

WHΛHW

WRWR XY

[ ]
[ ] [ ] [ ] [ ]( ){ }

0

)(
22

2
2

11221

2
21

=
+++= ∗∗∗∗∗∗

∗

SEbdSEacSSEbcSSEad
YYE

(    )

• After convergence, the off-diagonal component is

Diagonalization of                in BSSDiagonalization of                in BSS

= =

0 0
(If S1 and S2 are ideally independent)

),( kY ωR

),( kY ωR
• The BSS strategy works to diagonalize

0
0

dc b 0=       = a
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=

where
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Same as ABF
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Adaptive Beamformers
０

C１S１

S２

S１

０

C２S２

BSS

Equivalence between BSS and ABFEquivalence between BSS and ABF

0

if the independent assumption ideally holds
BSS and ABF are equivalent
if the independent assumption ideally holds

SＴ

SＴ

Physical Understanding of BSSPhysical Understanding of BSS

Directivity Patterns

TR = 300 ms TR = 0 ms  

TR = 300 msTR = 0 ms  

BSS

ABF

BSS, ABF ⇒ Spatial notch to jammer direction
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BSS of Three SpeechesBSS of Three Speeches

3 sources3 sources××3 sensors  BSS3 sensors  BSS

Directivity Patterns
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4 cm

Spatial AliasingSpatial Aliasing

2
λ

<d

λ : wave length of the highest frequency

When microphone spacing d is too wide…

dd

Spatial aliasing does not occer when
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4 cm30 cm 
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66 sourcessources××8 sensors  BSS8 sensors  BSS

What do we want?What do we want?

(1) Direct sound                              Should be extracted
of target

(2) Reverberation                             Should be removed

(3) Direct sound
of jammer

(4) Reverberation
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What is separated, and What is separated, and 
what remains?what remains?

BSS = Two sets of ABF

Comparison of NBF and BSSComparison of NBF and BSS

BSS outputBSS outputNBF outputNBF output
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源分離後
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Jammer :  Speech Music + Speech

Effect on Speech RecognitionEffect on Speech Recognition

VIDEOVIDEO

Blind Source Separation of Many SoundsBlind Source Separation of Many Sounds
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Basis vector
clustering

Flow of the FFlow of the F--Domain MethodDomain Method

IC
A

S
TFT

P
erm

utation

T-F
masking

f f f
Inverse

S
TFT

target

• Mixtures

• ICA

• The inverse of separation matrix

• Decomposition of mixture

Basis VectorsBasis Vectors

basis vector
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• Basis vector
• represents the frequency responses

from source to all sensors
• Implies information on the source location

Basis VectorsBasis Vectors

Outline

1. Introduction
2. Convolutive blind source separation (BSS) - Formulation
3. Independent component analysis - Concepts
4. Frequency-domain approach for convolutive mixtures
5. Relationship between BSS and adaptive beamformer -

Physical interpretation
6. (Coffee break)
7. Permutation and scaling problems
8. Dependence on separated signals across frequencies
9. Time-difference-of-arrival (TDOA) and direction-of-arrival 

(DOA) estimation
10. Sparse source separation
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1

Audio Source Separation based on 
Independent Component Analysis

Part II

2

Main topics of first and second parts

Main topic of the first part
Basic concepts of BSS and ICA
Convolutive BSS
Frequency-domain approach
BSS and adaptive beamformer

Main topic of the second part
Detailed procedure of frequency-domain BSS
Especially, how to solve permutation problem
Sparse source separation
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3

Approaches to convolutive BSS

Time-domain approach  [references]

Directly calculates separation filters

Theoretically sound (no approximation)
Frequency-domain approach  [references]

Approximated with instantaneous mixture model  
in each frequency bin

Time
Filter tap

Time frame index
Frequency

4

S
TFT

Flow of frequency-domain BSS

IC
A

f

P
erm

utation
Scaling

f

Inverse
STFT

The second part mainly explains these operations

1. Time domain → Frequency domain
2. Separation of frequency-bin wise mixtures
3. Permutation and scaling alignment
4. Frequency domain → Time domain
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5

Outline

Part I by Shoji Makino

-------- Coffee break --------

Part II by Hiroshi Sawada

1. Permutation and scaling problems
2. Mutual dependence of separated signals 

across frequencies
3. Time-difference-of-arrival (TDOA) and 

direction-of-arrival (DOA) estimation
4. Sparse source separation

6

Permutation and Scaling problems

How important are they?
Cannot obtain proper separated signals without 
considering them
Almost all papers on frequency-domain BSS 
discuss or at least mention these problems

Number of ICASSP papers that discuss or mention 
the permutation problem

Still increasing!

1110108862# papers

2006200520042003200220012000Year
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7

Permutation and Scaling problem

Ambiguities of ICA solutions

If                                        is a solution, then

is also a solution

for any diagonal      and permutation     matrix

Independence of                 does not change

8

Permutation and Scaling problem

Permutation/Scaling
aligned

Permutation
aligned

Raw ICA outputs

Time frame index

Fr
eq

ue
nc

y 
bi

n
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9

Relationship among sections

Permutation alignment

Scaling alignment

Mutual dependence 
of 

separated signals 
across frequencies

TDOA, DOA Sparse source 
separation

Section 1 Section 2

Section 3 Section 4

Estimating 
mixing situation

10

Mixing model and ICA solution

+

+

+

+

Mixing model ICA solution

Frequency-bin view: instantaneous mixture model
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11

Estimating mixing situation with ICA

+

+

ICA solution

Frequency-bin view: instantaneous mixture model

+

+

Estimated mixing situation

12

Basis vector calculation

How to calculate matrix
If        has an inverse

Otherwise (            )
• Least-mean-square estimator 

that minimizes

• Moore-Penrose pseudo inverse

Basis vector

ICA solutionEstimated mixing situation
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13

Comparison

If ICA works well, we expect that

with some correspondence between    and

+

+

Estimated mixing situation

+

+

Mixing model

frequency dependent

14

Important formula

Mixing system estimation with basis vectors
calculated from ICA solution

Permutation ambiguity
Correspondence between    and     is unknown

Scaling ambiguity

However, no ambiguity as to the term itself

for any scalar
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15

Scaling alignment

Dereverberation (deconvolution)
Eliminating all the effect of impulse responses
Difficult task in the blind scenario [references]

Even for a single source
Adjusting to a microphone observation

Popular approach  [references]

Easily performed if basis vectors are obtained

J :reference microphone

16

Scaling alignment

Untouched Aligned

At frequency 773 Hz; only the real part is plotted

reference 
microphone
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Section 1 Summary

Permutation and scaling ambiguity
Inherent to ICA
Serious problem for frequency-domain BSS

Estimating mixing situation
From ICA solution

Scaling alignment
Adjusting to a microphone observation

18

Permutation alignment

Various approaches and methods  [references]

In this tutorial, methods based on clustering

Bin-wise separated signals
according to their activities

Time difference of arrival (TDOA)
estimated from basis vectors

Permutation ≈ Clustering
Membership assignment is restricted

to a permutation          in each frequency bin 
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Outline

Part I 
-------- Coffee break --------

Part II 
1. Permutation and scaling problems
2. Mutual dependence of separated signals 

across frequencies
3. Time-difference-of-arrival (TDOA) and 

direction-of-arrival (DOA) estimation
4. Sparse source separation

20

Dependence across frequencies

Meaningful audio source has some structure
Common silence period 
Common onset and offset
Harmonics

Mutual dependence of separated signals across frequencies
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Approaches to exploit dependencies

Correlation coefficients  [references]

Envelopes
Dominance measure 

Multivariate density function  [references]

Models the separated signals of all frequencies
ICA algorithm should be modified to 
accommodate the multivariate density function

Natural gradient and FastICA type updates were 
proposed

Will be explained in this section

22

Correlation coefficients

Correlation coefficients between two sequences

mean
variance

Bounded by

becomes 1 if two sequences are identical
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Envelopes of separated signals

Envelope of bin-wise separated signal

At frequency      and at channel 
Shows the signal activity at the frequency

24

Envelope examples
Two separated signals Normalized to zero-

mean and unit-norm

High correlations are 
expected for the same 
source
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25

Neighboring frequencies

Envelopes of 
neighboring frequencies 
are highly correlated
A simple strategy for 
permutation alignment

Maximize correlation 
between neighbors
diagonalize

1516 Hz

1531 Hz

26

Harmonic frequencies

High correlation among 
fundamental frequency 
and its harmonics
Another strategy for 
permutation alignment

Maximize correlation 
among harmonics
diagonalize

594 Hz

1188 Hz
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27

Arbitrary pairs of frequencies

Among frequencies that have no specific relation
May end up with almost zero correlation

1188 Hz

1531 Hz

28

Correlation of envelopes: global view
Blue Green

B
lu

e
G

re
en

15
16

 H
z

1531 Hz 1531 Hz

15
16

 H
z
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29

Correlation of envelopes: global view

1. High correlation 
only with adjacent 
or harmonic 
frequencies for the 
same source

2. Mostly zero 
correlation with 
different sources

30

Local optimization

High correlation of envelopes can mostly be seen 
only when two frequencies are

close together or in harmonic relationship
Local optimization

One local mistake leads to a big mistake for the 
whole

S1

S2 S2

S1

S1

S2

S1

S2

S1

S2

S2

S1S1

S2

S1

S2

S1

S2 S1

S2

S1

S2S1

S2Output1

Output2

Frequency0 300020001000
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Why high correlations only within limited pairs?

Envelopes have a wide dynamic range even if 
they are normalized to zero-mean and unit-norm

Active signals are represented with various 
values

Another type of sequence where active signals 
are represented uniformly? 

High correlation among many frequencies

32

Dominance measure

Estimated mixing situation (explained in Section 1)

Dominance of   -th signal in mixture  [references]

If sources follow the sparseness assumption (explained 
in Section 4 ), active signals are represented uniformly 
with a value close to 1

The i-th signal is dominantOther signals are dominant
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Envelope and dominance measure

1188 Hz

1531 Hz

1188 Hz

1531 Hz

Envelope Dominance measure

34

powRatio values (dominance measure)
Two separated signals

1. Active signal 
uniformly close to 1

2. Exclusive: if one is 
close to 1, then the 
other is close to 0
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35

Correlation of powRatio: global view

36

Correlation of powRatio: global view

1. High correlation 
between many 
frequencies for the 
same source

2. Negative 
correlation for 
different sources
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37

Strategies for permutation alignment

Local optimization
Among neighboring or harmonic frequencies
Effective for fine tuning

Improves a fairly good solution
Global optimization

Applicable if high correlations within many 
frequency pairs
Efficient and robust algorithms

k-means clustering, EM algorithm
Centroid or model for each source (cluster)

38

Global optimization

Optimization algorithm similar to k-means clustering

Centroid
Member average

Permutation
aligned to maximize

Represents the signal activity for each source



ICASSP 2007 Tutorial  - Audio Source Separation based on Independent Component Analysis          
Shoji Makino and Hiroshi Sawada (NTT Communication Science Laboratories, NTT Corporation)

39

Experimental results

Env: envelope,  PoR: powRatio,  Lo: local,  Gl: global

3 sources, 3 microphones

Global optimization with powRatio works well.  
Subsequent local optimization improves the results further.

40

Section 2 Summary

Mutual dependence of separated signals
Active time frames are expected to coincide 
across frequencies for the same source

Signal activity
Envelope
Dominance measure

Permutation alignment strategies
Local optimization
Global optimization - clustering
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Outline

Part I 
-------- Coffee break --------

Part II 
1. Permutation and scaling problems
2. Mutual dependence of separated signals 

across frequencies
3. Time-difference-of-arrival (TDOA) and 

direction-of-arrival (DOA) estimation
4. Sparse source separation

42

Permutation alignment (Spatial information)

Beamforming approach  [references]

Directivity patterns calculated with 
Direction of arrival (DOA) estimated & clustered
Array geometry information needed

DOA

Time difference of arrival 
(TDOA) 

Estimated from basis 
vectors
No need for array information
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Estimated for each source
Caused by the positions of microphones 
and the source

(Generalized) cross correlation

Time-difference-of-arrival (TDOA)

GCC-PHAT

44

Frequency-dependent TDOA

Estimated with observations
For each time-frequency slot

Estimated with basis vectors
For frequency     and output channel

Remember the relationship between observation 
and basis vectors:
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45

Derivation of the estimation formula

Single source, frequency domain

Simplified model with time delay

We have

Taking the argument gives the estimation formula

46

Valid frequency range

The argument should be in the range

TDOA is bounded by

Frequency range for valid TDOA estimation

velocity

if
then
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Frequency-dependent TDOA

With observations

Non-overlapped

48

Frequency-dependent TDOA

With observations

Overlapped
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Frequency-dependent TDOA

With basis vectors

Overlapped

50

Permutation alignment

Sorting
Clustering

TDOA estimations 
with basis vectors
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Multiple microphone pairs

pairs for M microphones

Redundant, for example

Considers only pairs with a reference microphone

Clustering TDOA estimations 
in an            dimensional space
for permutation alignment

52

3-source 3-microphone case

Microphones
On edges of 4cm triangle

Loudspeakers

45°

120°

210°
Distance: 

0.5, 1.1, 1.7 m

• Reverberation time: RT60 = 130, 200 ms
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Experimental results

Setup shown in the previous slide

The reverberation time and the distance from sources to 
microphones affect the separation performance.

54

Estimating DOAs of sources

DOA: Direction Of Arrival 
Useful for e.g. camera steering
By additional operation after estimating TDOAs

ICA Estimating
TDOA 

Simultaneous 
linear equations

Microphone array
geometry

DOA estimations
(frequency dependent)

Needs to know: semi-blind
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DOA: definition and example

3-dim unit-norm vector

6 speakers and 8 microphones

56

Linear equation for a pair

Path difference

Cone ambiguity
Need more pairs to specify a direction

source

microphones

TDOA

velocity
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Linear equations for multiple pairs

Simultaneous linear equations
with multiple microphone pairs

DOA estimation
Least-squares solution using Moore-Penrose 
pseudoinverse

2 1

3

4

58

Section 3 Summary

Frequency-dependent TDOA
Estimated with observations
Estimated with basis vectors

Permutation alignment
Sorting or clustering TDOAs estimated with
Effective in low reverberant conditions or when the 
distance from source to microphone is small

Direction of arrival (DOA) estimation
Together with information on microphone array 
geometry



ICASSP 2007 Tutorial  - Audio Source Separation based on Independent Component Analysis          
Shoji Makino and Hiroshi Sawada (NTT Communication Science Laboratories, NTT Corporation)

59

Outline

Part I 
-------- Coffee break --------

Part II 
1. Permutation and scaling problems
2. Mutual dependence of separated signals 

across frequencies
3. Time-difference-of-arrival (TDOA) and 

direction-of-arrival (DOA) estimation
4. Sparse source separation

60

Sparse source separation

Sparse source
Close to zero most of the time
Frequency-domain speech

Time-variant filtering
ICA: time-invariant

Can be applied even to underdetermined case

+

+

Separation
device
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Sparseness

Most samples are close to zero

⇒ ASSUMPTION:   At most one source is loud at the same time

62

0

1

2

3

# 
of

 fr
am

es

0             Frequency (kHz)             4

• Anechoic
• Male-male-female
• Threshold: −20dB 

from the maximum

Number of sources in each frame

More than two sources are rarely active simultaneously
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Time-frequency masking

Popular separation method for sparse sources 
[references]

Time-variant filtering

↔ Time-invariant filtering (ICA)

Masks defined for each time-frequency slot

Depend only on frequency

64

Time-frequency masking

3 sources
2 mixtures

Separations
(Ideally calculated)

Masks
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Mask design

Time-frequency mask

0 if the -th source is inactive at 
1 if the   -th source is active at

How to design in a blind scenario?
Utilize TDOA estimations

Discussed in the permutation alignment method

66

Frequency-dependent TDOA

Histogram

3 peaks
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Frequency-dependent TDOA

Clustering

Mask designed

68

T-F masking separation using TDOA

1. TDOA estimations from 
microphone observations

2. Clustering & T-F masking
3. Sound output
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4-source 3-microphone case

Microphones
On edges of 4cm triangle

Loudspeakers

45°

120°

210° Distance: 1.1 m          

• Reverberation time: RT60 = 130 ms

315°

70

Section 4 Summary

Sparseness
well recognized in the frequency domain

Separation with time-frequency masking
Time-variant filtering
Applicable to underdetermined case

T-F mask design
Based on frequency-dependent TDOA 
estimated with observations 
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Concluding remarks

Frequency-domain approach for the separation of 
speech/audio sounds mixed in a real room
If the situation is properly setup, the source 
separation task can be performed effectively

Sound sources are mostly active for the 
observation time period
Source positions are not changed

The real challenge lies in a situation where the 
above conditions are not satisfied

Short utterance, unknown number of sources, …
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