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Why this research work?

Applications of reverberation models:

Dereverberation (Belhomme et al., 2017),

Source separation (Leglaive et al., 2018),

Source localization, denoising, audio inpainting. . .

A. Belhomme, R. Badeau, Y. Grenier, and E. Humbert. Amplitude and phase dereverberation of
harmonic signals. In Proc. of IEEE WASPAA, New Paltz, New York, USA, October 2017

S. Leglaive, R. Badeau, and G. Richard. Student’s t source and mixing models for multichannel
audio source separation. IEEE Trans. Audio, Speech, Language Process., 26(5):1–15, May 2018
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Applications of reverberation models:

Dereverberation (Belhomme et al., 2017),

Source separation (Leglaive et al., 2018),

Source localization, denoising, audio inpainting. . .

Existing stochastic models of late reverberation:

Time domain (Schroeder, 1962; Moorer, 1979)

Frequency domain (Schroeder, 1962)

Space-frequency domain (Cook et al., 1955)
Time-frequency domain (Polack, 1988)

A. Belhomme, R. Badeau, Y. Grenier, and E. Humbert. Amplitude and phase dereverberation of
harmonic signals. In Proc. of IEEE WASPAA, New Paltz, New York, USA, October 2017

S. Leglaive, R. Badeau, and G. Richard. Student’s t source and mixing models for multichannel
audio source separation. IEEE Trans. Audio, Speech, Language Process., 26(5):1–15, May 2018
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Part II

Properties of reverberation
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Time-frequency profile of reverberation

t

Direct sound
Early reflections

Late reverberation

Transition time
Room impulse response (RIR)



Page 5 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Time-frequency profile of reverberation

t

Direct sound
Early reflections

Late reverberation

Transition time

f

Is
o

la
te

d
ro

o
m

m
o

d
e

s

D
e

n
s
e

ro
o

m
m

o
d

e
s

S
c
h

ro
e

d
e

r’
s

fr
e

q
u

e
n

c
y

Room impulse response (RIR)

R
o

o
m

fr
e

q
u

e
n

c
y

re
s
p

o
n

s
e

(R
F

R
)



Page 5 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Time-frequency profile of reverberation
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Space domain: diffuse sound field

Diffusion: reflections on
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T.J. Schultz. Diffusion in reverberation rooms. Journal of Sound and Vibration, 16(1):17 – 28, 1971



Page 6 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Space domain: diffuse sound field

Diffusion: reflections on

the room surfaces are not

specular (mirror-like), but

rather scattered in various

directions

R
o

o
m

s
u

rf
a

c
e

Incident waveform

Specular reflection

Diffuse reflection

The acoustic field can be approximated as diffuse (Schultz, 1971)

inside the time-frequency validity domain of the stochastic model

if source/sensors are at least a half-wavelength away from walls

T.J. Schultz. Diffusion in reverberation rooms. Journal of Sound and Vibration, 16(1):17 – 28, 1971
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Diffuse reflection

The acoustic field can be approximated as diffuse (Schultz, 1971)

inside the time-frequency validity domain of the stochastic model

if source/sensors are at least a half-wavelength away from walls

After many reflections, the acoustic field is uniform and isotropic

T.J. Schultz. Diffusion in reverberation rooms. Journal of Sound and Vibration, 16(1):17 – 28, 1971
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Experiments

Measured RIRs from C4DM database (169 RIRs, Fs=96 kHz)

Octagon room: 8 walls 7.5m length and domed ceiling 21m height
13 x 13 sensor positions distributed on a uniform square grid

Space sampling of the omnidirectional microphone grid: D = 1m

Reverberation time: RT60 ≈ 2s

R. Stewart and M. Sandler. Database of omnidirectional and b-format room impulse responses.
In IEEE ICASSP, pages 165–168, Center for Digital Music (C4DM), QMUL, London, March 2010

Emmanuel Vincent and Douglas R. Campbell. Roomsimove. GNU Public License, 2008.
http://homepages.loria.fr/evincent/software/Roomsimove.zip



Page 7 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Experiments

Measured RIRs from C4DM database (169 RIRs, Fs=96 kHz)

Octagon room: 8 walls 7.5m length and domed ceiling 21m height
13 x 13 sensor positions distributed on a uniform square grid

Space sampling of the omnidirectional microphone grid: D = 1m

Reverberation time: RT60 ≈ 2s

Synthetic RIRs from Roomsimove toolbox (400 RIRs, Fs=16 kHz)

Shoebox room: 4 x 5 x 2.5 m3

Random source and sensor positions, random sensor orientations

Distance between the omnidirectional microphones: D = 20cm
Reverberation time: RT60 ≈ 0.1s

R. Stewart and M. Sandler. Database of omnidirectional and b-format room impulse responses.
In IEEE ICASSP, pages 165–168, Center for Digital Music (C4DM), QMUL, London, March 2010

Emmanuel Vincent and Douglas R. Campbell. Roomsimove. GNU Public License, 2008.
http://homepages.loria.fr/evincent/software/Roomsimove.zip
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Time-frequency profile (C4DM database)
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Part III

Review of reverberation models
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Time domain

Schroeder (1962) and Moorer (1979): the RIR at microphone i is

hi(t) = bi(t)e
−αt1t≥0

Manfred R. Schroeder. Frequency-correlation functions of frequency responses in rooms.
The Journal of the Acoustical Society of America, 34(12):1819–1823, 1962

James A. Moorer. About this reverberation business. Computer Music Journal, 3(2):13–28, 1979
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Time domain

Schroeder (1962) and Moorer (1979): the RIR at microphone i is

hi(t) = bi(t)e
−αt1t≥0

bi(t) is a centered white Gaussian process

α > 0 is related to the reverberation time: RT60 = 3 ln(10)
α

Manfred R. Schroeder. Frequency-correlation functions of frequency responses in rooms.
The Journal of the Acoustical Society of America, 34(12):1819–1823, 1962

James A. Moorer. About this reverberation business. Computer Music Journal, 3(2):13–28, 1979
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Validation of time model (C4DM database)
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Frequency domain

The RFR is the Fourier transform of the RIR:

Fhi
(f ) =

∫

t∈R hi(t)e
−2ıπft dt

Manfred R. Schroeder. Frequency-correlation functions of frequency responses in rooms.
The Journal of the Acoustical Society of America, 34(12):1819–1823, 1962
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Frequency domain

The RFR is the Fourier transform of the RIR:

Fhi
(f ) =

∫

t∈R hi(t)e
−2ıπft dt

Schroeder (1962): Fhi
(f ) is a stationary random process

Manfred R. Schroeder. Frequency-correlation functions of frequency responses in rooms.
The Journal of the Acoustical Society of America, 34(12):1819–1823, 1962
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Frequency domain

The RFR is the Fourier transform of the RIR:

Fhi
(f ) =

∫

t∈R hi(t)e
−2ıπft dt

Schroeder (1962): Fhi
(f ) is a stationary random process

Complex autocorrelation function of Fhi
(f ):

corr
[

Fhi
(f1), Fhi

(f2)
]

=
1

1 + ıπ
f1−f2
α

Manfred R. Schroeder. Frequency-correlation functions of frequency responses in rooms.
The Journal of the Acoustical Society of America, 34(12):1819–1823, 1962
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Validation of spectral model (Roomsimove)
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Space-frequency domain

Correlation at frequency f between sensors (Cook et al., 1955):

corr
[

Fh1
(f ), Fh2

(f )
]

= sinc

(

2πfD
c

)

D is the distance between microphones
c is the speed of sound in the air (≈ 343 m/s)

R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, and M. C. Thompson Jr. Measurement
of correlation coefficients in reverberant sound fields.
The Journal of the Acoustical Society of America, 27(6):1072–1077, 1955



Page 14 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Space-frequency domain

Correlation at frequency f between sensors (Cook et al., 1955):

corr
[

Fh1
(f ), Fh2

(f )
]

= sinc

(

2πfD
c

)

D is the distance between microphones
c is the speed of sound in the air (≈ 343 m/s)

Assumptions:

Plane waves (far field)
Isotropic incident waves (diffuse acoustic field)

R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, and M. C. Thompson Jr. Measurement
of correlation coefficients in reverberant sound fields.
The Journal of the Acoustical Society of America, 27(6):1072–1077, 1955
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Validation of space model (Roomsimove)
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Time-frequency domain

Moorer (1979): the RIR at microphone i is hi(t) = bi(t)e
−αt 1t≥0

where bi(t) is a centered white Gaussian process

Spectrogram of bi(t) (C4DM database):
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Time-frequency domain

Moorer (1979): the RIR at microphone i is hi(t) = bi(t)e
−αt 1t≥0

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Time-frequency domain

Moorer (1979): the RIR at microphone i is hi(t) = bi(t)e
−αt 1t≥0

Polack (1988): bi(t) is a centered stationary Gaussian process,

whose power spectral density (PSD) B(f ) has slow variations

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Time-frequency domain

Moorer (1979): the RIR at microphone i is hi(t) = bi(t)e
−αt 1t≥0

Polack (1988): bi(t) is a centered stationary Gaussian process,

whose power spectral density (PSD) B(f ) has slow variations

Polack (1988): the Wigner distribution of the RIR is

Whi ,hi
(t , f ) = B(f )e−2αt1t≥0.

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Time-frequency domain

Moorer (1979): the RIR at microphone i is hi(t) = bi(t)e
−αt 1t≥0

Polack (1988): bi(t) is a centered stationary Gaussian process,

whose power spectral density (PSD) B(f ) has slow variations

Polack (1988): the Wigner distribution of the RIR is

Whi ,hi
(t , f ) = B(f )e−2αt1t≥0.

Wigner distribution of two 2nd order random processes ψ1, ψ2:

Wψ1,ψ2
(t , f ) =

∫

R
cov[ψ1(t +

u
2 ), ψ2(t −

u
2 )]e

−2ıπfudu

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Validation of Polack’s model (Roomsimove)
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Part IV

Definition of the new stochastic model
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Source image principle (shoebox room)
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Source image principle (direct path)
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Source image principle (2 reflections)
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Source image principle (mirroring)
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Source image principle (any sensor)
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Source image principle (infinite space)
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Source image principle (no wall)
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Stochastic distribution of source images

Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Stochastic distribution of source images

Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

for any volume V ⊂ R
3, N(V ) ∼ P(λ|V |) with λ > 0
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Stochastic distribution of source images

Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

for any volume V ⊂ R
3, N(V ) ∼ P(λ|V |) with λ > 0

independent of the microphone position and true source position

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

for any volume V ⊂ R
3, N(V ) ∼ P(λ|V |) with λ > 0

independent of the microphone position and true source position
independent of the room geometry (Polack, 1993)

holds even more in a diffuse (spatially uniform) acoustic field

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Stochastic distribution of source images

Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

for any volume V ⊂ R
3, N(V ) ∼ P(λ|V |) with λ > 0

independent of the microphone position and true source position
independent of the room geometry (Polack, 1993)

holds even more in a diffuse (spatially uniform) acoustic field

Assumption: microphone and source images are omnidirectional

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Stochastic distribution of source images

Source image principle: specular reflections in a shoebox room

⇒ spatially uniform distribution of source images

Proposed stochastic model: source images are spatially
distributed according to a uniform Poisson distribution:

for any volume V ⊂ R
3, N(V ) ∼ P(λ|V |) with λ > 0

independent of the microphone position and true source position
independent of the room geometry (Polack, 1993)

holds even more in a diffuse (spatially uniform) acoustic field

Assumption: microphone and source images are omnidirectional

The attenuation of sound waves is exponential w.r.t. the distance,
isotropic and independent of frequency

Jean-Dominique Polack. Playing billiards in the concert hall: The mathematical foundations of
geometrical room acoustics. Applied Acoustics, 38(2):235 – 244, 1993
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Unified stochastic reverberation model

For a set of sensors at positions {x i}i ∈ R
3, the RIRs are

hi(t) =
∫

x∈R3 h(t , ‖x − x i‖2)e−α

c
‖x−x i‖2 dN(x)
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For a set of sensors at positions {x i}i ∈ R
3, the RIRs are

hi(t) =
∫

x∈R3 h(t , ‖x − x i‖2)e−α

c
‖x−x i‖2 dN(x)

x ∈ R
3 is a possible source image position

dN(x) ∼ P(λdx) are independent Poisson increments

α > 0 is the attenuation coefficient (in Hz)
c > 0 is the speed of sound in the air (≈ 343 m/s)

h(t , r) is a coherent sum of monochromatic spherical waves:

h(t , r) =
∫

f∈R
A(f ) e

2ıπf(t− r
c )
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df
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Unified stochastic reverberation model

For a set of sensors at positions {x i}i ∈ R
3, the RIRs are

hi(t) =
∫

x∈R3 h(t , ‖x − x i‖2)e−α

c
‖x−x i‖2 dN(x)

x ∈ R
3 is a possible source image position

dN(x) ∼ P(λdx) are independent Poisson increments

α > 0 is the attenuation coefficient (in Hz)
c > 0 is the speed of sound in the air (≈ 343 m/s)

h(t , r) is a coherent sum of monochromatic spherical waves:

h(t , r) =
∫

f∈R
A(f ) e

2ıπf(t− r
c )

r
df

We get hi(t) = e−α(t−T ) bi(t), bi(t) =
∫

x∈R3

g
(

t−T−
‖x−x i‖2

c

)

‖x−x i‖2
dN(x)

with g(t) ∈ L2([−T ,T ]) satisfying technical conditions
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Part V

Statistical properties of the model
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Space-time domain

Asymptotic normality: with hi(t) = e−α(t−T ) bi(t), when t → +∞,

b(t) = [bi(t),bj(t)]
⊤ converges to a stationary Gaussian process
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Space-time domain

Asymptotic normality: with hi(t) = e−α(t−T ) bi(t), when t → +∞,

b(t) = [bi(t),bj(t)]
⊤ converges to a stationary Gaussian process

At one sensor: ∀t ≥ 2T , bi(t) is a centered wide sense stationary

(WSS) process, of PSD

B(f ) = 4πλc |Fg(f )|
2

When t → +∞, we retrieve (Polack, 1988)
When t → +∞, if bi(t) is white, we retrieve (Moorer, 1979)

Between two sensors: ∀t ≥ 2T + D
c

, b(t) = [bi(t),bj (t)]
⊤ is a

centered WSS process, of cross-PSD

Bi ,j(f ) = B(f ) sinc(2πfD
c ) (new)
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Space-frequency domain

Between two sensors: ∀f1, f2 ∈ R,

corr[Fhi
(f1),Fhj

(f2)] =
e
−αD

c −2ıπ(f1−f2)(T+ D
2c

)
sinc(

π(f1+f2)D

c
)

1+ıπ
f1−f2
α

(new)
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Space-frequency domain

Between two sensors: ∀f1, f2 ∈ R,

corr[Fhi
(f1),Fhj

(f2)] =
e
−αD

c −2ıπ(f1−f2)(T+ D
2c

)
sinc(

π(f1+f2)D

c
)

1+ıπ
f1−f2
α

(new)

At one sensor (i = j , D = 0) with bi(t) white (T = 0):

corr[Fhi
(f1),Fhi

(f2]) = 1

1+ıπ
f1−f2

α

(Schroeder, 1962)

At one frequency (f1 = f2 = f ), with no attenuation (α = 0):

corr[Fhi
(f ),Fhj

(f )] = sinc(2πfD
c

) (Cook et al., 1955)
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Space-time-frequency domain

Between two sensors: ∀f ∈ R, ∀t ≥ 2T + D
2c ,

Whi ,hj
(t , f ) = B(f )e−2α(t−T )

sinc(2πfD
c ) (new)
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Space-time-frequency domain

Between two sensors: ∀f ∈ R, ∀t ≥ 2T + D
2c ,

Whi ,hj
(t , f ) = B(f )e−2α(t−T )

sinc(2πfD
c ) (new)

At one sensor (i = j , D = 0) ∀f ∈ R, ∀t ≥ 2T ,

Whi ,hi
(t , f ) = B(f )e−2α(t−T ) (Polack, 1988)

Time-frequency correlation: ∀f ∈ R, ∀t ≥ 2T + D
2c ,

Whi ,hj
(t,f )

Whi ,hi
(t,f ) = sinc(2πfD

c ) (new)
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Part VI

Experimental validation
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Time-frequency correlation (Roomsimove)
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Projection on the frequency axis
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Part VII

Conclusion
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Conclusion

Summary

New reverberation model that unifies and generalizes known results
Also applicable before the transition time:

– the Poisson distribution makes hi(t) impulsive in early reverberation

Perspectives
Acoustics

– Directional sources, directional microphones

– Non-perfectly diffuse acoustic fields

– Frequency-dependent attenuation α

Signal processing

– Fast algorithm to estimate the model in discrete time

– Applications: source separation, dereverberation,. . .



Page 32 / 32 Roland Badeau 26th European Signal Processing Conference (EUSIPCO)

September 6, 2018

Thank you!
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Work in progress

Polack (1988): the RIR at microphone i is

hi(t) = bi(t)e
−αt 1t≥0

where bi(t) is a centered stationary Gaussian process, whose

PSD B(f ) has slow variations

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Work in progress

Polack (1988): the RIR at microphone i is

hi(t) = bi(t)e
−αt 1t≥0

where bi(t) is a centered stationary Gaussian process, whose

PSD B(f ) has slow variations

Then the Wigner distribution of the RIR is

Whi ,hi
(t , f ) = B(f )e−2αt1t≥0.

J. D. Polack. La transmission de l’énergie sonore dans les salles.
PhD thesis, Université du Maine, Le Mans, France, 1988
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Work in progress (C4DM database)

Spectrogram of the RIR (dB)
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Polack (1988): the attenuation actually depends on the frequency:

Whi ,hi
(t , f ) = B(f )e−2α(f )t 1t≥0
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