

Bayesian Learning for Robot Audition

Keynote, HSCMA 2017, San Francisco

Christine Evers

Imperial College London Dept. Electrical and Electronic Engineering

Introduction

C. Evers \cdot Bayesian Learning for Robot Audition \cdot HSCMA 2017 - 2/45

Listening in Realistic Environments

Imperial College London

Listening in Realistic Environments

Imperial College London

Listening in Realistic Environments

Imperial College London

Acoustic Scene Mapping

- Estimate the positions of surrounding sources
- Focus and interact with users
- Situational awareness to react to stimuli in the environment

Socially assistive robots. Photo credit: SoftBank Robotics

Search-and-rescue robots. Photo credit: U.S. Army Space and Missile Defense Command

Impact

Smart homes. Photo credit: theappsolutions.com

Hearing aids. Photo credit: Oregon Lions Sight & Hearing Foundation

Impact

Virtual reality. Photo credit: Samsung

- Aim: Estimate source direction(s) at one time instance
- Generalized cross correlation (GCC), Multiple Signal Classification (MUSIC), Intensity vectors, ...

¹J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, "Robust Localization in Reverberant Rooms," in *Microphone Arrays*, Springer, 2001.

²J. Benesty, J. Chen, and Y. Huang, *Microphone Array Signal Processing*, Springer 2008.

Sound Source Localization

- Aim: Estimate source direction(s) at one time instance
- Generalized cross correlation (GCC), Multiple Signal Classification (MUSIC), Intensity vectors, ...

Localization Challenges

Localization Challenges

Localization Challenges

Localization & Tracking

Sound Source Localization

• Aim: Estimate source direction(s) at one time instance

Sound Source Localization

• Aim: Estimate source direction(s) at one time instance

Sound Source Tracking

- Utilize localization estimates as "measurements"
- Exploit temporal models of the source dynamics
- Estimate smoothed source trajectories over time

Acoustic Scene Mapping Challenges

Imperial College London

Bayesian Inference

C. Evers \cdot Bayesian Learning for Robot Audition \cdot HSCMA 2017 - $10\,/\,45$

Real-time Scene Mapping

- Sequential estimation required
- Tracking domain:
 - Each window of speech data considered one time step, t
 - Localization estimates at t: Measurements, z_t
 - Aim: Estimate source position, s_t from trajectory z_{1:t}
- **Probabilistic perspective:** Propagation of posterior density function (pdf)

Real-time Scene Mapping

- Tracking domain:
 - Each window of speech data considered one time step, t
 - Localization estimates at t: Measurements, z_t
 - Aim: Estimate source position, s_t from trajectory z_{1:t}
- **Probabilistic perspective:** Propagation of posterior density function (pdf)

$$p(\mathbf{s}_{t-1} \mid \mathbf{z}_{1:t-1}) \xrightarrow{f(\cdot)} p(\mathbf{s}_t \mid \mathbf{z}_{1:t})$$

Real-time Scene Mapping

- Sequential estimation required
- Tracking domain:
 - Each window of speech data considered one time step, t
 - Localization estimates at t: Measurements, z_t
 - Aim: Estimate source position, s_t from trajectory z_{1:t}
- **Probabilistic perspective:** Propagation of posterior density function (pdf)

$$p(\mathbf{s}_{t-1} | \mathbf{z}_{1:t-1}) \xrightarrow{f(\cdot)} p(\mathbf{s}_t | \mathbf{z}_{1:t}) \xrightarrow{f(\cdot)} p(\mathbf{s}_t | \mathbf{z}_{1:t}) \xrightarrow{f(\cdot)} p(\mathbf{s}_{t+1} | \mathbf{z}_{1:t+1})$$

Imperial College London

Bayesian Recipe

Step 1 - Probability transformation

Dynamical model:	$\mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{v}_t)$	$\stackrel{\text{Prior}}{\Rightarrow}$	$p\left(\left.\mathbf{s}_{t}\right \left.\mathbf{s}_{t-1}\right)\right.$
Measurement model:	$\mathbf{z}_t = h(\mathbf{s}_t, \mathbf{w}_t)$	$\stackrel{\rm Likelihood}{\Rightarrow}$	$p\left(\left.\mathbf{z}_{t}\right \right.\mathbf{s}_{t}\right)$

Bayesian Recipe

Step 1 - Probability transformation

Step 2 - Prediction using the prior

$$p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{z}_{1:t-1}\right)=\int p\left(\left.\mathbf{s}_{t-1}\right|\left.\mathbf{z}_{1:t-1}\right)p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{s}_{t-1}\right)d\mathbf{s}_{t-1}\right.\right)$$

Step 1 - Probability transformation

Step 2 - Prediction using the prior

$$p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{z}_{1:t-1}\right)=\int p\left(\left.\mathbf{s}_{t-1}\right|\left.\mathbf{z}_{1:t-1}\right)p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{s}_{t-1}\right)d\mathbf{s}_{t-1}\right.\right.$$

Step 3 - Bayes's theorem

$$p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{z}_{1:t}\right)=\frac{p\left(\left.\mathbf{z}_{t}\right|\left.\mathbf{s}_{t},\mathbf{z}_{1:t-1}\right)p\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{z}_{1:t-1}\right)\right)}{p\left(\left.\mathbf{z}_{t}\right|\left.\mathbf{z}_{1:t-1}\right)\right)}$$

Source DoA Tracking

C. Evers \cdot Bayesian Learning for Robot Audition \cdot HSCMA 2017 - 13 / 45

Tracking and Localization Errors

Dynamical Model of DoA
$$\boldsymbol{\omega}_{t} \triangleq \begin{bmatrix} \phi_{t}, \theta_{t}, \dot{\phi}_{t}, \dot{\theta}_{t} \end{bmatrix}^{T}$$

Source state: $\boldsymbol{\omega}_{t} = \vartheta \left(\mathbf{F}_{t} \boldsymbol{\omega}_{t-1} + \mathbf{v}_{t} \right)$ (1)
Constant-velocity dynamics: $\mathbf{F}_{t} \triangleq \begin{bmatrix} \mathbf{I}_{2} & \Delta_{t} \mathbf{I}_{2} \\ \mathbf{0}_{2 \times 2} & \mathbf{I}_{2} \end{bmatrix}$ (2)
where $\vartheta \left(\boldsymbol{\omega}_{t} \right) = \mod \left(\boldsymbol{\omega}_{t}, \left[2\pi, \pi, 2\pi, \pi \right]^{T} \right)$ and \mathbf{v}_{t} : process noise with covariance \mathbf{Q} .

(3)

Dynamical Model of DoA
$$\boldsymbol{\omega}_t \triangleq \begin{bmatrix} \phi_t, \theta_t, \dot{\phi}_t, \dot{\theta}_t \end{bmatrix}^T$$

Source state: $\boldsymbol{\omega}_t = \vartheta \left(\mathbf{F}_t \boldsymbol{\omega}_{t-1} + \mathbf{v}_t \right)$ (1)
Constant-velocity dynamics: $\mathbf{F}_t \triangleq \begin{bmatrix} \mathbf{I}_2 & \Delta_t \mathbf{I}_2 \\ \mathbf{0}_{2 \times 2} & \mathbf{I}_2 \end{bmatrix}$ (2)
where $\vartheta \left(\boldsymbol{\omega}_t \right) = \mod \left(\boldsymbol{\omega}_t, [2\pi, \pi, 2\pi, \pi]^T \right)$ and \mathbf{v}_t : process noise with
covariance \mathbf{Q} .
Measurement Model of localized DoA $\mathbf{z}_t \triangleq \begin{bmatrix} \hat{\phi}_t, \hat{\theta}_t \end{bmatrix}^T$

Source direction: $\mathbf{z}_t = \vartheta \left(\mathbf{H} \, \boldsymbol{\omega}_t + \mathbf{w}_t \right)$

where
$$\mathbf{H} \triangleq \begin{bmatrix} \mathbf{I}_2 & \mathbf{0}_{2 \times 2} \\ \mathbf{0}_{2 \times 4} \end{bmatrix}$$
 and \mathbf{w}_t : measurement noise with covariance \mathbf{R} .

 $|\phi_t, \theta_t|$

Single Source Tracking - Kalman Filter

For source constrained to area where 2π crossing is avoided:

- Approximate by linear state space
- Prior and likelihood: Gaussian

Single Source Tracking - Kalman Filter

For source constrained to area where 2π crossing is avoided:

- Approximate by linear state space
- Prior and likelihood: Gaussian

Prediction - Marginalization with Gaussian prior:

$$p\left(\boldsymbol{\omega}_{t} \mid \mathbf{z}_{1:t-1}\right) = \mathcal{N}\left(\boldsymbol{\omega}_{t} \mid \mathbf{m}_{t|t-1}, \boldsymbol{\Sigma}_{t|t-1}\right)$$

where $\mathbf{m}_{t|t-1} = \mathbf{F}_t \, \mathbf{m}_{t-1}$ and $\boldsymbol{\Sigma}_{t|t-1} = \mathbf{F}_t \, \boldsymbol{\Sigma}_{t-1} \, \mathbf{F}_t^T + \mathbf{Q}_t$

Single Source Tracking - Kalman Filter

For source constrained to area where 2π crossing is avoided:

- Approximate by linear state space
- Prior and likelihood: Gaussian

Prediction - Marginalization with Gaussian prior:

$$p\left(\boldsymbol{\omega}_{t} \mid \mathbf{z}_{1:t-1}\right) = \mathcal{N}\left(\boldsymbol{\omega}_{t} \mid \mathbf{m}_{t|t-1}, \boldsymbol{\Sigma}_{t|t-1}\right)$$

where
$$\mathbf{m}_{t|t-1} = \mathbf{F}_t \, \mathbf{m}_{t-1}$$
 and $\boldsymbol{\Sigma}_{t|t-1} = \mathbf{F}_t \, \boldsymbol{\Sigma}_{t-1} \, \mathbf{F}_t^T + \mathbf{Q}_t$

Update - Bayes's theorem for Gaussian likelihood:

$$p\left(\boldsymbol{\omega}_{t} \mid \mathbf{z}_{1:t}\right) = \mathcal{N}\left(\boldsymbol{\omega}_{t} \mid \mathbf{m}_{t}, \boldsymbol{\Sigma}_{t}\right)$$

where $\mathbf{m}_t = \mathbf{m}_{t|t-1} + \mathbf{K}_t \left(\mathbf{z}_t - \mathbf{H} \mathbf{m}_{t|t-1} \right)$ and $\mathbf{\Sigma}_t = \left(\mathbf{I}_4 - \mathbf{K}_t \mathbf{H} \right) \mathbf{\Sigma}_{t|t-1}$.

Classical DoA Tracking - Kalman Filter++

- Missing detections due to speech inactivity
- Sources may enter / leave the scene
- Initial source position unknown a priori

Multi-Source Tracking

Tracking, spurious & missing detections

Multi-Source Localization

Multi-Source Localization

- Time-varying number of unlabelled measurements
- Unknown, time-varying number of unknown source states

Multi-Hypothesis Tracking (MHT)

- **Hypothesis tree:** Enumerate exhaustively all association hypotheses across time
- Final time step: Backward-propagation to identify most likely path
- Computationally prohibitive for real-time processing

¹S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking," IEEE Aerosp. Electr. Sys. Mag., 2004.

²Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Syst. Mag., 2010.

Multi-Hypothesis Tracking (MHT)

- **Hypothesis tree:** Enumerate exhaustively all association hypotheses across time
- Final time step: Backward-propagation to identify most likely path
- Computationally prohibitive for real-time processing

Joint Probabilistic Data Association (JPDA)

- At each time step consider all association hypotheses, including spurious detections
- Use pruning after each time step to reduce computational complexity

¹S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking," IEEE Aerosp. Electr. Sys. Mag., 2004.

²Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Syst. Mag., 2010.

Multi-Hypothesis Tracking (MHT)

- **Hypothesis tree:** Enumerate exhaustively all association hypotheses across time
- Final time step: Backward-propagation to identify most likely path
- Computationally prohibitive for real-time processing

Joint Probabilistic Data Association (JPDA)

- At each time step consider all association hypotheses, including spurious detections
- Use pruning after each time step to reduce computational complexity
- Estimation of the number of sources typically selected heuristically

¹S. S. Blackman, "Multiple hypothesis tracking for multiple target tracking," IEEE Aerosp. Electr. Sys. Mag., 2004.

²Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Syst. Mag., 2010.

Multi-Source Tracking - Set Model

Random Finite Set (RFS) of sources

$$\boldsymbol{\Omega}_{t} = \left[\bigcup_{n=1}^{N_{t-1}} P(\boldsymbol{\omega}_{t-1,n})\right] \cup B_{t}.$$
(4)

$$P(\boldsymbol{\omega}_{t-1,n}) = \begin{cases} \boldsymbol{\omega}_{t,n}, & \text{if } \boldsymbol{\omega}_{t-1,n} \text{ persists} \\ \boldsymbol{\emptyset}, & \text{otherwise.} \end{cases}$$
(5)

where $|\mathbf{\Omega}_t| = N_t$ and B_t models the birth of previously inactive sources.

Multi-Source Tracking - Set Model

Imperial College London

Random Finite Set (RFS) of sources

$$\boldsymbol{\Omega}_{t} = \begin{bmatrix} \sum_{n=1}^{N_{t-1}} P(\boldsymbol{\omega}_{t-1,n}) \end{bmatrix} \cup B_{t}.$$
(4)

$$P(\boldsymbol{\omega}_{t-1,n}) = \begin{cases} \boldsymbol{\omega}_{t,n}, & \text{if } \boldsymbol{\omega}_{t-1,n} \text{ persists} \\ \boldsymbol{\emptyset}, & \text{otherwise.} \end{cases}$$
(5)

where $|\mathbf{\Omega}_t| = N_t$ and B_t models the birth of previously inactive sources.

Detection RFS of sources and early reflections

$$\mathbf{Z}_{t} = \left[\bigcup_{n=1}^{N_{t}} D(\boldsymbol{\omega}_{t,n})\right] \cup C_{t},$$
(6)

$$D(\boldsymbol{\omega}_{t,n}) = \begin{cases} \mathbf{z}_{t,m}, & \text{if } \boldsymbol{\omega}_{t,n} \text{ detected} \\ \emptyset, & \text{otherwise} \end{cases}$$
(7)

where $|\mathbf{Z}_t| = M_t$ and C_t models spurious detections.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\mathbf{\Omega}_t) \, \delta \mathbf{\Omega} \stackrel{?}{=}$$

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\boldsymbol{\Omega}_t) \, \delta \boldsymbol{\Omega} \stackrel{?}{=} p(\boldsymbol{\emptyset}).$$

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\boldsymbol{\Omega}_t) \, \delta \boldsymbol{\Omega} \stackrel{?}{=} p(\boldsymbol{\emptyset}) + \int p(\left\{\boldsymbol{\omega}_{t,1}\right\}) d\boldsymbol{\omega}_{t,1}.$$

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\boldsymbol{\Omega}_t) \, \delta \boldsymbol{\Omega} = p(\boldsymbol{\emptyset}) + \sum_{n=1}^\infty \frac{1}{n!} \int \ldots \int p(\left\{\boldsymbol{\omega}_{t,1}, \ldots, \boldsymbol{\omega}_{t,n}\right\}) d\boldsymbol{\omega}_{t,1} \ldots d\boldsymbol{\omega}_{t,n}.$$

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\boldsymbol{\Omega}_t)\,\delta\boldsymbol{\Omega} = p(\boldsymbol{\emptyset}) + \sum_{n=1}^\infty \frac{1}{n!}\int \dots \int p(\left\{\boldsymbol{\omega}_{t,1},\dots,\boldsymbol{\omega}_{t,n}\right\})d\boldsymbol{\omega}_{t,1}\dots d\boldsymbol{\omega}_{t,n}.$$

- Multi-source pdf is combinatorially intractable
- Approximate multi-source pdf by its first order moment:
 - Probability hypothesis density (PHD), $\lambda(\boldsymbol{\omega}_t \mid \mathbf{Z}_{1:t})$
 - Probability that one of the sources has state ω_t

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Imperial College London

• Number of sources, N_t , in RFS $\boldsymbol{\Omega}_t$ is time-varying and unknown

$$\int p(\boldsymbol{\Omega}_t) \, \delta \boldsymbol{\Omega} = p(\boldsymbol{\emptyset}) + \sum_{n=1}^\infty \frac{1}{n!} \int \ldots \int p(\left\{\boldsymbol{\omega}_{t,1}, \ldots, \boldsymbol{\omega}_{t,n}\right\}) d\boldsymbol{\omega}_{t,1} \ldots d\boldsymbol{\omega}_{t,n}.$$

- Multi-source pdf is combinatorially intractable
- Approximate multi-source pdf by its first order moment:
 - Probability hypothesis density (PHD), $\lambda(\boldsymbol{\omega}_t | \mathbf{Z}_{1:t})$
 - Probability that one of the sources has state ω_t

$$\int \lambda\left(\left.\boldsymbol{\omega}_{t}\right|\left.\mathbf{Z}_{1:t}\right)d\boldsymbol{\omega}_{t}=\mathbb{E}\left[N_{t}\right]$$

¹R. P. S. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Tran. Aerosp. Electr. Sys, 2003.

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

¹C. Evers *et al.*, "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_t \right) + \lambda^{\mathsf{missed}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t-1} \right) + \lambda^{\mathsf{detect}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t} \right)$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \right| \left.\mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \right| \left.\mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \right| \left.\mathbf{Z}_{1:t}\right)\right.$$

Newborn sources: Each DoA may originate from a new source

$$\lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{Z}_{t}\right)=\sum_{m=1}^{M_{t}}p_{b}\,\mathcal{N}\left(\mathbf{s}_{t}\left|\mathbf{z}_{t,m},\,\mathbf{R}\right.\right)$$

where p_b is the probability of source birth.

¹C. Evers et al., "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_t \right) + \lambda^{\mathsf{missed}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t-1} \right) + \lambda^{\mathsf{detect}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t} \right)$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_t \right) + \lambda^{\mathsf{missed}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t-1} \right) + \lambda^{\mathsf{detect}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t} \right)$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Missed detections: Any previously detected source may be missed:

$$\lambda^{\text{missed}}\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{Z}_{1:t-1}\right)=\sum_{j=1}^{J_{t|t-1}}w_{t|t-1}^{(j)}\mathcal{N}\left(\mathbf{s}_{t}\left|\mathbf{m}_{t|t-1}^{(j)},\mathbf{\Sigma}_{t|t-1}^{(j)}\right.\right)$$

where $\mathbf{m}_{t|t-1}$ and $\mathbf{\Sigma}_{t|t-1}$: Predicted Kalman filter mean / covariance

¹C. Evers et al., "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Missed detections: Any previously detected source may be missed:

$$\begin{split} \lambda^{\text{missed}} \left(\left. \mathbf{s}_{t} \right| \, \mathbf{Z}_{1:t-1} \right) &= \sum_{j=1}^{J_{t|t-1}} w_{t|t-1}^{(j)} \, \mathcal{N} \left(\mathbf{s}_{t} \, \big| \, \mathbf{m}_{t|t-1}^{(j)}, \, \mathbf{\Sigma}_{t|t-1}^{(j)} \right) \\ & w_{t|t-1}^{(j)} = p_{s} \left(1 - p_{d} \right) w_{t-1}^{(j)} \end{split}$$

where $\mathbf{m}_{t|t-1}$ and $\mathbf{\Sigma}_{t|t-1}$: Predicted Kalman filter mean / covariance

¹C. Evers *et al.*, "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_t \right) + \lambda^{\mathsf{missed}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t-1} \right) + \lambda^{\mathsf{detect}} \left(\left. \mathbf{s}_t \right| \, \mathbf{Z}_{1:t} \right)$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Detected sources: Any DoA may originate from the source

$$\lambda^{\text{detect}}\left(\left.\mathbf{s}_{t}\right|\left.\mathbf{Z}_{1:t}\right) = \sum_{m=1}^{M_{t}} p_{d} \sum_{j=1}^{J_{t|t-1}} w_{t}^{(j)} \mathcal{N}\left(\mathbf{s}_{t}\left|\mathbf{m}_{t}^{(j,m)}, \mathbf{\Sigma}_{t}^{(j,m)}\right.\right)$$

¹C. Evers et al., "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

Explicitly model sources, missing detections, and spurious detections:

$$\lambda(\mathbf{s}_t | \mathbf{Z}_{1:t}) = \lambda^{\mathsf{birth}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_t\right) + \lambda^{\mathsf{missed}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t-1}\right) + \lambda^{\mathsf{detect}}\left(\left.\mathbf{s}_t \mid \mathbf{Z}_{1:t}\right)\right.$$

Detected sources: Any DoA may originate from the source

$$w_t^{(j,m)} = p_d \frac{\mathcal{N}\left(\mathbf{z}_{t,m} \, \big| \mathbf{H}\mathbf{m}_{t|t-1}^{(j)}, \mathbf{S}_t^{(j)}\right)}{\kappa\left(\mathbf{z}_{t,m}\right) + \sum_{i=1}^{J_{t|t-1}} \mathcal{N}\left(\mathbf{z}_{t,m} \, \big| \mathbf{H}\mathbf{m}_{t|t-1}^{(i)}, \mathbf{S}_t^{(j)}\right)}$$

where
$$\mathbf{S}_{t}^{(j)} \triangleq \mathbf{H} \mathbf{\Sigma}_{t|t-1} \mathbf{H}^{T} + \mathbf{R}$$
 and $\kappa \left(\mathbf{z}_{t,m} \right) \triangleq \mathsf{FAR} \times \mathcal{U} \left[\mathsf{FoV} \right]$

¹C. Evers et al., "Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition", Proc. IEEE DSP, Singapore, 2015

GMMs for Audio-Visual Fusion

- Audio: Speech inactivity, reverberation / noise, interference
- Vision: Limited field-of-view, visual obstructions, lighting
- Complementary modalities

Multi-Modal Measurements

Visual face detector:

Sound source localization:

$$\begin{split} z_t^{(\upsilon)} &= g_\upsilon \left(\mathbf{x}_t, \mathbf{w}_t^{(\upsilon)} \right) \\ z_t^{(a)} &= g_a \left(\mathbf{x}_t, \mathbf{w}_t^{(a)} \right) \end{split}$$

Find out the details...

Friday, March 3, 13:00 - 14:40 (BATGIRL): ROBOT.5: Audio-Visual Tracking by Density Approximation in a Sequential Bayesian Filtering Framework

- Broadband nature of speech signals
- Peak picking difficult
- Each combination of ${\cal M}_t$ localized DoAs may contain information about the source

Multi-detection likelihood

$$p\left(\left.\mathbf{Z}_{t}\right|\right.\boldsymbol{\omega}_{t}\right) = \sum_{\mathbf{P} \boxminus \mathbf{Z}_{t}} \prod_{\ell \in \left(\mathbf{Z}_{t} - \mathbf{P}\right)} \kappa\left(\mathbf{z}(t,\ell)\right) \prod_{p \in \mathbf{P}} p\left(\left.\mathbf{z}(t,p)\right|\right.\boldsymbol{\omega}_{t}\right),$$

Find out the details...

Friday, March 3, 15:10 - 16:50 (BATGIRL): LOC.4: Speaker Tracking in Reverberant Environments using Multiple Directions of Arrival
Source Position Tracking

C. Evers · Bayesian Learning for Robot Audition · HSCMA 2017 - 28 / 45

Tracking Source Positions

Source Position Tracking - Model

Imperial College London

Dynamical Model of
$$\mathbf{s}_t \triangleq \left[x, y, z, \dot{x}, \dot{y}, \dot{z}\right]^T$$

Source state: $\mathbf{s}_t = \mathbf{D}_t \mathbf{s}_{t-1} + \mathbf{v}_t$ (8)

where \mathbf{D}_t : Langevin model¹, and Δ_t is the time step

Measurement Model of
$$\mathbf{z}_t \triangleq \left[\hat{\phi}_t, \hat{\theta}_t\right]^T$$

Source direction: $\mathbf{z}_t = h(\mathbf{s}_t)$

$$h(\mathbf{s}_t) + \mathbf{w}_t$$
 (9)

where $h(\cdot)$ is the Cartesian-to-spherical transformation.

¹E. A. Lehmann and R. C. Williamson, "Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments," EURASIP J. Adv. Signal Process., 2006.

Estimate 6D states from 2D measurements

Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

$$\boldsymbol{\mu}_{t} = \boldsymbol{\mu}_{t|t-1} + \mathbf{K}_{t} \left(\mathbf{z}_{t} - h \left(\boldsymbol{\mu}_{t|t-1} \right) \right)$$

where $\mu_{t|t-1}$ and μ_t are the predicted / updated KF mean of \mathbf{s}_t .

Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

$$\underbrace{\underline{\mu}_t}_{6\times 1} = \underbrace{\underline{\mu}_{t|t-1}}_{6\times 1} + \underbrace{\mathbf{K}_t}_{6\times 2} (\underbrace{\mathbf{z}_t}_{2\times 1} - \underbrace{h(\underline{\mu}_{t|t-1}}_{2\times 1}))$$

where $\boldsymbol{\mu}_{t|t-1}$ and $\boldsymbol{\mu}_t$ are the predicted / updated KF mean of $\mathbf{s}_t.$

Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

$$\underbrace{\underline{\mu}_t}_{6\times 1} = \underbrace{\underline{\mu}_{t|t-1}}_{6\times 1} + \underbrace{\mathbf{K}_t}_{6\times 2} (\underbrace{\mathbf{z}_t}_{2\times 1} - \underbrace{h(\underline{\mu}_{t|t-1}}_{2\times 1}))$$

where $\mu_{t|t-1}$ and μ_t are the predicted / updated KF mean of \mathbf{s}_t .

- Kalman gain: Map between state and measurement space
- Pre-populate KF mean with range hypothesis
- New directional information updated through measurements
- Range component is extrapolated through time

Imperial College London

Imperial College London

Imperial College London

Imperial College London

Acoustic SLAM

Simultaneous Localization and Mapping

¹C. Evers et al., "Acoustic Simultaneous Localization and Mapping (a-SLAM) of a Moving Microphone Array and its Surrounding Speakers", Proc. ICASSP, Shanghai, 2016.

²C. Evers *et al.*, "Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition", Proc. EUSIPCO, Budapest, 2016.

³C. Evers, A. H. Moore, and P. A. Naylor, "Towards Informative Path Planning for Acoustic SLAM", Proc. DAGA, Aachen, 2015.

Simultaneous Localization and Mapping

¹C. Evers et al., "Acoustic Simultaneous Localization and Mapping (a-SLAM) of a Moving Microphone Array and its Surrounding Speakers", Proc. ICASSP, Shanghai, 2016.

²C. Evers *et al.*, "Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition", Proc. EUSIPCO, Budapest, 2016.

³C. Evers, A. H. Moore, and P. A. Naylor, "Towards Informative Path Planning for Acoustic SLAM", Proc. DAGA, Aachen, 2015.

Simultaneous Localization and Mapping

- Acoustic Simultaneous Localization & Mapping (aSLAM):
 - Require sensor position to map moving sources
 - Use the scene map to estimate the sensor position / orientation

¹C. Evers *et al.*, "Acoustic Simultaneous Localization and Mapping (a-SLAM) of a Moving Microphone Array and its Surrounding Speakers", Proc. ICASSP, Shanghai, 2016.

²C. Evers et al., "Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition", Proc. EUSIPCO, Budapest, 2016.

³C. Evers, A. H. Moore, and P. A. Naylor, "Towards Informative Path Planning for Acoustic SLAM", Proc. DAGA, Aachen, 2015.

Approach 1: Active SLAM

- Active sensing for room geometry inference and sensor localization
- Cannot estimate source trajectories
- Intrusive / in current form not suitable for human-robot interaction

Approach 1: Active SLAM

- Active sensing for room geometry inference and sensor localization
- Cannot estimate source trajectories
- Intrusive / in current form not suitable for human-robot interaction

Approach 2: Classic visual-based SLAM

- Fundamental assumption: Static, continuously active sources
- Problematic for speech inactivity
- Prone to divergence for high false alarm rates

- Passive sensing for human-robot interaction
- Exploit directional information gleaned from surrounding sources
- Crucial robustness against reverb, speech inactivity, source motion
- Novel, generalized SLAM framework that jointly estimate:
 - a) A PHD filter for multi-source tracking
 - b) Estimate robot positions, by exploiting source map, robot reports, prior information about the robot motion

¹C. Evers and P. A. Naylor, "Generalized Dynamic Scene Mapping", submitted, IEEE Tran. Sig. Proc.

- Passive sensing for human-robot interaction
- Exploit directional information gleaned from surrounding sources
- Crucial robustness against reverb, speech inactivity, source motion
- Novel, generalized SLAM framework that jointly estimate:
 - a) A PHD filter for multi-source tracking
 - b) Estimate robot positions, by exploiting source map, robot reports, prior information about the robot motion

GEneralized Motion SLAM (GEM-SLAM)

$$\lambda\left(\left.\mathbf{S}_{t},\mathbf{r}_{t}\right|\left.\mathbf{Z}_{1:t},\mathbf{y}_{1:t}\right)=\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t}\right)\lambda\left(\left.\mathbf{S}_{t}\right|\left.\mathbf{r}_{t},\mathbf{Z}_{1:t}\right)\right.$$

¹C. Evers and P. A. Naylor, "Generalized Dynamic Scene Mapping", submitted, IEEE Tran. Sig. Proc.

- Passive sensing for human-robot interaction
- Exploit directional information gleaned from surrounding sources
- Crucial robustness against reverb, speech inactivity, source motion
- Novel, generalized SLAM framework that jointly estimate:
 - a) A PHD filter for multi-source tracking
 - b) Estimate robot positions, by exploiting source map, robot reports, prior information about the robot motion

GEneralized Motion SLAM (GEM-SLAM)

$$\lambda\left(\boldsymbol{\Omega}_{t}, \mathbf{r}_{t} \mid \mathbf{Z}_{1:t}, \mathbf{y}_{1:t}\right) = \lambda\left(\left.\mathbf{r}_{t} \mid \mathbf{y}_{1:t}\right) \underbrace{\lambda\left(\left.\mathbf{S}_{t} \mid \mathbf{r}_{t}, \mathbf{Z}_{1:t}\right)}^{\text{Source PHD}}$$

¹C. Evers and P. A. Naylor, "Generalized Dynamic Scene Mapping", submitted, IEEE Tran. Sig. Proc.

- Passive sensing for human-robot interaction
- Exploit directional information gleaned from surrounding sources
- Crucial robustness against reverb, speech inactivity, source motion
- Novel, generalized SLAM framework that jointly estimate:
 - a) A PHD filter for multi-source tracking
 - b) Estimate robot positions, by exploiting source map, robot reports, prior information about the robot motion

GEneralized Motion SLAM (GEM-SLAM)

$$\lambda\left(\left.\boldsymbol{\Omega}_{t}, \mathbf{r}_{t} \right| \left.\mathbf{Z}_{1:t}, \mathbf{y}_{1:t}\right) = \overbrace{\lambda\left(\left.\mathbf{r}_{t}\right| \left.\mathbf{y}_{1:t}\right)}^{\text{Robot PHD}} \lambda\left(\left.\mathbf{S}_{t}\right| \left.\mathbf{r}_{t}, \mathbf{Z}_{1:t}\right)\right.$$

¹C. Evers and P. A. Naylor, "Generalized Dynamic Scene Mapping", submitted, IEEE Tran. Sig. Proc.

Executed robot state,
$$\mathbf{r}_{t} \triangleq \begin{bmatrix} x_{t}, y_{t}, z_{t}, v_{t}, \gamma_{t} \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{p}_{t}^{T}, \gamma_{t} \end{bmatrix}^{T}$$
:
 $\mathbf{p}_{t} = \mathbf{G}(\gamma_{t}) \mathbf{p}_{t-1} + \mathbf{v}_{t,\mathbf{p}}$
 $\gamma_{t} = \vartheta(\gamma_{t-1} + v_{t,\gamma})$
 $\mathbf{G}(\gamma_{t}) \triangleq \begin{bmatrix} 1 & 0 & 0 & \Delta_{t} \sin \gamma_{t} \\ 0 & 1 & 0 & \Delta_{t} \cos \gamma_{t} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
where $\mathbf{p}_{t} \triangleq \begin{bmatrix} x_{t}, y_{t}, z_{t}, v_{t} \end{bmatrix}^{T}$ with speed, v_{t} , and orientation, γ_{t} .

Reported robot state:
$$\mathbf{y}_t \triangleq \begin{bmatrix} y_{t,v} & y_{t,\gamma} \end{bmatrix}^T$$
 $y_{t,v} = v_t + w_{t,v},$ $w_{t,v} \sim \mathcal{N}\left(0, \sigma_{w_{t,v}}^2\right)$ $y_{t,\gamma} = \vartheta\left(\gamma_t + w_{t,\gamma}\right),$ $w_{t,\gamma} \sim \mathcal{N}\left(0, \sigma_{w_{t,\gamma}}^2\right)$

Reported robot state: $\mathbf{y}_t \triangleq \big[y_{t,v}$	$[y_{t,\gamma}]^T$
$y_{t,v} = v_t + w_{t,v}, $	$w_{t,v} \sim \mathcal{N}\left(0, \sigma^2_{w_{t,v}}\right)$
$\boldsymbol{y}_{t,\gamma}=\vartheta\left(\gamma_t+\boldsymbol{w}_{t,\gamma}\right),$	$w_{t,\gamma} \sim \mathcal{N}\left(0, \sigma^2_{w_{t,\gamma}}\right)$

Non-linear orientation and dependency of position on orientation

- Particle filter to approximate robot density
- Classic SLAM: Prior importance sampling

GEM-SLAM - Optimized Particle Filter

Imperial College London

Imperial College London

Optimized particle filter of
$$\mathbf{\hat{r}}_{t}^{(i)} = \left[\left[\mathbf{\hat{p}}_{t}^{(i)}
ight]^{T}, \mathbf{\hat{\gamma}}_{t}^{(i)}
ight]^{T}$$

- Sampling of orientation, $\hat{\gamma}_t^{(i)}$, from wrapped Kalman filter:
- For each $\hat{\gamma}_t^{(i)}$, optimal sampling of pose, $\hat{\mathbf{p}}_t^{(i)}$, from Kalman filter

$$\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t},\mathbf{Z}_{t}\right)\approx\sum_{i=1}^{L}\alpha_{t}^{\left(i\right)}\delta_{\hat{\mathbf{r}}_{t}^{\left(i\right)}}\left(\mathbf{r}_{t}\right).$$

Imperial College London

Optimized particle filter of
$$\mathbf{\hat{r}}_{t}^{(i)} = \left[\left[\mathbf{\hat{p}}_{t}^{(i)}
ight]^{T}, \mathbf{\hat{\gamma}}_{t}^{(i)}
ight]^{T}$$

- Sampling of orientation, $\hat{\gamma}_t^{(i)}$, from wrapped Kalman filter:
- For each $\hat{\gamma}_t^{(i)}$, optimal sampling of pose, $\hat{\mathbf{p}}_t^{(i)}$, from Kalman filter

$$\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t},\mathbf{Z}_{t}\right)\approx\sum_{i=1}^{L}\alpha_{t}^{\left(i\right)}\delta_{\hat{\mathbf{r}}_{t}^{\left(i\right)}}\left(\mathbf{r}_{t}\right).$$

Particle weights

$$\alpha_t^{(i)} = \alpha_{t-1}^{(i)} \, p(\mathbf{z}_t | \hat{\gamma}_t^{(i)}, \hat{\mathbf{p}}_t^{(i)}) \, \mathcal{L}(\mathbf{Z}_t | \mathbf{r}_t^{(i)})$$

Optimized particle filter of
$$\mathbf{\hat{r}}_{t}^{(i)} = \left[\left[\mathbf{\hat{p}}_{t}^{(i)}
ight]^{T}, \mathbf{\hat{\gamma}}_{t}^{(i)}
ight]^{T}$$

- Sampling of orientation, $\hat{\gamma}_t^{(i)}$, from wrapped Kalman filter:
- For each $\hat{\gamma}_t^{(i)}$, optimal sampling of pose, $\hat{\mathbf{p}}_t^{(i)}$, from Kalman filter

$$\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t},\mathbf{Z}_{t}\right)\approx\sum_{i=1}^{L}\alpha_{t}^{\left(i\right)}\delta_{\hat{\mathbf{r}}_{t}^{\left(i\right)}}\left(\mathbf{r}_{t}\right).$$

Particle weights

$$\alpha_t^{(i)} = \underbrace{\alpha_{t-1}^{(i)}}_{\text{Previous particle weight}} p(\mathbf{y}_t | \hat{\gamma}_t^{(i,p)}, \hat{\mathbf{p}}_t^{(i,p)}) \, \mathcal{L}(\mathbf{Z}_t | \mathbf{r}_t^{(i,p)})$$

Optimized particle filter of
$$\mathbf{\hat{r}}_{t}^{(i)} = \left[\left[\mathbf{\hat{p}}_{t}^{(i)}
ight]^{T}, \mathbf{\hat{\gamma}}_{t}^{(i)}
ight]^{T}$$

- Sampling of orientation, $\hat{\gamma}_t^{(i)}$, from wrapped Kalman filter:
- For each $\hat{\gamma}_t^{(i)}$, optimal sampling of pose, $\hat{\mathbf{p}}_t^{(i)}$, from Kalman filter

$$\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t},\mathbf{Z}_{t}\right)\approx\sum_{i=1}^{L}\alpha_{t}^{\left(i\right)}\delta_{\hat{\mathbf{r}}_{t}^{\left(i\right)}}\left(\mathbf{r}_{t}\right).$$

Particle weights

$$\boldsymbol{\alpha}_t^{(i)} = \boldsymbol{\alpha}_{t-1}^{(i)} \quad \underline{p}(\mathbf{y}_t | \hat{\boldsymbol{\gamma}}_t^{(i)}, \hat{\mathbf{p}}_t^{(i)}) \quad \mathcal{L}(\mathbf{Z}_t | \mathbf{r}_t^{(i)})$$

Likelihood of robot reports

Optimized particle filter of
$$\mathbf{\hat{r}}_{t}^{(i)} = \left[\left[\mathbf{\hat{p}}_{t}^{(i)}
ight]^{T}, \widehat{\gamma}_{t}^{(i)}
ight]^{T}$$

- Sampling of orientation, $\hat{\gamma}_t^{(i)}$, from wrapped Kalman filter:
- For each $\hat{\gamma}_t^{(i)}$, optimal sampling of pose, $\hat{\mathbf{p}}_t^{(i)}$, from Kalman filter

$$\lambda\left(\left.\mathbf{r}_{t}\right|\left.\mathbf{y}_{1:t},\mathbf{Z}_{t}\right)\approx\sum_{i=1}^{L}\alpha_{t}^{\left(i\right)}\delta_{\hat{\mathbf{r}}_{t}^{\left(i\right)}}\left(\mathbf{r}_{t}\right).$$

Particle weights

$$\boldsymbol{\alpha}_t^{(i)} = \boldsymbol{\alpha}_{t-1}^{(i)} \, p(\mathbf{y}_t | \hat{\boldsymbol{\gamma}}_t^{(i)}, \hat{\mathbf{p}}_t^{(i)}) \qquad \underbrace{\mathcal{L}(\mathbf{Z}_t | \mathbf{r}_t^{(i)})}_{t}$$

where $\mathcal{L}\left(\left.\mathbf{Z}_{t} \mid \mathbf{r}_{t}\right) = e^{-N_{t|t-1}-N_{t,c}} \prod_{m=1}^{M_{t}} \left[\kappa\left(\left.\mathbf{z}_{t,m} \mid \mathbf{r}_{t}\right) + p\left(\left.\mathbf{z}_{t,m} \mid \mathbf{r}_{t}, \mathbf{Z}_{1:t-1}\right)\right]\right]$

Multi-measurement evidence

Imperial College London

Probabilistic anchoring by weighting with multi-measurement evidence

Imperial College London

Probabilistic anchoring by weighting with multi-measurement evidence

Probabilistic anchoring by weighting with multi-measurement evidence

LOCATA Challenge

C. Evers \cdot Bayesian Learning for Robot Audition \cdot HSCMA 2017 - 41 / 45

LOCATA Challenge & Corpus

Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann
Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving Arrays:

- 15-channel linear array
- 12-channel robot head
- 32-channel spherical mh-acoustic eigenmike

Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving arrays:

- 15-channel Linear array
- 12-channel robot head
- 32-channel spherical mh-acoustic eigenmike
- 4-channel hearing aids

Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving arrays:

- 15-channel Linear array
- 12-channel robot head
- 32-channel spherical mh-acoustic eigenmike
- 4-channel hearing aids

Static loudspeakers

Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving arrays:

- 15-channel Linear array
- 12-channel robot head
- 32-channel spherical mh-acoustic eigenmike
- 2-channel binaural hearing aids

Static loudspeakers Moving talkers

Imperial College London

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA) H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

C. Evers · Bayesian Learning for Robot Audition · HSCMA 2017 - 43/45

Imperial College London

Acknowledgement

• The HSCMA Organizing Committee

• Collaborators and Co-Authors:

- Patrick A. Naylor (Imperial College London)
- Sharon Gannot, Yuval Dorfan (Bar-Ilan University)
- Boaz Rafaely (Ben-Gurion University)
- Radu Horaud, Israel D. Gebru (INRIA)
- Walter Kellermann, Heinrich Löllmann, Hendrik Barfuss, Alexander Schmidt (Friedrich Alexander University)
- Verena Hafner, Heinrich Mellmann, Claas-Norman Ritter (Humboldt University Berlin)
- James R. Hopgood (University of Edinburgh)
- Daniel Clark (Heriot Watt University)

• Funding

- EPSRC Fellowship "Acoustic Signal Processing and Scene Analysis for Socially Assistive Robots"
- FP7 "Embodied Audition for RobotS" (EARS)