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Listening in Realistic Environments

Acoustic Scene Mapping

Estimate the positions of surrounding sources
Focus and interact with users
Situational awareness to react to stimuli in the environment
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Impact

Socially assistive robots. Photo credit: SoftBank Robotics
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Impact

Search-and-rescue robots. Photo credit: U.S. Army Space and Missile Defense Command
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Impact

Smart homes. Photo credit: theappsolutions.com
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Impact

Hearing aids. Photo credit: Oregon Lions Sight & Hearing Foundation
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Impact

Virtual reality. Photo credit: Samsung
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Sound Source Localization

Aim: Estimate source direction(s) at one time instance
Generalized cross correlation (GCC), Multiple Signal Classification
(MUSIC), Intensity vectors, ...

1J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust Localization in Reverberant Rooms,” in Microphone Arrays, Springer,
2001.

2J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing, Springer 2008.
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Localization & Tracking

Sound Source Localization
Aim: Estimate source direction(s) at one time instance
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Localization & Tracking

Sound Source Localization
Aim: Estimate source direction(s) at one time instance

Sound Source Tracking

Utilize localization estimates as “measurements”
Exploit temporal models of the source dynamics
Estimate smoothed source trajectories over time
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Source Position Tracking
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Source Position Tracking
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Acoustic Scene Mapping Challenges
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Bayesian Inference
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Real-time Scene Mapping

Sequential estimation required
Tracking domain:

Each window of speech data considered one time step, 𝑡
Localization estimates at 𝑡: Measurements, 𝐳𝑡
Aim: Estimate source position, 𝐬𝑡 from trajectory 𝐳1∶𝑡

Probabilistic perspective: Propagation of posterior density
function (pdf)
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Bayesian Recipe

Step 1 - Probability transformation

Dynamical model: 𝐬𝑡 = 𝑓(𝐬𝑡−1, 𝐯𝑡) Prior⇒ 𝑝 (𝐬𝑡 | 𝐬𝑡−1)

Measurement model: 𝐳𝑡 = ℎ(𝐬𝑡, 𝐰𝑡) Likelihood⇒ 𝑝 (𝐳𝑡 | 𝐬𝑡)
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Step 3 - Bayes’s theorem

𝑝 (𝐬𝑡 | 𝐳1∶𝑡) = 𝑝 (𝐳𝑡 | 𝐬𝑡, 𝐳1∶𝑡−1) 𝑝 (𝐬𝑡 | 𝐳1∶𝑡−1)
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SourceDoATracking
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Tracking and Localization Errors
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Classical DoA Tracking - Models

Dynamical Model of DoA 𝝎𝑡 ≜ [𝜙𝑡, 𝜃𝑡, ̇𝜙𝑡, ̇𝜃𝑡]
𝑇

Source state: 𝝎𝑡 = 𝜗 (𝐅𝑡𝝎𝑡−1 + 𝐯𝑡) (1)

Constant-velocity dynamics: 𝐅𝑡 ≜ [ 𝐈2 Δ𝑡𝐈2
𝟎2×2 𝐈2

] (2)

where 𝜗 (𝝎𝑡) = mod (𝝎𝑡, [2𝜋, 𝜋, 2𝜋, 𝜋]𝑇 ) and 𝐯𝑡: process noise with
covariance 𝐐.
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] (2)

where 𝜗 (𝝎𝑡) = mod (𝝎𝑡, [2𝜋, 𝜋, 2𝜋, 𝜋]𝑇 ) and 𝐯𝑡: process noise with
covariance 𝐐.

Measurement Model of localized DoA 𝐳𝑡 ≜ [ ̂𝜙𝑡, ̂𝜃𝑡]
𝑇

Source direction: 𝐳𝑡 = 𝜗 (𝐇 𝝎𝑡 + 𝐰𝑡) (3)

where 𝐇 ≜ [ 𝐈2 𝟎2×2
𝟎2×4

] and 𝐰𝑡: measurement noise with covariance 𝐑.
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Single Source Tracking - Kalman Filter

For source constrained to area where 2𝜋 crossing is avoided:
Approximate by linear state space
Prior and likelihood: Gaussian
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𝑡 + 𝐐𝑡
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where 𝐦𝑡|𝑡−1 = 𝐅𝑡 𝐦𝑡−1 and 𝚺𝑡|𝑡−1 = 𝐅𝑡 𝚺𝑡−1 𝐅𝑇
𝑡 + 𝐐𝑡

Update - Bayes’s theorem for Gaussian likelihood:

𝑝 (𝝎𝑡 | 𝐳1∶𝑡) = 𝒩 (𝝎𝑡 ∣𝐦𝑡, 𝚺𝑡)

where 𝐦𝑡 = 𝐦𝑡|𝑡−1 + 𝐊𝑡 (𝐳𝑡 − 𝐇𝐦𝑡|𝑡−1) and 𝚺𝑡 = (𝐈4 − 𝐊𝑡𝐇) 𝚺𝑡|𝑡−1.
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Single Source Tracking - Kalman Filter

Source DoA Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 17 / 45



Classical DoA Tracking - Kalman Filter++

Missing detections due to speech inactivity
Sources may enter / leave the scene
Initial source position unknown a priori
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Multi-SourceTracking
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Tracking, spurious & missing detections
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Multi-Source Localization
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Multi-Source Localization

Time-varying number of unlabelled measurements
Unknown, time-varying number of unknown source states
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Classical Multi-Source Tracking

Multi-Hypothesis Tracking (MHT)

Hypothesis tree: Enumerate exhaustively all association hypotheses
across time
Final time step: Backward-propagation to identify most likely path
Computationally prohibitive for real-time processing

1S. S. Blackman, “Multiple hypothesis tracking for multiple target tracking,” IEEE Aerosp. Electr. Sys. Mag., 2004.
2Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control Syst. Mag., 2010.
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Joint Probabilistic Data Association (JPDA)

At each time step consider all association hypotheses, including
spurious detections
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Classical Multi-Source Tracking

Multi-Hypothesis Tracking (MHT)

Hypothesis tree: Enumerate exhaustively all association hypotheses
across time
Final time step: Backward-propagation to identify most likely path
Computationally prohibitive for real-time processing

Joint Probabilistic Data Association (JPDA)

At each time step consider all association hypotheses, including
spurious detections
Use pruning after each time step to reduce computational complexity
Estimation of the number of sources typically selected heuristically

1S. S. Blackman, “Multiple hypothesis tracking for multiple target tracking,” IEEE Aerosp. Electr. Sys. Mag., 2004.
2Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control Syst. Mag., 2010.
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Multi-Source Tracking - Set Model

Random Finite Set (RFS) of sources

𝛀𝑡 = [
𝑁𝑡−1

⋃
𝑛=1

𝑃(𝝎𝑡−1,𝑛)] ∪ 𝐵𝑡. (4)

𝑃(𝝎𝑡−1,𝑛) = { 𝝎𝑡,𝑛, if 𝝎𝑡−1,𝑛 persists
∅, otherwise. (5)

where |𝛀𝑡| = 𝑁𝑡 and 𝐵𝑡 models the birth of previously inactive sources.

Multi-Source Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 23 / 45



Multi-Source Tracking - Set Model

Random Finite Set (RFS) of sources
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⋃
𝑛=1

𝑃(𝝎𝑡−1,𝑛)] ∪ 𝐵𝑡. (4)

𝑃(𝝎𝑡−1,𝑛) = { 𝝎𝑡,𝑛, if 𝝎𝑡−1,𝑛 persists
∅, otherwise. (5)

where |𝛀𝑡| = 𝑁𝑡 and 𝐵𝑡 models the birth of previously inactive sources.

Detection RFS of sources and early reflections

𝐙𝑡 = [
𝑁𝑡

⋃
𝑛=1

𝐷(𝝎𝑡,𝑛)] ∪ 𝐶𝑡, (6)

𝐷(𝝎𝑡,𝑛) = { 𝐳𝑡,𝑚, if 𝝎𝑡,𝑛 detected
∅, otherwise (7)

where |𝐙𝑡| = 𝑀𝑡 and 𝐶𝑡 models spurious detections.
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Multi-Source Tracking - Generalization

Number of sources, 𝑁𝑡, in RFS 𝛀𝑡 is time-varying and unknown

Integrals for random finite sets

∫ 𝑝(𝛀𝑡)𝛿𝛀 ?=

1R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Tran. Aerosp. Electr. Sys, 2003.

Multi-Source Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 24 / 45



Multi-Source Tracking - Generalization

Number of sources, 𝑁𝑡, in RFS 𝛀𝑡 is time-varying and unknown

Integrals for random finite sets

∫ 𝑝(𝛀𝑡)𝛿𝛀 ?= 𝑝(∅).

1R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Tran. Aerosp. Electr. Sys, 2003.

Multi-Source Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 24 / 45



Multi-Source Tracking - Generalization

Number of sources, 𝑁𝑡, in RFS 𝛀𝑡 is time-varying and unknown
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Multi-source pdf is combinatorially intractable
Approximate multi-source pdf by its first order moment:

Probability hypothesis density (PHD), 𝜆 (𝝎𝑡 | 𝐙1∶𝑡)
Probability that one of the sources has state 𝝎𝑡

1R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Tran. Aerosp. Electr. Sys, 2003.
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Approximate multi-source pdf by its first order moment:

Probability hypothesis density (PHD), 𝜆 (𝝎𝑡 | 𝐙1∶𝑡)
Probability that one of the sources has state 𝝎𝑡

∫ 𝜆 (𝝎𝑡 | 𝐙1∶𝑡) 𝑑𝝎𝑡 = 𝔼 [𝑁𝑡]

1R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Tran. Aerosp. Electr. Sys, 2003.
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Multi-Source Tracking - Gaussian Mixture PHD

Posterior Source PHD
Explicitly model sources, missing detections, and spurious detections:

𝜆(𝐬𝑡|𝐙1∶𝑡) = 𝜆birth (𝐬𝑡 | 𝐙𝑡) + 𝜆missed (𝐬𝑡 | 𝐙1∶𝑡−1) + 𝜆detect (𝐬𝑡 | 𝐙1∶𝑡)

1C. Evers et al., “Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition”, Proc. IEEE DSP, Singapore, 2015
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Multi-Source Tracking - Gaussian Mixture PHD

Posterior Source PHD
Explicitly model sources, missing detections, and spurious detections:

𝜆(𝐬𝑡|𝐙1∶𝑡) = 𝜆birth (𝐬𝑡 | 𝐙𝑡) + 𝜆missed (𝐬𝑡 | 𝐙1∶𝑡−1) + 𝜆detect (𝐬𝑡 | 𝐙1∶𝑡)

Newborn sources: Each DoA may originate from a new source

𝜆birth (𝐬𝑡 | 𝐙𝑡) =
𝑀𝑡

∑
𝑚=1

𝑝𝑏 𝒩 (𝐬𝑡 ∣𝐳𝑡,𝑚, 𝐑)

where 𝑝𝑏 is the probability of source birth.

1C. Evers et al., “Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition”, Proc. IEEE DSP, Singapore, 2015
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Missed detections: Any previously detected source may be missed:

𝜆missed (𝐬𝑡 | 𝐙1∶𝑡−1) =
𝐽𝑡|𝑡−1

∑
𝑗=1

𝑤(𝑗)
𝑡|𝑡−1 𝒩 (𝐬𝑡 ∣𝐦(𝑗)

𝑡|𝑡−1, 𝚺(𝑗)
𝑡|𝑡−1)

where 𝐦𝑡|𝑡−1 and 𝚺𝑡|𝑡−1: Predicted Kalman filter mean / covariance
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Posterior Source PHD
Explicitly model sources, missing detections, and spurious detections:

𝜆(𝐬𝑡|𝐙1∶𝑡) = 𝜆birth (𝐬𝑡 | 𝐙𝑡) + 𝜆missed (𝐬𝑡 | 𝐙1∶𝑡−1) + 𝜆detect (𝐬𝑡 | 𝐙1∶𝑡)

Detected sources: Any DoA may originate from the source

𝜆detect (𝐬𝑡 | 𝐙1∶𝑡) =
𝑀𝑡

∑
𝑚=1

𝑝𝑑

𝐽𝑡|𝑡−1

∑
𝑗=1

𝑤(𝑗)
𝑡 𝒩 (𝐬𝑡 ∣𝐦(𝑗,𝑚)

𝑡 , 𝚺(𝑗,𝑚)
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Posterior Source PHD
Explicitly model sources, missing detections, and spurious detections:

𝜆(𝐬𝑡|𝐙1∶𝑡) = 𝜆birth (𝐬𝑡 | 𝐙𝑡) + 𝜆missed (𝐬𝑡 | 𝐙1∶𝑡−1) + 𝜆detect (𝐬𝑡 | 𝐙1∶𝑡)

Detected sources: Any DoA may originate from the source

𝑤(𝑗,𝑚)
𝑡 = 𝑝𝑑

𝒩 (𝐳𝑡,𝑚 ∣𝐇𝐦(𝑗)
𝑡|𝑡−1, 𝐒(𝑗)

𝑡 )

𝜅 (𝐳𝑡,𝑚) +
𝐽𝑡|𝑡−1
∑
𝑖=1

𝒩 (𝐳𝑡,𝑚 ∣𝐇𝐦(𝑖)
𝑡|𝑡−1, 𝐒(𝑗)

𝑡 )

where 𝐒(𝑗)
𝑡 ≜ 𝐇𝚺𝑡|𝑡−1 𝐇𝑇 + 𝐑 and 𝜅 (𝐳𝑡,𝑚) ≜ FAR × 𝒰 [FoV]

1C. Evers et al., “Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition”, Proc. IEEE DSP, Singapore, 2015
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GMMs for Audio-Visual Fusion

Audio: Speech inactivity, reverberation / noise, interference
Vision: Limited field-of-view, visual obstructions, lighting
Complementary modalities

Multi-Modal Measurements

Visual face detector: 𝑧(𝑣)
𝑡 = 𝑔𝑣 (𝐱𝑡, 𝐰(𝑣)

𝑡 )
Sound source localization: 𝑧(𝑎)

𝑡 = 𝑔𝑎 (𝐱𝑡, 𝐰(𝑎)
𝑡 )

Find out the details...
Friday, March 3, 13:00 - 14:40 (BATGIRL):
ROBOT.5: Audio-Visual Tracking by Density Approximation in a
Sequential Bayesian Filtering Framework
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GMMs for Broadband Speech

Broadband nature of speech signals
Peak picking difficult
Each combination of 𝑀𝑡 localized DoAs may contain information
about the source

Multi-detection likelihood

𝑝 (𝐙𝑡 | 𝝎𝑡) = ∑
𝐏⊟𝐙𝑡

∏
ℓ∈(𝐙𝑡−𝐏)

𝜅 (𝐳(𝑡, ℓ)) ∏
𝑝∈𝐏

𝑝 (𝐳(𝑡, 𝑝) | 𝝎𝑡) ,

Find out the details...
Friday, March 3, 15:10 - 16:50 (BATGIRL):
LOC.4: Speaker Tracking in Reverberant Environments using Multiple
Directions of Arrival
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SourcePositionTracking

Source Position Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 28 / 45



Tracking Source Positions

1C. Evers, A. H. Moore, and P. A. Naylor, “Towards Informative Path Planning for Acoustic SLAM”, Proc. DAGA, Aachen, 2015.
2C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor, “Source Tracking using Moving Microphone Arrays for Robot Audition”, accepted Proc.

ICASSP, New Orleans, 2016.
3Y. Dorfan, C. Evers, S. Gannot, P. A. Naylor, “Speaker Localization with Moving Microphone Arrays”, Proc. EUSIPCO, Budapest,

2016.
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Source Position Tracking - Model

Dynamical Model of 𝐬𝑡 ≜ [𝑥, 𝑦, 𝑧, ̇𝑥, ̇𝑦, ̇𝑧]𝑇

Source state: 𝐬𝑡 = 𝐃𝑡𝐬𝑡−1 + 𝐯𝑡 (8)

where 𝐃𝑡: Langevin model1, and ∆𝑡 is the time step

Measurement Model of 𝐳𝑡 ≜ [ ̂𝜙𝑡, ̂𝜃𝑡]
𝑇

Source direction: 𝐳𝑡 = ℎ (𝐬𝑡) + 𝐰𝑡 (9)

where ℎ(⋅) is the Cartesian-to-spherical transformation.

1E. A. Lehmann and R. C. Williamson, “Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and
Tracking in Reverberant Environments,” EURASIP J. Adv. Signal Process., 2006.

Source Position Tracking C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 30 / 45



Unmeasured Range Inference

Estimate 6D states from 2D measurements
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Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

𝝁𝑡 = 𝝁𝑡|𝑡−1 + 𝐊𝑡 (𝐳𝑡 − ℎ (𝝁𝑡|𝑡−1))

where 𝝁𝑡|𝑡−1 and 𝝁𝑡 are the predicted / updated KF mean of 𝐬𝑡.
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Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

𝝁𝑡⏟
6×1

= 𝝁𝑡|𝑡−1⏟
6×1

+ 𝐊𝑡⏟
6×2

( 𝐳𝑡⏟
2×1

− ℎ(𝝁𝑡|𝑡−1⏟
2×1

))

where 𝝁𝑡|𝑡−1 and 𝝁𝑡 are the predicted / updated KF mean of 𝐬𝑡.
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Unmeasured Range Inference

Estimate 6D states from 2D measurements

Kalman filter (KF) update equation

𝝁𝑡⏟
6×1

= 𝝁𝑡|𝑡−1⏟
6×1

+ 𝐊𝑡⏟
6×2

( 𝐳𝑡⏟
2×1

− ℎ(𝝁𝑡|𝑡−1⏟
2×1

))

where 𝝁𝑡|𝑡−1 and 𝝁𝑡 are the predicted / updated KF mean of 𝐬𝑡.

Kalman gain: Map between state and measurement space
Pre-populate KF mean with range hypothesis
New directional information updated through measurements
Range component is extrapolated through time
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Range Inference - Probabilistic Triangulation

1C. Evers et al., “Bearing-only Acoustic Tracking of Moving Speakers for Robot Audition”, Proc. IEEE DSP, Singapore, 2015.
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AcousticSLAM
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Acoustic SLAM
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Simultaneous Localization and Mapping

1C. Evers et al., “Acoustic Simultaneous Localization and Mapping (a-SLAM) of a Moving Microphone Array and its Surrounding
Speakers”, Proc. ICASSP, Shanghai, 2016.

2C. Evers et al., “Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition”, Proc. EUSIPCO,
Budapest, 2016.

3C. Evers, A. H. Moore, and P. A. Naylor, “Towards Informative Path Planning for Acoustic SLAM”, Proc. DAGA, Aachen, 2015.
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Simultaneous Localization and Mapping

Acoustic Simultaneous Localization & Mapping (aSLAM):
Require sensor position to map moving sources
Use the scene map to estimate the sensor position / orientation

1C. Evers et al., “Acoustic Simultaneous Localization and Mapping (a-SLAM) of a Moving Microphone Array and its Surrounding
Speakers”, Proc. ICASSP, Shanghai, 2016.

2C. Evers et al., “Localization of Moving Microphone Arrays from Moving Sound Sources for Robot Audition”, Proc. EUSIPCO,
Budapest, 2016.

3C. Evers, A. H. Moore, and P. A. Naylor, “Towards Informative Path Planning for Acoustic SLAM”, Proc. DAGA, Aachen, 2015.
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SLAM for Audio - Literature

Approach 1: Active SLAM

Active sensing for room geometry inference and sensor localization
Cannot estimate source trajectories
Intrusive / in current form not suitable for human-robot interaction
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SLAM for Audio - Literature

Approach 1: Active SLAM

Active sensing for room geometry inference and sensor localization
Cannot estimate source trajectories
Intrusive / in current form not suitable for human-robot interaction

Approach 2: Classic visual-based SLAM

Fundamental assumption: Static, continuously active sources
Problematic for speech inactivity
Prone to divergence for high false alarm rates
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Acoustic SLAM - Objectives

Novel, Generalized Framework

Passive sensing for human-robot interaction
Exploit directional information gleaned from surrounding sources
Crucial robustness against reverb, speech inactivity, source motion
Novel, generalized SLAM framework that jointly estimate:

a) A PHD filter for multi-source tracking
b) Estimate robot positions, by exploiting source map, robot reports,

prior information about the robot motion

1C. Evers and P. A. Naylor, “Generalized Dynamic Scene Mapping”, submitted, IEEE Tran. Sig. Proc.
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GEneralized Motion SLAM (GEM-SLAM)

𝜆 (𝐒𝑡, 𝐫𝑡 | 𝐙1∶𝑡, 𝐲1∶𝑡) = 𝜆 (𝐫𝑡 | 𝐲1∶𝑡) 𝜆 (𝐒𝑡 | 𝐫𝑡, 𝐙1∶𝑡)

1C. Evers and P. A. Naylor, “Generalized Dynamic Scene Mapping”, submitted, IEEE Tran. Sig. Proc.

Acoustic SLAM C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 37 / 45



Acoustic SLAM - Objectives

Novel, Generalized Framework

Passive sensing for human-robot interaction
Exploit directional information gleaned from surrounding sources
Crucial robustness against reverb, speech inactivity, source motion
Novel, generalized SLAM framework that jointly estimate:

a) A PHD filter for multi-source tracking
b) Estimate robot positions, by exploiting source map, robot reports,

prior information about the robot motion

GEneralized Motion SLAM (GEM-SLAM)

𝜆 (𝛀𝑡, 𝐫𝑡 | 𝐙1∶𝑡, 𝐲1∶𝑡) = 𝜆 (𝐫𝑡 | 𝐲1∶𝑡)
Source PHD

⏞⏞⏞⏞⏞⏞⏞𝜆 (𝐒𝑡 | 𝐫𝑡, 𝐙1∶𝑡)

1C. Evers and P. A. Naylor, “Generalized Dynamic Scene Mapping”, submitted, IEEE Tran. Sig. Proc.

Acoustic SLAM C. Evers ⋅ Bayesian Learning for Robot Audition ⋅ HSCMA 2017 - 37 / 45



Acoustic SLAM - Objectives

Novel, Generalized Framework

Passive sensing for human-robot interaction
Exploit directional information gleaned from surrounding sources
Crucial robustness against reverb, speech inactivity, source motion
Novel, generalized SLAM framework that jointly estimate:

a) A PHD filter for multi-source tracking
b) Estimate robot positions, by exploiting source map, robot reports,

prior information about the robot motion

GEneralized Motion SLAM (GEM-SLAM)

𝜆 (𝛀𝑡, 𝐫𝑡 | 𝐙1∶𝑡, 𝐲1∶𝑡) =
Robot PHD

⏞⏞⏞⏞⏞𝜆 (𝐫𝑡 | 𝐲1∶𝑡) 𝜆 (𝐒𝑡 | 𝐫𝑡, 𝐙1∶𝑡)
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GEM-SLAM - Model

Executed robot state, 𝐫𝑡 ≜ [𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑣𝑡, 𝛾𝑡]
𝑇 = [𝐩𝑇

𝑡 , 𝛾𝑡]
𝑇 :

𝐩𝑡 = 𝐆 (𝛾𝑡) 𝐩𝑡−1 + 𝐯𝑡,𝐩

𝛾𝑡 = 𝜗(𝛾𝑡−1 + 𝑣𝑡,𝛾) 𝐆 (𝛾𝑡) ≜
⎡
⎢⎢
⎣

1 0 0 ∆𝑡 sin 𝛾𝑡
0 1 0 ∆𝑡 cos 𝛾𝑡
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

where 𝐩𝑡 ≜ [𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑣𝑡]𝑇 with speed, 𝑣𝑡, and orientation, 𝛾𝑡.
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⎡
⎢⎢
⎣

1 0 0 ∆𝑡 sin 𝛾𝑡
0 1 0 ∆𝑡 cos 𝛾𝑡
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

where 𝐩𝑡 ≜ [𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑣𝑡]𝑇 with speed, 𝑣𝑡, and orientation, 𝛾𝑡.

Reported robot state: 𝐲𝑡 ≜ [𝑦𝑡,𝑣 𝑦𝑡,𝛾]𝑇

𝑦𝑡,𝑣 = 𝑣𝑡 + 𝑤𝑡,𝑣, 𝑤𝑡,𝑣 ∼ 𝒩 (0, 𝜎2
𝑤𝑡,𝑣 )

𝑦𝑡,𝛾 = 𝜗 (𝛾𝑡 + 𝑤𝑡,𝛾) , 𝑤𝑡,𝛾 ∼ 𝒩 (0, 𝜎2
𝑤𝑡,𝛾 )
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GEM-SLAM - Model
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⎥⎥
⎦

where 𝐩𝑡 ≜ [𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑣𝑡]𝑇 with speed, 𝑣𝑡, and orientation, 𝛾𝑡.

Reported robot state: 𝐲𝑡 ≜ [𝑦𝑡,𝑣 𝑦𝑡,𝛾]𝑇

𝑦𝑡,𝑣 = 𝑣𝑡 + 𝑤𝑡,𝑣, 𝑤𝑡,𝑣 ∼ 𝒩 (0, 𝜎2
𝑤𝑡,𝑣 )

𝑦𝑡,𝛾 = 𝜗 (𝛾𝑡 + 𝑤𝑡,𝛾) , 𝑤𝑡,𝛾 ∼ 𝒩 (0, 𝜎2
𝑤𝑡,𝛾 )

Non-linear orientation and dependency of position on orientation
Particle filter to approximate robot density
Classic SLAM: Prior importance sampling
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GEM-SLAM - Optimized Particle Filter
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GEM-SLAM - Optimized Particle Filter

Optimized particle filter of ̂𝐫(𝑖)
𝑡 = [[�̂�(𝑖)

𝑡 ]𝑇 , ̂𝛾(𝑖)
𝑡 ]

𝑇

Sampling of orientation, ̂𝛾(𝑖)
𝑡 , from wrapped Kalman filter:

For each ̂𝛾(𝑖)
𝑡 , optimal sampling of pose, �̂�(𝑖)

𝑡 , from Kalman filter

𝜆 (𝐫𝑡 | 𝐲1∶𝑡, 𝐙𝑡) ≈
𝐿

∑
𝑖=1

𝛼(𝑖)
𝑡 𝛿�̂�(𝑖)

𝑡
(𝐫𝑡) .
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𝛼(𝑖)
𝑡 𝛿�̂�(𝑖)

𝑡
(𝐫𝑡) .

Particle weights

𝛼(𝑖)
𝑡 = 𝛼(𝑖)

𝑡−1 𝑝(𝐳𝑡|�̂�(𝑖)
𝑡 , �̂�(𝑖)

𝑡 ) ℒ(𝐙𝑡|𝐫(𝑖)
𝑡 )
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𝑡
(𝐫𝑡) .

Particle weights

𝛼(𝑖)
𝑡 = 𝛼(𝑖)

𝑡−1⏟
Previous particle weight

𝑝(𝐲𝑡|�̂�(𝑖,𝑝)
𝑡 , �̂�(𝑖,𝑝)

𝑡 ) ℒ(𝐙𝑡|𝐫(𝑖,𝑝)
𝑡 )
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GEM-SLAM - Optimized Particle Filter

Optimized particle filter of ̂𝐫(𝑖)
𝑡 = [[�̂�(𝑖)

𝑡 ]𝑇 , ̂𝛾(𝑖)
𝑡 ]

𝑇
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𝐿

∑
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𝑡
(𝐫𝑡) .

Particle weights
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𝑡 = 𝛼(𝑖)

𝑡−1 𝑝(𝐲𝑡|�̂�(𝑖)
𝑡 , �̂�(𝑖)

𝑡 )⏟⏟⏟⏟⏟⏟⏟
Likelihood of robot reports

ℒ(𝐙𝑡|𝐫(𝑖)
𝑡 )
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GEM-SLAM - Optimized Particle Filter

Optimized particle filter of ̂𝐫(𝑖)
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𝑡 ]

𝑇

Sampling of orientation, ̂𝛾(𝑖)
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For each ̂𝛾(𝑖)
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𝐿
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𝑡 𝛿�̂�(𝑖)

𝑡
(𝐫𝑡) .

Particle weights

𝛼(𝑖)
𝑡 = 𝛼(𝑖)

𝑡−1 𝑝(𝐲𝑡|�̂�(𝑖)
𝑡 , �̂�(𝑖)

𝑡 ) ℒ(𝐙𝑡|𝐫(𝑖)
𝑡 )⏟⏟⏟⏟⏟

Multi-measurement evidence

where ℒ (𝐙𝑡 | 𝐫𝑡) = 𝑒−𝑁𝑡|𝑡−1−𝑁𝑡,𝑐
𝑀𝑡
∏

𝑚=1
[𝜅 (𝐳𝑡,𝑚 ∣ 𝐫𝑡) + 𝑝 (𝐳𝑡,𝑚 ∣ 𝐫𝑡, 𝐙1∶𝑡−1)]
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GEM-SLAM - Probabilistic Anchoring

Probabilistic anchoring by weighting with multi-measurement
evidence
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LOCATA Challenge & Corpus

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA)
H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann
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LOCATA Challenge & Corpus

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA)
H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving Arrays:
15-channel linear array
12-channel robot head
32-channel spherical
mh-acoustic eigenmike
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IEEE AASP Challenge: LOCalization and TrAcking (LOCATA)
H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving arrays:
15-channel Linear array
12-channel robot head
32-channel spherical
mh-acoustic eigenmike
4-channel hearing aids
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LOCATA Challenge & Corpus

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA)
H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

Static & Moving arrays:
15-channel Linear array
12-channel robot head
32-channel spherical
mh-acoustic eigenmike
2-channel binaural hearing aids

Static loudspeakers
Moving talkers
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LOCATA Challenge & Corpus

IEEE AASP Challenge: LOCalization and TrAcking (LOCATA)
H. Löllmann, C. Evers, H. Barfuß, P. A. Naylor, W. Kellermann

@ LOCATAChallenge
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