Parametric Time-Frequency-Domain Spatial Audio – Delivering Sound According to Human Spatial Resolution

Ville Pulkki

Acoustics lab
Department of Signal Processing and Acoustics
School of Electrical Engineering
Aalto University, Helsinki, Finland

16-Oct-2017
Spatial sound

- Spatial: Where is it? / How far is it?
- Spectral: What is it?
Reproduction of spatial sound
Reproduction of spatial sound

[Diagram showing capture, modification, reproduction, and synthesis]

- Relay the perception
Reproduction of spatial sound

- Relay the perception
- Synthesize a desired perception
Reproduction of monophonic sound

- Auditory nerve outputs should match between original and reproduced sound
Perceptual audio coding

- Reproduced signal does not have to be PCM samples of $x(t)$
Perceptual audio coding

- Reproduced signal does not have to be PCM samples of $x(t)$
- In perceptual approaches the signal is a frequency-band representation with various masking effects taken into account
Perceptual audio coding

- Reproduced signal does not have to be PCM samples of $x(t)$
- In perceptual approaches the signal is a frequency-band representation with various masking effects taken into account
- What is the "signal" in spatial audio?
Examples of sound fields

- Circular wave
- Plane wave
- Two plane waves
- Diffuse field
Physical approach: Wave field synthesis

- If you reproduce the sound field totally, of course you will perceive the same space.
If you reproduce the sound field totally, of course you will perceive the same space.

- 2D: Need of hundreds of loudspeakers, 3D: hundreds of thousands of loudspeakers
Physical approach: Wave field synthesis

- If you reproduce the sound field totally, of course you will perceive the same space.
- 2D: Need of hundreds of loudspeakers, 3D: hundreds of thousands of loudspeakers
- Quality issues: spatial aliasing causes colorations, low frequency effects
If you reproduce the sound field totally, of course you will perceive the same space.

- 2D: Need of hundreds of loudspeakers, 3D: hundreds of thousands of loudspeakers
- Quality issues: spatial aliasing causes colorations, low frequency effects
- Only synthesized content, no microphone techniques available
Physical approach: B-format recording

- Signals with directional patterns following to spherical harmonics
Physical approach: B-format recording

- Signals with directional patterns following to spherical harmonics
- Reproduce plane-wave expansion over loudspeakers
First-order B-format recording

Captures signals with zeroth-order and first-order spherical harmonics

www.soundfield.com
First-order B-format recording

- Captures signals with zeroth-order and first-order spherical harmonics
- Pressure signal W. 3D velocity signals XYZ.
First-order Ambisonics

- Weighted sum of WXYZ signals (mixing, matrixing)
First-order Ambisonics

- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals
First-order Ambisonics

- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals
- Spectral and spatial issues, very small listening area
First-order Ambisonics

- Weighted sum of WXYZ signals (mixing, matrixing)
- High coherence between loudspeaker signals
- Spectral and spatial issues, very small listening area
- Moderate issues with low-frequency noise and spatial aliasing
Higher-order Ambisonics

- More spherical harmonics captured
Higher-order Ambisonics

- More spherical harmonics captured
- Better resolution, more expensive devices
Higher-order Ambisonics

- More spherical harmonics captured
- Better resolution, more expensive devices
- Good quality in limited frequency window
Higher-order Ambisonics

- More spherical harmonics captured
- Better resolution, more expensive devices
- Good quality in limited frequency window
- Emphasized problems with low-frequency noise and high-frequency aliasing
Spatial sound perception

- Physical methods for spatial sound have shortcomings
Spatial sound perception

- Physical methods for spatial sound have shortcomings
- Lets have a look on human spatial hearing
Spatial sound perception

- Physical methods for spatial sound have shortcomings
- Let's have a look on human spatial hearing
- Could we bypass the problems somehow
Human spatial hearing

- One ear alone knows quite little of direction
Human spatial hearing

- One ear alone knows quite little of direction
- Response to very large range of wavelengths (2cm–30m)
The perception of space is formed in signal analysis by the brains.
The perception of space is formed in signal analysis by the brains.

Signal characteristics in one ear / Signal differences between two ears.
The perception of space is formed in signal analysis by the brains.

Signal characteristics in one ear / Signal differences between two ears.

Hearing mechanisms estimate the location of the source(s) and also the properties of the room.
Monaural and binaural cues that carry spatial information

- Binaural differences depending on frequency and time
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)
Monaural and binaural cues that carry spatial information

- Binaural differences depending on frequency and time
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)
- Head-related spectral cues, depending on time
Monaural and binaural cues that carry spatial information

- Binaural differences depending on frequency and time
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)
- Head-related spectral cues, depending on time
- Dynamic change of cues depending on head movements
Monaural and binaural cues that carry spatial information

- Binaural differences depending on frequency and time
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)
- Head-related spectral cues, depending on time
- Dynamic change of cues depending on head movements

Could we reproduce these cues somehow?
Reproducing spatial cues?

- Binaural recording → binaural playback, yes, but...
Reproducing spatial cues?

- Binaural recording → binaural playback, yes, but...
 - complicated to reproduce dynamic cues and individual HRTF characteristics
Reproducing spatial cues?

- Binaural recording \rightarrow binaural playback, yes, but...
 - complicated to reproduce dynamic cues and individual HRTF characteristics
- How could we reproduce spatial auditory cues, if
 - input comes from a B-format microphone, and
Reproducing spatial cues?

- Binaural recording → binaural playback, yes, but...
 - complicated to reproduce dynamic cues and individual HRTF characteristics
- How could we reproduce spatial auditory cues, if
 - input comes from a B-format microphone, and
 - output goes either to loudspeakers or headphones?
Reproducing spatial cues?

- Binaural recording → binaural playback, yes, but...
 - complicated to reproduce dynamic cues and individual HRTF characteristics
- How could we reproduce spatial auditory cues, if
 - input comes from a B-format microphone, and
 - output goes either to loudspeakers or headphones?
- Let’s have a look at characteristic cases of sound fields
Plane wave
Plane wave

- Real field:
 - Consistent ITD, ILD and spectral cues
 - Accurate localization in most cases
Plane wave

- Real field:
 - Consistent ITD, ILD and spectral cues
 - Accurate localization in most cases

- Reproduced field:
 - Should be reproduced as a plane wave preserving the spectral content
Several plane waves separated in frequency

- Real field
 - Perceived as individual auditory objects
Several plane waves separated in frequency

- Real field
 - Perceived as individual auditory objects
- Reproduced field
 - Spatial characteristics should be preserved
Several plane waves overlapping in frequency

- Real field:
 - Localization may be erroneous
 - Large difference in DOAs \rightarrow blurred auditory image
Several plane waves overlapping in frequency

- Real field:
 - Localization may be erroneous
 - Large difference in DOAs → blurred auditory image

- Reproduced field
 - Reproduce spectral content right
 - *Spatial reconstruction does not have to be accurate!*
Diffuse field

- **Real field:**
 - Often perceived surrounding the listener
 - Not sensitive to the instantaneous spatial fine structure of wave field
Diffuse field

- Real field:
 - Often perceived surrounding the listener
 - Not sensitive to the instantaneous spatial fine structure of wave field

- Reproduced field:
 - Reproduce spectral content right
 - *Spatial reconstruction does not have to be accurate!*
Parametric time-frequency-domain spatial audio
Parametric time-frequency-domain spatial audio

- Microphone or loudspeaker signals
- Time-frequency analysis
- Signals in TF domain
- Spatial analysis
- Spatial metadata in TF domain
- Spatial synthesis
- Loudspeaker or headphone signals

Separation of wave field to plane waves and residual
Reproduce plane waves with point-like virtual sources
Reproduce the residual with surrounding method
Parametric time-frequency-domain spatial audio

Separation of wave field to plane waves and residual
Parametric time-frequency-domain spatial audio

- Separation of wave field to plane waves and residual
- Reproduce plane waves with point-like virtual sources
Parametric time-frequency-domain spatial audio

- Separation of wave field to plane waves and residual
- Reproduce plane waves with point-like virtual sources
- Reproduce the residual with surrounding method
First approach: upmixing of stereo to multichannel

\[G(z) z^{-D} \]

- Avendano & Jot [JAES, 2004]
 (Demo 2002 in AES 22nd Conf.)
First approach: upmixing of stereo to multichannel

Extract panned and ambient components from two-channel stereophonic input.

\[G(z) z^D \]
First approach: upmixing of stereo to multichannel

- Extract panned and ambient components from two-channel stereophonic input.
- Use amplitude panning to reproduce "panned" components.
First approach: upmixing of stereo to multichannel

- Extract panned and ambient components from two-channel stereophonic input
- Use amplitude panning to reproduce "panned" components
- Reproduce ambient component with surround loudspeakers
Coded multichannel audio

Faller & Baumgarte [IEEE Trans. on Speech and Audio Processing, 2003]
Coding of multichannel audio

- Faller & Baumgarte [IEEE Trans. on Speech and Audio Processing, 2003]
- Inter-channel differences are used as metadata
Coding of multichannel audio

- Faller & Baumgarte [IEEE Trans. on Speech and Audio Processing, 2003]
- Inter-channel differences are used as metadata
- Huge savings in data rate
Reproduction of recorded spatial sound

- 1999-2000: First-order B-format has some kind of Cartesian coordinate system, why does it not work?

- 2000: first idea of steering sound according to analyzed direction

- Collaboration with Juha Merimaa 2001–

- Spatial impulse response rendering (SIRR), Merimaa & Pulkki [WASPAA 2013]

- Directional audio coding (DirAC), Pulkki [JAES 2007]
Reproduction of recorded spatial sound

- 1999-2000: First-order B-format has some kind of Cartesian coordinate system, why does it not work?
- 2000: first idea of steering sound according to analyzed direction
Reproduction of recorded spatial sound

- 1999-2000: First-order B-format has some kind of Cartesian coordinate system, why does it not work?
- 2000: first idea of steering sound according to analyzed direction
- Collaboration with Juha Merimaa 2001–
Reproduction of recorded spatial sound

- 1999-2000: First-order B-format has some kind of Cartesian coordinate system, why does it not work?
- 2000: first idea of steering sound according to analyzed direction
- Collaboration with Juha Merimaa 2001–
- Spatial impulse response rendering (SIRR), Merimaa & Pulkki [WASPA 2013]
- Directional audio coding (DirAC), Pulkki [JAES 2007]
Assumptions in DirAC

- At one time-frequency-position a listener perceives a direction if the ear canal signals are coherent. If they are not, a spatially broad auditory component is perceived.

Good reproduction quality is obtained if we reproduce correctly the spectrum of sound and diffuseness, and if diffuseness is low, direction can also be perceived. We thus indirectly assume that the sound field consists of single plane wave and diffuse component independently at each frequency band.
Assumptions in DirAC

- At one time-frequency-position a listener
 - perceives a direction if the ear canal signals are coherent
Assumptions in DirAC

- At one time-frequency-position a listener
 - perceives a direction if the ear canal signals are coherent
 - perceives a spatially broad auditory component if the ear canal signals are not coherent
Assumptions in DirAC

- At one time-frequency-position a listener
 - perceives a direction if the ear canal signals are coherent
 - perceives a spatially broad auditory component if the ear canal signals are not coherent
- Good reproduction quality is obtained, if we reproduce correctly the spectrum of sound and
 - diffuseness,

Ville Pulkki 16-Oct-2017
Acoustics lab
Assumptions in DirAC

- At one time-frequency-position a listener
 - perceives a direction if the ear canal signals are coherent
 - perceives a spatially broad auditory component if the ear canal signals are not coherent
- Good reproduction quality is obtained, if we reproduce correctly the spectrum of sound and
 - diffuseness,
 - and if diffuseness is low: also direction
Assumptions in DirAC

- At one time-frequency-position a listener
 - perceives a direction if the ear canal signals are coherent
 - perceives a spatially broad auditory component if the ear canal signals are not coherent
- Good reproduction quality is obtained, if we reproduce correctly the spectrum of sound and
 - diffuseness,
 - and if diffuseness is low: also direction

We thus indirectly assume thus that the sound field consists of single plane wave and diffuse component independently at each frequency band
"Teleconference" implementation

[Diagram of a teleconference audio processing system]

[Pulkki, AES Conv 2006]
Acoustical quantities measured with first-order B-format microphone

Pressure:
\[p(n) = \left(\frac{1}{s}\right)b_w(n) \]

3D velocity vector:
\[u(n) = -\frac{1}{(s\rho_0 c\sqrt{2})} \begin{bmatrix} b_x(n) \\ b_y(n) \\ b_z(n) \end{bmatrix} \]

3D intensity vector:
\[i(n) = p(n)u(n) \]

Instantaneous energy:
\[e = \frac{\rho_0}{2} ||u||^2 + |p|^2 / 2\rho_0 c^2 \]
Analysis of spatial parameters

Direction: intensity vector

\[\text{DOA} = \angle \mathbf{E}[-\mathbf{i}] \]

Diffuseness: net flow / total energy

\[\psi = 1 - \frac{||\mathbf{E}[\mathbf{i}]||}{cE[\mathbf{e}]} \]

temporal fluctuation of \(\mathbf{i} \)

\[\psi = \sqrt{1 - \frac{||\mathbf{E}[\mathbf{i}]||}{E[||\mathbf{i}||]} } \]
Analysis of spatial parameters

Direction: intensity vector

DOA = \angle E[-i]

Diffuseness net flow / total energy

\psi = 1 - \frac{||E[i]||}{cE[e]}

temporal fluctuation of i

\psi = \sqrt{1 - \frac{||E[i]||}{E[|i|]}}

Robust to small deviations from ideal microphone characteristics
Analysis of spatial parameters

Direction: intensity vector

DOA = \angle E[\mathbf{i}]

Diffuseness net flow / total energy

\psi = 1 - \frac{||E[i]||}{cE[e]}

\psi = \sqrt{1 - \frac{||E[i]||}{E[||i||]}}

- Robust to small deviations from ideal microphone characteristics
- Measures energetic properties of sound field within given frequency band, useful?
"Teleconference" implementation
Example with low-end 3-microphone 2D array

Two speech sources in ±45°, anechoic chamber
▷ Sound captured with one of the microphones
Examples of soft masks for non-diffuse stream

Rendering to 8-channel octagonal loudspeaker setup
▷ Mono ▷ ND2ch ▷ D2ch ▷ ND+D2ch ▷ ALL CHAN
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
- Sources on opposite sides of the microphone with spectral overlap
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
- Sources on opposite sides of the microphone with spectral overlap
 - Severe model mismatch
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
- Sources on opposite sides of the microphone with spectral overlap
 - Severe model mismatch
 - Timbral artifacts: "added room effect", "smearing of transients"
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
- Sources on opposite sides of the microphone with spectral overlap
 - Severe model mismatch
 - Timbral artifacts: "added room effect", "smearing of transients"
 - Spatial artifacts: "sources pull each other"
Properties of teleconference-DirAC

- Very good quality with spectrally non-overlapping sources in free field
- Diffuse reverberation subject to spatial and timbral artifacts
- Sources on opposite sides of the microphone with spectral overlap
 - Severe model mismatch
 - Timbral artifacts: "added room effect", "smearing of transients"
 - Spatial artifacts: "sources pull each other"
 - Sources near noise masking threshold: impossible to localize

Why these artifacts?
"HQ" implementation

This works better, but don't exactly know why (2007).
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely

Challenging acoustical conditions
- Surrounding applause signals
- Small rooms with strong early reflections
- Several sources overlapping in spectrum
- Potential loss of energy
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely
- Some artifacts still present
- Challenging acoustical conditions
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely
- Some artifacts still present
- Challenging acoustical conditions
 - Surrounding applause signals
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely
- Some artifacts still present
- Challenging acoustical conditions
 - Surrounding applause signals
 - Small rooms with strong early reflections
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely
- Some artifacts still present
- Challenging acoustical conditions
 - Surrounding applause signals
 - Small rooms with strong early reflections
 - Several sources overlapping in spectrum
Properties of HQ-DirAC

- All teleconference-DirAC artifacts are mitigated largely
- Some artifacts still present
- Challenging acoustical conditions
 - Surrounding applause signals
 - Small rooms with strong early reflections
 - Several sources overlapping in spectrum
- Potential loss of energy
Limitations of differential arrays

- Low-frequency noise
Limitations of differential arrays

- Low-frequency noise
 - Instable direction and diffuseness estimation
 - Mitigated with temporal integration
Limitations of differential arrays

- Low-frequency noise
 - Instable direction and diffuseness estimation
 - Mitigated with temporal integration
- Spatial aliasing
Limitations of differential arrays

- Low-frequency noise
 - Instable direction and diffuseness estimation
 - Mitigated with temporal integration
- Spatial aliasing
 - Highly biased directional values
 - In some cases can be mitigated
Square array

- Pressure gradient
- Square arrays of omni microphones, B-format microphones
- LF noise, HF aliasing
- Ahonen, del Galdo et al [JAES 2012]
Arrays with shadowing

\[\tilde{i}_x(n, k) = |p_1(n, k)|^2 - |p_2(n, k)|^2, \]
\[\tilde{i}_y(n, k) = |p_3(n, k)|^2 - |p_4(n, k)|^2, \]

When capsule signals are available, and some shadowing takes place
Arrays with shadowing

\[
\tilde{i}_x(n, k) = |p_1(n, k)|^2 - |p_2(n, k)|^2,
\]

\[
\tilde{i}_y(n, k) = |p_3(n, k)|^2 - |p_4(n, k)|^2,
\]

- When capsule signals are available, and some shadowing takes place
- LF+MF: pressure gradient
- HF: energy gradient
Arrays with shadowing

\[\tilde{i}_x(n, k) = |p_1(n, k)|^2 - |p_2(n, k)|^2, \]
\[\tilde{i}_y(n, k) = |p_3(n, k)|^2 - |p_4(n, k)|^2, \]

- When capsule signals are available, and some shadowing takes place
- LF+MF: pressure gradient
- HF: energy gradient
- A-format microphones, cylinder arrays and spherical arrays
Other microphone arrays with DirAC

- Multiple microphones in array: ESPRIT by Thiergart, Kratschmer et al, [AES Conv 2011]
Other microphone arrays with DirAC

- Multiple microphones in array: ESPRIT by Thiergart, Kratschmer et al, [AES Conv 2011]
- Two microphones, cross-correlation: Kratschmer, Thiergart et al [AES Conv 2012]
Other microphone arrays with DirAC

- Multiple microphones in array: ESPRIT by Thiergart, Kratschmer et al, [AES Conv 2011]
- Two microphones, cross-correlation: Kratschmer, Thiergart et al [AES Conv 2012]
- Basically any DOA analysis method can be applied
HQ-DirAC subjective tests

- HQ-DirAC, comparison to reference scenario with 24 loudspeakers
- Largest issues with spatially complex scenarios audible as small timbral artifacts
- Vilkamo [JAES 2009]
Sources of timbral artifacts

- Diffuse sound leaks into non-diffuse stream
 - This has not found to be a problem

- Non-diffuse sound leaks into diffuse stream
- Transients are decorrelated, causing annoying smearing
- Direct sound is decorrelated, "added room effect", or "sources are perceived too far" issues

Target for development: minimize decorrelated energy!
Sources of timbral artifacts

- Diffuse sound leaks into non-diffuse stream
 - This has not found to be a problem
- Non-diffuse sound leaks into diffuse stream
 - Major problem
 - Transients are decorrelated, causing annoying smearing
 - Direct sound is decorrelated, "added room effect", or "sources are perceived too far" issues
Sources of timbral artifacts

- Diffuse sound leaks into non-diffuse stream
 - This has not found to be a problem
- Non-diffuse sound leaks into diffuse stream
 - Major problem
 - Transients are decorrelated, causing annoying smearing
 - Direct sound is decorrelated, "added room effect", or "sources are perceived too far" issues
- Target for development: minimize decorrelated energy!
How to avoid decorrelation

- Processing of transients separately

[2011] Laitinen, Kuech et al.

Covariance-domain processing

minimize decorrelated energy

Divide sound field into sectors from higher-order recording

perform separate analysis for each sector

Perform more elaborate analysis to sound field (e.g., multiple DOA values), Thiergart [IEEE TASLP, 2014]
How to avoid decorrelation

- Processing of transients separately
 - Recognize transients
 - Use better time resolution / bypass decorrelation [Laitinen, Kuech et al. 2011]
How to avoid decorrelation

- Processing of transients separately
 - Recognize transients
 - Use better time resolution / bypass decorrelation [Laitinen, Kuech et al. 2011]

- Covariance-domain processing
 - Minimize decorrelated energy
How to avoid decorrelation

- Processing of transients separately
 - Recognize transients
 - Use better time resolution / bypass decorrelation [Laitinen, Kuech et al. 2011]

- Covariance-domain processing
 - minimize decorrelated energy

- Divide sound field into sectors from higher-order recording
 - perform separate analysis for each sector
How to avoid decorrelation

- Processing of transients separately
 - Recognize transients
 - Use better time resolution / bypass decorrelation [Laitinen, Kuech et al. 2011]
- Covariance-domain processing
 - Minimize decorrelated energy
- Divide sound field into sectors from higher-order recording
 - Perform separate analysis for each sector
- Perform more elaborate analysis to sound field (e.g., multiple DOA values), Thiergart [IEEE TASLP, 2014]
Covariance-domain processing

Least-squares optimized solution for synthesis

- the covariance matrix of output is dictated by directional parameters
- optimized mixing solution leads to minimization of decorrelated energy

[Vilkamo, Bäckström, Kuntz: JAES 2013]
Covariance-domain processing

- DirAC analysis
 - DOA and ψ
- Estimation of C_b
- Formulation of target covariance C_y
- Prototype matrix Q_b
- Loudspeaker locations

- Frequency band
- B-format signal b
 - with covariance C_b
- Mixing using Q_b
- Decorrelators
- Optimal mixing
 - Main signal
 - Residual signal
- Optimal mixing
- Estimation of covariance
- Prototype matrix $Q_r = I$

Audio signal
Parametric data
Solutions with different model of the sound field

- Higher number of microphones gives more information about sound field
Solutions with different model of the sound field

- Higher number of microphones gives more information about sound field
- How to use that information in sound reproduction?
Solutions with different model of the sound field

- Higher number of microphones gives more information about sound field
- How to use that information in sound reproduction?
- Divide sound field into sectors (Pulkki, Politis), perform lower-order reproduction for each
Solutions with different model of the sound field

- Higher number of microphones gives more information about sound field
- How to use that information in sound reproduction?
- Divide sound field into sectors (Pulkki, Politis), perform lower-order reproduction for each
- Analyze multiple DOAs, and then reproduce (Thiergart & Habets, Mouchtaris group, Berge)
Sector-based parametric spatial sound reproduction

Sound field

SF divided virtually into sectors

Energetic analysis

DirAC 1

DirAC 2

DirAC 3

Covariance domain rendering

2nd-order B-format

1st-order B-format

[Politis et al: IEEE J. Selected Topics Sig Proc 9.5 (2015)]
Sector-based parametric spatial sound reproduction

Sound field

matrixing

DirAC 1

DirAC 2

DirAC 3

Target cov mtx formation

Reproduction
Sector-based parametric spatial sound reproduction

"Higher-order DirAC"
Sector-based parametric spatial sound reproduction

"Higher-order DirAC"

- Challenging acoustical conditions occur rarely within sectors
Sector-based parametric spatial sound reproduction

"Higher-order DirAC"

- Challenging acoustical conditions occur rarely within sectors
- Parameters computed with N:th -order input
- Audio signals used in synthesis obtained with (N-1):th -order input
- Self-noise issue of higher-order microphones are also avoided
Sector-based parametric spatial sound reproduction

"Higher-order DirAC"

- Challenging acoustical conditions occur rarely within sectors
- Parameters computed with N:th -order input
- Audio signals used in synthesis obtained with (N-1):th -order input
- Self-noise issue of higher-order microphones are also avoided
- System does not lose acoustic energy in any case
Sectors for HO-microphones

Different frequency bands utilize different number of sectors
Processing

\[b_{kl} = A_{kl}a_{kl} + B_{kl}d_{kl} \]

- HOA signals \(a(t) \)
- TFT/FB
- \(a_{kl} \)
- sector beamforming
- analysis signals \(a_{pv,w} \)
- sector analysis
- sector parameters \(\theta_j, \phi_j, \psi_j, E_j \)
- optimal mixing
- \(b_{kl} \)
- invTFT/FB
- \(b(t) \)
- processing order \(N \)
- sector beamformer design
- loudspeaker layout/HRTFs
- VBAP gains/HRTF pre-processing
- Linear/ambisonic decoding matrix \(D_{ls} \) or \(D_{bin} \)
Subjective evaluation

- [Politis & Vilkamo & Pulkki
IEEE J. Selected Topics Sig
Proc 9.5 (2015)]

- Reference: 28 loudspeakers
in anechoic chamber, very
challenging 3D sound
environments

- Test: Eigenmic recording,
playback over HO-DirAC,
1st-order DirAC, 4th-order
Ambisonics, 1st-order
Ambisonics
Why does HO-DirAC provide better results?

- Spatially separated plane waves sharing the same frequency are processed in different sectors.
Why does HO-DirAC provide better results?

- Spatially separated plane waves sharing the same frequency are processed in different sectors.
- Global diffuse field is not diffuse in individual sectors, nevertheless, the combined output is again diffuse.
Why does HO-DirAC provide better results?

- Spatially separated plane waves sharing the same frequency are processed in different sectors.
- Global diffuse field is not diffuse in individual sectors, nevertheless, the combined output is again diffuse.
- Avoidance of decorrelation!
HO-DirAC for head-tracked headphones

- Processing optimized for dynamic rendering
HO-DirAC for head-tracked headphones

- Processing optimized for dynamic rendering
- Sector-based computation is used to derive covariance matrices
HO-DirAC for head-tracked headphones

- Processing optimized for dynamic rendering
- Sector-based computation is used to derive covariance matrices
- WASPAA 2017: Wed 10:30–12:30 Enhancement of ambisonic binaural reproduction... Politis, McCormack, Pulkki
HO-DirAC for head-tracked headphones

- Processing optimized for dynamic rendering
- Sector-based computation is used to derive covariance matrices
- WASPAA 2017: Wed 10:30–12:30 *Enhancement of ambisonic binaural reproduction...* Politis, McCormack, Pulkki
- DEMOS AVAILABLE
Time-frequency spatial audio in general

- You can lay down the assumptions differently
Time-frequency spatial audio in general

- You can lay down the assumptions differently
- Different applications exist
Time-frequency spatial audio in general

- You can lay down the assumptions differently
- Different applications exist
- A number of methods for different tasks in spatial audio have resulted in
Time-frequency spatial audio in general

- You can lay down the assumptions differently
- Different applications exist
- A number of methods for different tasks in spatial audio have resulted in
- ... and we have edited a book about that. :-)
Book

- 15 chapters, 416 pages
- Matlab code
- Available in Dec 2017
Analysis and synthesis

- Time-frequency processing – methods and tools

 J. Vilkamo, T. Bäckström
Analysis and synthesis

- Time-frequency processing – methods and tools
 J. Vilkamo, T. Bäckström

- Spatial decomposition by spherical array processing
 D. L. Alon and B. Rafaely
Analysis and synthesis

- Time-frequency processing – methods and tools
 J. Vilkamo, T. Bäckström

- Spatial decomposition by spherical array processing
 D. L. Alon and B. Rafaely

- Sound Field Analysis using Sparse Recovery
 C. T. Jin, N. Epain and T. Noohi
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki

- First-order directional audio coding (DirAC)
 V. Pulkki, M.-V. Laitinen, J. Vilkamo, and J. Ahonen
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki

- First-order directional audio coding (DirAC)
 V. Pulkki, M.-V. Laitinen, J. Vilkamo, and J. Ahonen

- Higher-order Directional Audio Coding
 A. Politis and V. Pulkki
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki

- First-order directional audio coding (DirAC)
 V. Pulkki, M.-V. Laitinen, J. Vilkamo, and J. Ahonen

- Higher-order Directional Audio Coding
 A. Politis and V. Pulkki

- Multi-channel sound acquisition using a multi-wave sound field model
 O. Thiergart and E. Habets
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki

- First-order directional audio coding (DirAC)
 V. Pulkki, M.-V. Laitinen, J. Vilkamo, and J. Ahonen

- Higher-order Directional Audio Coding
 A. Politis and V. Pulkki

- Multi-channel sound acquisition using a multi-wave sound field model
 O. Thiergart and E. Habets

- Adaptive mixing of noisy and robust beamformers for reproduction of spatial sound
 S. Delikaris-Manias and J. Vilkamo
Reproduction of spatial sound

- Overview to time-frequency-domain parametric spatial audio techniques
 A. Politis, S. Delikaris-Manias and V. Pulkki

- First-order directional audio coding (DirAC)
 V. Pulkki, M.-V. Laitinen, J. Vilkamo, and J. Ahonen

- Higher-order Directional Audio Coding
 A. Politis and V. Pulkki

- Multi-channel sound acquisition using a multi-wave sound field model
 O. Thiergart and E. Habets

- Adaptive mixing of noisy and robust beamformers for reproduction of spatial sound
 S. Delikaris-Manias and J. Vilkamo

- Source Separation and Reconstruction of Spatial Audio Using Spectrogram Factorization
 J. Nikunen and T. Virtanen
Signal-dependent spatial filtering

- Time-frequency-domain spatial audio enhancement
 S. Delikaris-Manias and P. Pertila
Signal-dependent spatial filtering

- Time-frequency-domain spatial audio enhancement
 S. Delikaris-Manias and P. Pertila

- Cross-spectrum-based post filter utilizing noisy and robust beamformers
 S. Delikaris-Manias, V. Pulkki
Signal-dependent spatial filtering

- Time-frequency-domain spatial audio enhancement
 S. Delikaris-Manias and P. Pertila

- Cross-spectrum-based post filter utilizing noisy and robust beamformers
 S. Delikaris-Manias, V. Pulkki

- Microphone array-based speech enhancement using neural networks
 P. Pertila
Applications

- Upmixing and Beamforming in Professional Audio

 C. Faller
Applications

- Upmixing and Beamforming in Professional Audio
 C. Faller

- Spatial sound scene synthesis and manipulation for virtual reality and audio effects
 V. Pulkki, A. Politis, T. Pihlajamaki and M-V. Laitinen
Applications

- Upmixing and Beamforming in Professional Audio
 C. Faller

- Spatial sound scene synthesis and manipulation for virtual reality and audio effects
 V. Pulkki, A. Politis, T. Pihlajamaki and M-V. Laitinen

- Parametric spatial audio techniques in teleconferencing and remote presence
 A. Alexandridis, D. Pavlidi, N. Stefanakis, and A. Mouchtaris
Conclusions

- Parametric time-frequency-domain spatial audio – treating also spatial auditory cues as signal in reproduction
Conclusions

- Parametric time-frequency-domain spatial audio – treating also spatial auditory cues as signal in reproduction
- Task-specific signal-dependent and spatial-condition-dependent non-linear DSP
Conclusions

- Parametric time-frequency-domain spatial audio – treating also spatial auditory cues as signal in reproduction
- Task-specific signal-dependent and spatial-condition-dependent non-linear DSP
- Enhancement of quality of spatial sound when compared with linear methods