GARCH Models and Applications to Speech Enhancement and Anomaly Detection

Prof. Israel Cohen

Electrical Engineering Department Technion - Israel Institute of Technology

WiSSAP 2016

Prof. Israel Cohen Technion - Israel Institute on Technology

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Outline

- 2 Speech Enhancement
 - Spectral Analysis
 - Problem Formulation
 - GARCH Modeling
 - Variance Estimation
 - Experimental Results

3 Anomaly Detection

- Sea-Mine Detection
- Experimental Results

4 Conclusions

・ 回 と く ヨ と く ヨ と

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model

- GARCH models [Engle, 1982; Bollerslev, 1986] are widely used in various financial applications such as
 - risk management
 - option pricing
 - foreign exchange.
- They explicitly parameterize the time-varying volatility in terms of past conditional variances and past squared innovations (prediction errors).
- GARCH models take into account excess kurtosis (i.e., heavy tail behavior) and volatility clustering, two important characteristics of financial time-series.

・ロト ・回ト ・ヨト ・ヨト

GARCH Model Speech Enhancement

Anomaly Detection Conclusions

GARCH Model (cont.)

Prof. Israel Cohen

Technion - Israel Institute on Technology

General Form

Let $\{y_t\}$ denote a real-valued discrete-time stochastic process, and let ψ_t denote the information set available at time t. The innovation process in the MMSE sense is given by

$$\varepsilon_t = y_t - E\left\{y_t \mid \psi_{t-1}\right\}$$

and the conditional variance (volatility) of y_t is defined as

$$\sigma_t^2 = \operatorname{var} \left\{ y_t \mid \psi_{t-1} \right\} = E \left\{ \varepsilon_t^2 \mid \psi_{t-1} \right\} \,.$$

A GARCH model of order (p, q), denoted by $\varepsilon_t \sim \text{GARCH}(p, q)$, has the following general form

$$\begin{aligned} \varepsilon_t &= \sigma_t \, z_t \\ \sigma_t^2 &= f\left(\sigma_{t-1}^2, \, \dots, \, \sigma_{t-p}^2, \, \varepsilon_{t-1}^2 \, \dots, \, \varepsilon_{t-q}^2\right) \end{aligned}$$

where $\{z_t\}$ is a zero-mean unit-variance white noise process with some specified probability distribution.

Linear Formulation

The widely used GARCH model assumes a linear formulation,

$$\sigma_t^2 = \kappa + \sum_{i=1}^q \alpha_i \, \varepsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \, \sigma_{t-j}^2 \,, \tag{1}$$

and the values of the parameters are constrained by

$$\kappa > 0, \ \alpha_i \ge 0, \ \beta_j \ge 0, \quad i = 1, \dots, q, \ j = 1, \dots, p,$$

which are sufficient constraints to ensure that the conditional variances $\{\sigma_t^2\}$ are strictly positive. Furthermore, the parameters have to satisfy

$$\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j < 1$$

which is a necessary and sufficient constraint for the existence of a finite unconditional variance of the innovations' process.

Volatility Clustering and Excess Kurtosis

- GARCH models allow for volatility clustering, since large innovations of either sign increase the variance forecasts for several samples.
- This in return increases the likelihood of large innovations in the succeeding samples, which allows the large innovations to persist.
- Furthermore, the innovations of financial time-series are typically distributed with heavier tails than a Gaussian distribution.

・ロト ・回ト ・ヨト ・ヨト

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Spectral Analysis

- Clean speech signals, 16 kHz, STFT using Hamming windows, 512 samples length (32 ms), 256 samples framing step (50% overlap).
- Scatter plots for successive spectral magnitudes:

White Gaussian noise

Speech, k = 17 (500Hz)

Prof. Israel Cohen

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Spectral Analysis (cont.)

 Sample autocorrelation coefficient sequences (ACSs) along time-trajectories:

Prof. Israel Cohen

Technion - Israel Institute on Technology

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Spectral Analysis (cont.)

 Typical variation of ρ(1), the correlation coefficient between successive spectral magnitudes:

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Spectral Analysis (cont.)

- When observing a time series of successive expansion coefficients in a fixed frequency bin, successive magnitudes of the expansion coefficients are highly correlated, whereas successive phases are nearly uncorrelated.
- Hence, the expansion coefficients are clustered in the sense that large magnitudes tend to follow large magnitudes and small magnitudes tend to follow small magnitudes, while the phase is unpredictable.

Speech signals in the STFT domain are characterized by volatility clustering and heavy-tailed distribution.

イロン イヨン イヨン

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Problem Formulation

Let $\{Y_{tk}\}$ denote a noisy speech signal in the STFT domain:

 $\begin{array}{rcl} H_1^{tk} \mbox{ (speech present)} : & Y_{tk} & = & X_{tk} + D_{tk} \\ H_0^{tk} \mbox{ (speech absent)} : & Y_{tk} & = & D_{tk} \mbox{ .} \end{array}$

The spectral enhancement problem can be formulated as

$$\min_{\hat{X}_{tk}} E\left\{ d\left(X_{tk}, \hat{X}_{tk}\right) \mid \hat{p}_{tk}, \hat{\lambda}_{tk}, \, \widehat{\sigma_{tk}^2}, \, Y_{tk} \right\}$$

d (X_{tk}, X̂_{tk}) - distortion measure between X_{tk} and X̂_{tk}
p̂_{tk} = P (H₁^{tk} | ψ_t) - speech presence probability estimate
λ̂_{tk} = E {|X_{tk}|² | H₁^{tk}, ψ_t} - speech spectral variance estimate
σ̂_{tk}² = E {|Y_{tk}|² | H₀^{tk}, ψ_t} - noise spectral variance estimate
ψ_t - information employed for estimation at frame t , (2)

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Problem Formulation (cont.)

In particular, assuming a squared error distortion measure of the form

$$d\left(X_{tk}, \hat{X}_{tk}\right) = \left|g(\hat{X}_{tk}) - \tilde{g}(X_{tk})\right|^2$$

where g(X) and $\tilde{g}(X)$ are specific functions of X (e.g., $X, |X|, \log |X|, e^{j \angle X}$)

the estimator \hat{X}_{tk} is calculated from

$$g(\hat{X}_{tk}) = E\left\{\tilde{g}(X_{tk}) \mid \hat{p}_{tk}, \hat{\lambda}_{tk}, \widehat{\sigma_{tk}^2}, Y_{tk}\right\}$$

$$= \hat{p}_{tk} E\left\{\tilde{g}(X_{tk}) \mid H_1^{tk}, \hat{\lambda}_{tk}, \widehat{\sigma_{tk}^2}, Y_{tk}\right\}$$

$$+(1 - \hat{p}_{tk}) E\left\{\tilde{g}(X_{tk}) \mid H_0^{tk}, Y_{tk}\right\}.$$

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Problem Formulation (cont.)

The design of a particular estimator for X_{tk} requires the following specifications:

- Functions g(X) and $\tilde{g}(X)$, which determine the fidelity criterion of the estimator.
- A conditional probability density function (pdf) $p(X_{tk} | \lambda_{tk}, H_1^{tk})$ for X_{tk} under H_1^{tk} given its variance λ_{tk} , which determines the statistical model.
- An estimator $\hat{\lambda}_{tk}$ for the speech spectral variance.
- An estimator $\hat{\sigma}_{tk}^2$ for the noise spectral variance.
- An estimator $\hat{p}_{tk|t-1} = P\left(H_1^{tk} | \psi_{t-1}\right)$ for the *a priori* speech presence probability, where ψ_{t-1} represents the information set known prior to having the measurement Y_{tk} .

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling

• Given $\{\lambda_{tk}\}$ and the state of speech presence in each time-frequency bin $(H_1^{tk} \text{ or } H_0^{tk})$, the speech spectral coefficients $\{X_{tk}\}$ are generated by

$$X_{tk} = \sqrt{\lambda_{tk}} V_{tk}$$

where $\{V_{tk} | H_0^{tk}\}$ are identically zero, and $\{V_{tk} | H_1^{tk}\}$ are statistically independent complex random variables with zero mean, unit variance, and iid real and imaginary parts:

$$\begin{array}{ll} H_1^{tk}: & E\left\{V_{tk}\right\} = 0\,, \; E\left\{|V_{tk}|^2\right\} = 1 \\ H_0^{tk}: & V_{tk} = 0 \end{array}$$

The speech spectral variances {λ_{tk}} are hidden from direct observation even under perfect conditions of zero noise (D_{tk} = 0 for all tk).

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

• Over the past decades, the decision-directed approach has become the acceptable estimation method for variances of speech spectral coefficients [Ephraim and Malah, 1984]

$$\hat{\lambda}_{tk} = \max\left\{\alpha \, |\hat{X}_{t-1,k}|^2 + (1-\alpha)\left(|Y_{tk}|^2 - \sigma_{tk}^2\right) \,, \, \xi_{\min} \, \sigma_{tk}^2\right\} \,.$$

・ロン ・回と ・ヨン ・ヨン

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

• Over the past decades, the decision-directed approach has become the acceptable estimation method for variances of speech spectral coefficients [Ephraim and Malah, 1984]

$$\hat{\lambda}_{tk} = \max\left\{\alpha \, |\hat{X}_{t-1,k}|^2 + (1-\alpha)\left(|Y_{tk}|^2 - \sigma_{tk}^2\right) \,, \, \xi_{\min} \, \sigma_{tk}^2\right\} \,.$$

- The decision-directed approach is not supported by a statistical model.
- α and ξ_{min} have to be determined by simulations and subjective listening tests for each particular setup of time-frequency transformation and speech enhancement algorithm.
- α and ξ_{\min} are not adapted to the speech components.

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

- Our approach is to assume that $\{\lambda_{tk}\}$ are random variables, and to introduce *conditional* variances which are estimated from the available information.
- Let $\lambda_{tk|\tau} \triangleq E\left\{|X_{tk}|^2 | H_1^{tk}, \mathcal{X}_0^{\tau}\right\}$ denote the *conditional* variance of X_{tk} under H_1^{tk} given the clean spectral coefficients up to frame τ . We assume that $\lambda_{tk|t-1}$, referred to as the *one-frame-ahead conditional variance*, is a random process which evolves as a GARCH(1, 1) process:

$$\lambda_{tk|t-1} = \lambda_{\min} + \mu \left| X_{t-1,k} \right|^2 + \delta \left(\lambda_{t-1,k|t-2} - \lambda_{\min} \right)$$

where

$$\lambda_{\min} > 0\,, \quad \mu \geq 0\,, \quad \delta \geq 0\,, \quad \mu + \delta < 1$$

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

Gaussian model

$$p\left(V_{\rho tk} \mid H_{1}^{tk}\right) = \frac{1}{\sqrt{\pi}} \exp\left(-V_{\rho tk}^{2}\right)$$
$$\rho \in \{R, I\}, V_{Rtk} \triangleq \Re\left\{V_{tk}\right\}, V_{Itk} \triangleq \Im\left\{V_{tk}\right\}$$

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

Gaussian model

$$p\left(V_{\rho tk} \mid H_{1}^{tk}\right) = \frac{1}{\sqrt{\pi}} \exp\left(-V_{\rho tk}^{2}\right)$$

$$\rho \in \{R, I\}, V_{Rtk} \triangleq \Re\{V_{tk}\}, V_{Itk} \triangleq \Im\{V_{tk}\}$$

Gamma model

$$p\left(V_{\rho tk} \mid H_{1}^{tk}\right) = \frac{1}{2\sqrt{\pi}} \left(\frac{3}{2}\right)^{1/4} |V_{\rho tk}|^{-1/2} \exp\left(-\sqrt{\frac{3}{2}} |V_{\rho tk}|\right)$$

• Laplacian model

$$p\left(V_{\rho tk} \mid H_1^{tk}\right) = \exp\left(-2\left|V_{\rho tk}\right|\right)$$
.

Prof. Israel Cohen Technion - Israel Institute on Technology

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Э

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

GARCH Modeling (cont.)

Gaussian model

$$p\left(V_{\rho tk} \mid H_{1}^{tk}\right) = \frac{1}{\sqrt{\pi}} \exp\left(-V_{\rho tk}^{2}\right)$$
$$\rho \in \{R, I\}, V_{Rtk} \triangleq \Re\left\{V_{tk}\right\}, V_{Itk} \triangleq \Im\left\{V_{tk}\right\}$$

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Variance Estimation

Following the rational of Kalman filtering:

• Start with an estimate $\hat{\lambda}_{tk|t-1}$, and update the variance by using the additional information Y_{tk} ,

Update step:

$$\hat{\lambda}_{tk|t} = E\left\{ |X_{tk}|^2 \mid \hat{\lambda}_{tk|t-1}, Y_{tk} \right\}$$

 Propagate the variance estimate ahead in time to obtain a conditional variance estimate at frame t + 1,

Propagation step:

$$\hat{\lambda}_{t+1,k|t} = \lambda_{\min} + \mu \, \hat{\lambda}_{tk|t} + \delta \left(\hat{\lambda}_{tk|t-1} - \lambda_{\min} \right)$$

 The propagation and update steps are iterated, to recursively estimate the speech variances as new data arrive.
 Prof. Israel Cohen
 Technion - Israel Institute on Technology

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Relation to Decision-Directed Estimation

• Recall the *heuristically motivated* decision-directed estimator [Ephraim and Malah, 1984]

$$\hat{\lambda}_{tk} = \max\left\{\alpha \, |\hat{X}_{t-1,k}|^2 + (1-\alpha)\left(|Y_{tk}|^2 - \sigma_{tk}^2\right) \,, \, \xi_{\min} \, \sigma_{tk}^2\right\}$$

 A special case of the GARCH-based variance estimator degenerates to a decision-directed estimator with a *time-varying frequency-dependent* weighting factor α_{tk}

$$\alpha \iff \alpha_{tk}$$

$$\xi_{\min} \sigma_{tk}^{2} \iff \lambda_{\min}$$

$$\left| \hat{X}_{t-1,k} \right|^{2} \iff \hat{\lambda}_{t-1,k|t-1} \triangleq E\left\{ |X_{t-1,k}|^{2} \middle| \hat{\lambda}_{t-1,k|t-2}, Y_{t-1,k} \right\}$$
Prof. Israel Cohen
Technion - Israel Institute on Technology

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Experimental Results

- Speech signals: 20 different utterances from 20 different speakers, sampled at 16 kHz and degraded by white Gaussian noise with SNRs in the range [0, 20]dB.
- Eight different speech enhancement algorithms are compared

Algorithm	Statistical	Variance	Fidelity	
#	Model	Estimation	Criterion	
1	Gaussian	GARCH	MMSE	
2	Gamma	GARCH	MMSE	
3	Laplacian	GARCH	MMSE	
4	Gaussian	Decision-Directed	MMSE	
5	Gamma	Decision-Directed	MMSE	
6	Laplacian	Decision-Directed	MMSE	
7	Gaussian	GARCH	MMSE-LSA	
8	Gaussian	Decision-Directed	MMSE-LSA	

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Experimental Results (cont.)

Clean speech signal

Noisy signal, SNR = 5dBLSD = 13.75dB, PESQ= 1.76

Prof. Israel Cohen

Technion - Israel Institute on Technology

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Experimental Results (cont.)

Log-Spectral Distortion (LSD)

Input	GARCH modeling method				Decision-Directed method				
SNR	Gaussian		Gamma	Laplacian	Gaussian		Gamma	Laplacian	
[dB]	MMSE	LSA	MMSE	MMSE	MMSE	LSA	MMSE	MMSE	
0	7.77	4.85	8.03	7.91	18.89	11.35	17.76	18.14	
5	5.78	4.04	6.93	6.45	17.29	11.03	15.73	16.26	
10	4.14	3.27	5.35	4.85	13.87	9.13	11.83	12.48	
15	2.50	2.25	3.23	2.92	9.19	6.05	6.95	7.59	
20	1.30	1.28	1.55	1.44	4.88	3.13	2.88	3.34	

Perceptual Evaluation of Speech Quality (PESQ) scores (ITU-T P.862)

Input	GARCH modeling method				Decision-Directed method			
SNR	Gaussian		Gamma	Laplacian	Gaussian		Gamma	Laplacian
[dB]	MMSE	LSA	MMSE	MMSE	MMSE	LSA	MMSE	MMSE
0	2.52	2.55	2.47	2.48	1.91	2.21	1.98	1.96
5	2.97	2.98	2.90	2.91	2.30	2.61	2.38	2.36
10	3.37	3.38	3.28	3.31	2.70	2.99	2.77	2.75
15	3.67	3.69	3.59	3.62	3.09	3.31	3.17	3.15
20	3.88	3.89	3.83	3.85	3.53	3.64	3.62	3.60

Prof. Israel Cohen

Technion - Israel Institute on Technology

Spectral Analysis Problem Formulation GARCH Modeling Variance Estimation Experimental Results

Experimental Results (cont.)

- The GARCH modeling method yields lower LSD and higher PESQ scores than the decision-directed method.
- Using the decision-directed method, a Gaussian model is inferior to Gamma and Laplacian models.
- Using the GARCH modeling method, a Gaussian model is superior to Gamma and Laplacian models.
- It is difficult, or even impossible, to derive analytical expressions for MMSE-LSA estimators under Gamma or Laplacian models.

The GARCH modeling method facilitates MMSE-LSA estimation, while taking into consideration the heavy-tailed distribution.

Sea-Mine Detection Experimental Results

Anomaly Detection

• Anomaly detection approach is attractive when target models are not available or are unreliable.

Sea mines

Wafer defects

Prof. Israel Cohen

Technion - Israel Institute on Technology

Sea-Mine Detection Experimental Results

Sea-Mine Detection

• Mine detection in sonar imagery is a challenging problem due to the large variability of background clutter and the object characteristics.

Sea-Mine Detection Experimental Results

Sea-Mine Detection (cont.)

- The variability of the target signature is described using a subspace model.
- The variability of the background is described using a multidimensional GARCH model .
- The GARCH model characterizes the heavy tails and clustering of innovations in the background.

() < </p>

Sea-Mine Detection Experimental Results

Experimental Results

・ロト ・回 ト ・ヨト ・ヨト

э

Conclusions

- GARCH modeling provides a new framework for speech enhancement and anomaly detection in adverse environments.
- GARCH models take into account excess kurtosis and volatility clustering, two important characteristics of financial time-series, speech signals, and background clutter in sonar imagery.
- The decision-directed approach, which is heuristically motivated, can be obtained as a special case of GARCH-based variance estimation.
- GARCH modeling enables MMSE log-spectral amplitude estimation of speech while taking into consideration the heavy-tailed distribution.

イロト イポト イヨト イヨト