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Reminder: Problem Formulation

Let {Ytk} denote a noisy speech signal in the STFT domain:

Htk
1 (speech present) : Ytk = Xtk + Dtk

Htk
0 (speech absent) : Ytk = Dtk .

The spectral enhancement problem can be formulated as

min
X̂tk

E
{
d
(
Xtk , X̂tk

) ∣∣∣ p̂tk , λ̂tk , σ̂2tk , Ytk

}
d
(
Xtk , X̂tk

)
- distortion measure between Xtk and X̂tk

p̂tk = P
(
Htk
1 |ψt

)
- speech presence probability estimate

λ̂tk = E
{
|Xtk |2 |Htk

1 , ψt

}
- speech spectral variance estimate

σ̂2tk = E
{
|Ytk |2 |Htk

0 , ψt

}
- noise spectral variance estimate

ψt - information employed for estimation at frame t (e.g.,
noisy data observed through time t)
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Noise Spectrum Estimation
Minima Controlled Recursive Averaging (MCRA)

A common noise estimation technique is to recursively
average past spectral power values of the noisy measurement
during periods of speech absence:

Htk
0 : σ̄2t+1,k = αd σ̄

2
tk + (1− αd) |Ytk |2

Htk
1 : σ̄2t+1,k = σ̄2tk

where αd (0 < αd < 1) denotes a smoothing parameter.

Under speech presence uncertainty

σ̄2t+1,k = p̃tk σ̄
2
tk

+ (1− p̃tk)
[
αd σ̄

2
tk + (1− αd) |Ytk |2

]
where p̃tk is an estimator for the conditional speech presence
probability ptk = P

(
Htk
1 |Ytk

)
.
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Equivalently

σ̄2t+1,k = α̃tk σ̄
2
tk + (1− α̃tk) |Ytk |2

where
α̃tk

4
= αd + (1− αd) p̃tk

is a time-varying frequency-dependent smoothing parameter,
adjusted by the speech presence probability.

Deciding speech is absent (H0) when speech is present (H1) is
more destructive when estimating the speech than when
estimating the noise.

Hence, we make a distinction between the estimator p̂tk used
for estimating the clean speech, and the estimator p̃tk , which
controls the adaptation of the noise spectrum. Generally
p̂tk ≥ p̃tk .
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The estimator p̃tk|t is biased toward higher values, since
deciding speech is absent when speech is present results
ultimately in the attenuation of speech components.

Accordingly, we include a bias compensation factor in the
noise estimator

σ̂2t+1,k = β · σ̄2t+1,k

such that the factor β (β ≥ 1) compensates the bias when
speech is absent:

β
4
=

σ2tk
E
{
σ̄2tk
}∣∣∣∣∣

H0

.

The value of β is completely determined by the particular
estimator for the a priori speech absence probability.
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Minimum Statistics

Let αs (0 < αs < 1) be a smoothing parameter, and let b
denote a normalized window function of length 2w + 1, i.e.,∑w

i=−w bi = 1.

The frequency smoothing of the noisy power spectrum in each
frame is defined by

S f
tk =

w∑
i=−w

bi |Yt,k−i |2 .

Subsequently, smoothing in time is performed by a first order
recursive averaging:

Stk = αsSt−1,k + (1− αs)S f
tk .
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The minima values of Stk are picked within a finite window of
length D, for each frequency bin:

Smin
tk

4
= min

{
St′,k | t − D + 1 ≤ t ′ ≤ t

}
.

It follows that there exists a constant factor Bmin,
independent of the noise power spectrum, such that

E
{
Smin
tk | H0

}
= B−1min · σ2tk .

The factor Bmin represents the bias of a minimum noise
estimate, and generally depends on the values of D, αs , b and
the spectral analysis parameters (type, length and overlap of
the analysis windows)

The value of Bmin can be estimated by generating a white
Gaussian noise, and computing the inverse of the mean of
Smin
tk .
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Block diagram of the IMCRA noise estimator
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Implementation

A free MATLAB code is available on:
http://www.ee.technion.ac.il/people/IsraelCohen/

Initialization at the first frame for all frequency-bins k = 1, . . . ,N/2:

σ̂20k = |Y0k |2; σ̄20k = |Y0k |2; S0k = S f
0k ; Smin

0k = S f
0k ;

For all short-time frames t = 0, 1, . . .

For all frequency-bins k = 1, . . . ,N/2

1) Compute the a posteriori SNR γ̂tk and the a priori SNR ξ̂tk
with the initial condition ξ̂0k = α + (1− α) max {γ̂ 0k − 1, 0}.
2) Compute the conditional spectral estimate under the hypoth-
esis of speech presence X̂tk|H1

= GLSA(ξ̂tk , γ̂tk)Ytk .

Israel Cohen & Sharon Gannot Speech Modeling and Enhancement



Noise Estimation
Statistical Models

Variance Estimation
Conclusions

Minima Controlled Recursive Averaging (MCRA)
Minimum Statistics (MS)
Implementation
Experimental Results

3) Compute the smoothed power spectrum Stk and update its

running minimum: Smin
tk = min

{
Smin
t−1,k , Stk

}
.

4) Compute the speech presence probability p̃tk , and the smooth-
ing parameter α̃tk .

5) Update the noise spectrum estimate σ̂2t+1,k .

6) Compute the speech presence probability p̂tk .

7) Compute the speech spectral estimate X̂tk .
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Example 1

Noise estimation, F16 cockpit noise at 0 dB segmental SNR, a
single frequency bin k = 40 (center frequency 1219 Hz):

0 5 10 15 20

dB

Time  [sec]

Ideal (top), IMCRA (center), and MS (bottom) noise estimates (top and

bottom graphs are displaced by ±10 dB, for clarity).

Clearly, the IMCRA noise estimate follows the noise power more
closely than the MS noise estimate.
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Example 2

Non-stationary WGN at 0 dB segmental SNR:

0 5 10 15 20
38

40

42

44

46

48

dB

Time  [sec]

Ideal (fine), IMCRA (heavy), and MS (dotted) average noise estimates.

The response of the IMCRA estimator to increasing or decreasing
noise power is essentially much faster than that of the MS
estimator, due to the recursive averaging mechanism.

Israel Cohen & Sharon Gannot Speech Modeling and Enhancement



Noise Estimation
Statistical Models

Variance Estimation
Conclusions

Minima Controlled Recursive Averaging (MCRA)
Minimum Statistics (MS)
Implementation
Experimental Results

Results

Clean speech signal
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Noisy signal, white Gaussian noise Enhanced signal, OM-LSA
LSD = 12.67dB, PESQ= 1.74 LSD = 5.10dB, PESQ= 2.34
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Noisy signal, car interior noise Enhanced signal, OM-LSA
LSD = 3.48dB, PESQ= 2.47 LSD = 2.67dB, PESQ= 3.00
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Noisy signal, F16 cockpit noise Enhanced signal, OM-LSA
LSD = 7.99dB, PESQ= 1.76 LSD = 4.27dB, PESQ= 2.29
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Noisy signal, babble noise Enhanced signal, OM-LSA
LSD = 5.97dB, PESQ= 1.87 LSD = 4.30dB, PESQ= 2.13
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Discussion

The improvement in SegSNR and reduction in LSD are
influenced by the variability of the noise characteristics in time
and the initial SegSNR and LSD of the noisy signal.

The faster the noise spectrum varies in time, the less reliable
is the noise spectrum estimator, and consequently the lower is
the quality that can be achieved.

In some applications, a delay of a few short-term frames
between the enhanced speech and the noisy observation is
tolerable ⇒ a noncausal estimation approach may produce
less signal distortion and less musical residual noise.

Israel Cohen & Sharon Gannot Speech Modeling and Enhancement



Noise Estimation
Statistical Models

Variance Estimation
Conclusions

Spectral Analysis
GARCH Model
Speech Modeling

Statistical Models

Given {λtk} and the state of speech presence in each
time-frequency bin (Htk

1 or Htk
0 ), the speech spectral

coefficients {Xtk} are generated by

Xtk =
√
λtk Vtk

where
{
Vtk |Htk

0

}
are identically zero, and

{
Vtk |Htk

1

}
are

statistically independent complex random variables with zero
mean, unit variance, and iid real and imaginary parts:

Htk
1 : E {Vtk} = 0 , E

{
|Vtk |2

}
= 1

Htk
0 : Vtk = 0
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Statistical Models (cont.)

Gaussian model [McAulay and Malpass, 1980; Ephraim and Malah, 1984]

p
(
Vρtk | Htk

1

)
=

1√
π

exp
(
−V 2

ρtk

)
ρ ∈ {R, I} ,VRtk , <{Vtk} ,VItk , ={Vtk}
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Gamma model [Porter and Boll, 1984; Martin, 2002]

p
(
Vρtk | Htk

1

)
=

1

2
√
π

(
3

2

)1/4

|Vρtk |−1/2 exp

(
−
√

3

2
|Vρtk |

)
Laplacian model [Martin and Breithaupt, 2003; Lotter and Vary, 2003]

p
(
Vρtk | Htk

1

)
= exp (−2 |Vρtk |) .
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Speech Variance Estimation
The Decision-Directed method

Over the past two decades, the decision-directed approach has
become the acceptable estimation method for variances of
speech spectral coefficients [Ephraim and Malah, 1984]

λ̂tk = max
{
α |X̂t−1,k |2 + (1− α)

(
|Ytk |2 − σ2tk

)
, ξmin σ

2
tk

}
.

The decision-directed approach is not supported by a
statistical model.

α and ξmin have to be determined by simulations and
subjective listening tests for each particular setup of
time-frequency transformation and speech enhancement
algorithm.

α and ξmin are not adapted to the speech components.
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Speech Variance Estimation
The Decision-Directed method

Over the past two decades, the decision-directed approach has
become the acceptable estimation method for variances of
speech spectral coefficients [Ephraim and Malah, 1984]

λ̂tk = max
{
α |X̂t−1,k |2 + (1− α)

(
|Ytk |2 − σ2tk

)
, ξmin σ

2
tk

}
.

The decision-directed approach is not supported by a
statistical model.

α and ξmin have to be determined by simulations and
subjective listening tests for each particular setup of
time-frequency transformation and speech enhancement
algorithm.

α and ξmin are not adapted to the speech components.
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Speech Variance Estimation (cont.)

Analyze the time-frequency correlation of speech and noise
signals in the STFT domain.

Formulate statistical models for speech signals in the STFT
domain, which take into consideration the time-frequency
correlation and heavy-tailed distribution of the expansion
coefficients.

Derive estimators for the speech spectral variances, which are
based on the proposed models.

Show that a special case of the proposed variance estimator
degenerates to a “decision-directed” estimator.
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Spectral Analysis

Clean speech signals, 16 kHz, STFT using Hamming windows,
512 samples length (32 ms), 256 samples framing step (50%
overlap).
Scatter plots for successive spectral magnitudes:

White Gaussian noise Speech, k = 17 (500Hz)
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Spectral Analysis (cont.)

Sample autocorrelation coefficient sequences (ACSs) along
time-trajectories:

Magnitude, 500Hz, 50% overlap Phase, 500Hz, 50% overlap
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Spectral Analysis (cont.)

Typical variation of ρ(1), the correlation coefficient between
successive spectral magnitudes:

Variation on frequency
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Discussion

When observing a time series of successive expansion
coefficients in a fixed frequency bin, successive magnitudes of
the expansion coefficients are highly correlated, whereas
successive phases are nearly uncorrelated.

Hence, the expansion coefficients are clustered in the sense
that large magnitudes tend to follow large magnitudes and
small magnitudes tend to follow small magnitudes, while the
phase is unpredictable.

Speech signals in the STFT domain are characterized by volatility
clustering and heavy-tailed distribution.
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Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) Model

GARCH models [Engle, 1982; Bollerslev, 1986] are widely used in various
financial applications such as risk management, option pricing,
and foreign exchange.

They explicitly parameterize the time-varying volatility in
terms of past conditional variances and past squared
innovations (prediction errors), while taking into account
excess kurtosis (i.e., heavy tail behavior) and volatility
clustering, two important characteristics of financial
time-series.

⇒ Modeling speech expansion coefficients as GARCH processes
offers a reasonable model on which to base the variance estimation,
while taking into consideration the heavy-tailed distribution.
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GARCH Model (cont.)
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GARCH Model (cont.)

Let {yt} denote a real-valued discrete-time stochastic process, and
let ψt denote the information set available at time t.
The innovation process in the MMSE sense is given by

εt = yt − E {yt |ψt−1 }
and the conditional variance (volatility) of yt is defined as

σ2t = var {yt |ψt−1 } = E
{
ε2t |ψt−1

}
.

A GARCH model of order (p, q), denoted by εt ∼ GARCH(p, q),
has the following general form

εt = σt zt

σ2t = f
(
σ2t−1, . . . , σ

2
t−p, ε

2
t−1 . . . , ε

2
t−q
)

where {zt} is a zero-mean unit-variance white noise process with
some specified probability distribution.
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GARCH Model (cont.)

The widely used GARCH model assumes a linear formulation,

σ2t = κ+

q∑
i=1

αi ε
2
t−i +

p∑
j=1

βj σ
2
t−j ,

and the values of the parameters are constrained by

κ > 0 , αi ≥ 0 , βj ≥ 0 , i = 1, . . . , q , j = 1, . . . , p ,

(sufficient constraints to ensure that the conditional variances {σ2t }
are strictly positive) and by

q∑
i=1

αi +

p∑
j=1

βj < 1

(necessary and sufficient constraint for the existence of a finite
unconditional variance of the innovations process).
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Speech Modeling

As before, given {λtk} and the state of speech presence in
each time-frequency bin (Htk

1 or Htk
0 ), {Xtk} are generated by

Xtk =
√
λtk Vtk

where
{
Vtk |Htk

1

}
are statistically independent complex

random variables

Htk
1 : E {Vtk} = 0 , E

{
|Vtk |2

}
= 1

Htk
0 : Vtk = 0

However, {λtk} are hidden from direct observation even under
perfect conditions of zero noise (Dtk = 0 for all tk).
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Speech Modeling (cont.)

Our approach is to assume that {λtk} themselves are random
variables, and to introduce conditional variances which are
estimated from the available information.
Let λtk|τ , E

{
|Xtk |2 |Htk

1 , X τ0
}

denote the conditional

variance of Xtk under Htk
1 given the clean spectral coefficients

up to frame τ . We assume that λtk|t−1, referred to as the
one-frame-ahead conditional variance, is a random process
which evolves as a GARCH(1, 1) process:

λtk|t−1 = λmin + µ |Xt−1,k |2 + δ
(
λt−1,k|t−2 − λmin

)
where

λmin > 0 , µ ≥ 0 , δ ≥ 0 , µ+ δ < 1

are the standard constraints imposed on the parameters of the
GARCH model.
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Variance Estimation

Following the rational of Kalman filtering:

Start with an estimate λ̂tk|t−1, and update the variance by
using the additional information Ytk ,

Update step:

λ̂tk|t = E
{
|Xtk |2

∣∣∣ λ̂tk|t−1 ,Ytk

}
Propagate the variance estimate ahead in time to obtain a
conditional variance estimate at frame t + 1,

Propagation step:

λ̂t+1,k|t = λmin + µ λ̂tk|t + δ
(
λ̂tk|t−1 − λmin

)
The propagation and update steps are iterated, to recursively
estimate the speech variances as new data arrive.
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Relation to Decision-Directed Estimation

For a Gaussian-GARCH model, the update step can be
written as

λ̂tk|t = αtk λ̂tk|t−1 + (1− αtk)
(
|Ytk |2 − σ2tk

)
with

αtk , 1−
λ̂2tk|t−1(

λ̂tk|t−1 + σ2tk

)2 .
Using the propagation step with µ ≡ 1 and applying the lower
bound constraint to λ̂tk|t rather than λ̂tk|t−1, we have

λ̂tk|t = max
{
αtk λ̂t−1,k|t−1 + (1− αtk)

(
|Ytk |2 − σ2tk

)
, λmin

}
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Relation to Decision-Directed Estimation (cont.)

Recall the heuristically motivated decision-directed estimator
[Ephraim and Malah, 1984]

λ̂tk = max
{
α |X̂t−1,k |2 + (1− α)

(
|Ytk |2 − σ2tk

)
, ξmin σ

2
tk

}
A special case of the GARCH-based variance estimator
degenerates to a decision-directed estimator with a
time-varying frequency-dependent weighting factor αtk

α ⇐⇒ αtk

ξmin σ
2
tk ⇐⇒ λmin∣∣∣X̂t−1,k

∣∣∣2 ⇐⇒ λ̂t−1,k|t−1 , E
{
|Xt−1,k |2

∣∣∣ λ̂t−1,k|t−2 ,Yt−1,k

}
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Experimental Results: Setup

Speech signals: 20 different utterances from 20 different
speakers, sampled at 16 kHz and degraded by white Gaussian
noise with SNRs in the range [0, 20]dB.

Eight different speech enhancement algorithms are compared

Algorithm Statistical Variance Fidelity
# Model Estimation Criterion
1 Gaussian GARCH MMSE
2 Gamma GARCH MMSE
3 Laplacian GARCH MMSE
4 Gaussian Decision-Directed MMSE
5 Gamma Decision-Directed MMSE
6 Laplacian Decision-Directed MMSE
7 Gaussian GARCH MMSE-LSA
8 Gaussian Decision-Directed MMSE-LSA
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Experimental Results

Clean speech signal Noisy signal, SNR = 5dB
LSD = 13.75dB, PESQ= 1.76
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Decision-Directed, MMSE-LSA GARCH, MMSE-LSA
LSD = 9.00dB, PESQ= 2.57 LSD = 3.59dB, PESQ= 2.88
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Experimental Results (cont.)

Log-Spectral Distortion (LSD)

Input GARCH modeling method Decision-Directed method
SNR Gaussian Gamma Laplacian Gaussian Gamma Laplacian
[dB] MMSE LSA MMSE MMSE MMSE LSA MMSE MMSE
0 7.77 4.85 8.03 7.91 18.89 11.35 17.76 18.14
5 5.78 4.04 6.93 6.45 17.29 11.03 15.73 16.26
10 4.14 3.27 5.35 4.85 13.87 9.13 11.83 12.48
15 2.50 2.25 3.23 2.92 9.19 6.05 6.95 7.59
20 1.30 1.28 1.55 1.44 4.88 3.13 2.88 3.34

Perceptual Evaluation of Speech Quality (PESQ) scores
(ITU-T P.862)

Input GARCH modeling method Decision-Directed method
SNR Gaussian Gamma Laplacian Gaussian Gamma Laplacian
[dB] MMSE LSA MMSE MMSE MMSE LSA MMSE MMSE
0 2.52 2.55 2.47 2.48 1.91 2.21 1.98 1.96
5 2.97 2.98 2.90 2.91 2.30 2.61 2.38 2.36
10 3.37 3.38 3.28 3.31 2.70 2.99 2.77 2.75
15 3.67 3.69 3.59 3.62 3.09 3.31 3.17 3.15
20 3.88 3.89 3.83 3.85 3.53 3.64 3.62 3.60
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Conclusions

The GARCH modeling method yields lower LSD and higher
PESQ scores than the decision-directed method.

Using the decision-directed method, a Gaussian model is
inferior to Gamma and Laplacian models.

Using the GARCH modeling method, a Gaussian model is
superior to Gamma and Laplacian models.

It is difficult, or even impossible, to derive analytical
expressions for MMSE-LSA estimators under Gamma or
Laplacian models.

The GARCH modeling method facilitates MMSE-LSA estimation,
while taking into consideration the heavy-tailed distribution.
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