A nationally-implemented AI solution for Covid-19

Mihaela van der Schaar

John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine, University of Cambridge Chancellor's Professor, University of California Los Angeles

Email: mv472@cam.ac.uk

Website: http://www.vanderschaar-lab.com/

Agenda

Using AI/ML to fight Covid-19 at:

- Global Level Policy Impact Predictor
- National Level Resource Planning
- Patient Level Interpretable and explainable AI/ML

Joining forces to transform healthcare!

Why is AI/ML for healthcare is different?

AI/ML has accomplished wonders on well-posed problems where the notion of a "solution" is well-defined and solutions are verifiable

Healthcare is different – problems are not well-posed and notion of a "solution" is often not well-defined and solutions are hard to verify

This presents enormous challenges – and also enormous opportunities

Goal: Augment human decision making

- clinicians, medical researchers and policy makers

New ML models and techniques

Covid-19 at the Global Level

https://www.vanderschaar-lab.com/policy-impact-predictor-for-covid-19/

Non-pharmaceutical interventions to contain COVID-19

• The problem:

Estimating the *causal effects of NPIs* applied over time on COVID-19 deaths to conduct *counterfactual scenario analysis*.

Why is it important?

Inform governments and policy-makers on what NPIs to apply over the next months.

What is new?

Learning *heterogeneous* NPI effects using *global* data from different countries.

• Potential impact...

Reduction of future COVID-19 deaths in various countries around the world.

Current Modeling Efforts: CDC National Forecasts*

IHME

University of Washington

Combination of a mechanistic disease transmission model and a curve-fitting approach.

Imperial

Imperial College London

Ensembles of mechanistic transmission models, fit to different parameter assumptions.

LANL

Los Alamos National Laboratory

Statistical dynamical growth model accounting for population susceptibility.

DELPHI

Massachusetts Institute of Technology

SEIR model.

YYG

Independent

SEIS mechanistic model

CDC-ensemble

Centre for Disease Control and Prevention

An ensemble of 21 individual forecasts.

*https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

Problem Formulation

- COVID-19 deaths over time: $Y_i(t) \in \mathbb{N} \cup \{0\}$ country $i \in \{1, \dots, N\}$
- Country-level features $\boldsymbol{X}_i(t) \in \mathbb{R}^d$
 - Country meta-data $oldsymbol{X}^s_i$
 - Exogenous time-varying features $oldsymbol{X}_i^{ex}(t)$
 - Endogenous time-varying features $X_i^{en}(t)$
- NPI indicators: $\mathcal{P}_i[1:t] \triangleq \{p_i(1), \dots, p_i(t)\}$
 - $p_i(t) \in \{0,1\}^K$

K policy indicators

Problem Formulation

Potential outcomes framework

Interventions: $p_i(t) = [p_i^1(t), \dots, p_i^K(t)]$

- Potential outcomes: $\{\mathcal{Y}_i^{[p^k=1]}[t:t+T], \mathcal{Y}_i^{[p^k=0]}[t:t+T]\}$
- Confounders: $\mathcal{H}_{t-1} \triangleq \{ \mathbf{X}_i, \mathcal{Y}_i[1:t-1], \mathcal{P}_i[1:t-1] \}$

Assumptions

No unobserved confounders

 $\mathcal{Y}_i^{[p^k]}[t:t+T] \perp p_i(t) \,|\, \mathcal{H}_{t-1}$

COVID-19 Counterfactual Scenario Analysis

• For a given country $i \in \{1, ..., N\}$, forecast the trajectory of COVID-19 deaths within a future time horizon of T days under a given set of future NPIs

Global Modeling: Exploit Heterogeneity of NPIs

Introduction of NPIs over time in 5 countries with most COVID-19 cases

Modeling COVID-19 Death Curves

Model the trajectory of COVID-19 deaths within country i as a Gaussian process

Modeling COVID-19 Death Curves

Model the trajectory of COVID-19 deaths within country *i* as a Gaussian process

 $\begin{array}{ll} \textbf{A function} \\ \textbf{of time} \end{array} \quad f_{L,i} \sim \mathcal{GP}(D_{\theta_i}(t), K_{\theta_i}(t, t')) \end{array}$

Mean function = compartmental model

 $D_{\theta_i}(t)$ **SEIR model**

- Death forecasts = posterior trajectory of deaths.
- Prior = rigorous mechanistic model.
- Posterior = data-driven.
- Posterior variance = Uncertainty in projections.

Compartmental Prior

Mean function =

Susceptible, Exposed, Infectious, Recovered (SEIR) model

 $D_{\theta_i}(t)$

Modeling Potential Outcomes

- Reproduction number $R_{0,i}(t) = \frac{\sigma}{\mu_i + \sigma} \cdot \frac{\beta_i(t)}{\mu_i + \gamma_i}$ Contact rate
- NPI effects on potential outcomes = "Flattening" the curve.

 $D_{\theta_i}(t)$

Joint Model for all Countries

- Hierarchical Bayesian model
 - Multi-layered model

Upper-layer Gaussian process

 $f_U \sim \mathcal{GP}(m_\alpha(\boldsymbol{X}, p), K_\alpha((\boldsymbol{X}, p), (\boldsymbol{X}', p')))$

NPI variables and country-level features, shared among all countries

Lower-layer Gaussian process

$$f_{L,i} \sim \mathcal{GP}(D_{\theta_i}(t), K_{\theta_i}(t, t')),$$

 $\theta_i = v(f_U(\boldsymbol{X}_i, p_i))$

Specific to a country, models deaths over time

Model: Impact of Non-pharmaceutical Interventions

- Reproduction number $R_{0,i}(t) = \frac{\sigma}{\mu_i + \sigma} \cdot \frac{\beta_i(t)}{\mu_i + \gamma_i}$ Baseline R0 depends on country's features
- NPIs effects depend on the country's features...

 $\beta_i(t) = v(f_U(\boldsymbol{X}_i, p_i(t))) = 2\,\bar{\beta}\,\mathrm{Sigmoid}(f_U(\boldsymbol{X}_i, p_i(t)))$ Contact rate

Reproduction number R_0

A Dataset for Global COVID-19 Trajectories

Country-level COVID-19 data from multiple sources was collated for 170 countries.

 COVID-19 cases, deaths, tests, non-pharmaceutical interventions, excess mortality, mobility statistics, weather patterns, country meta-data.

Non-pharmaceutical interventions (NPI)

The Oxford Government Response Tracker provides 13 NPIs on an ordinal scale for each country, reflecting both the intensity of enforcement of the intervention.

Public events cancellation	Internal movement restrictions	Stay-at-home orders
Public transport closure	International travel restrictions	Testing policy
Gatherings restrictions	Public information campaigns	Workplace closure
Income support	School closure	Contact tracing
	Mandating on mask usage	

Country-level Meta-data

We collected 35 economic, social, demographic, environmental and public health indicators from published World Bank reports

Economic	GDP per capita, GNI per capita, Income share held by lowest 20%
Social and demographic	Population, Life expectancy, Birth rate, Death rate, Infant mortality rate, Land Area, % People with basic hand-washing facilities including soap and water, Smoking prevalence, Prevalence of undernourishment, Prevalence of overweight, Urban population, Population density, Population ages 65 and above, Access to electricity (% of population), UHC service coverage index, Total alcohol consumption per capita, Air transport (passengers carried)
Environmental	Forest Area, PM2.5 air pollution (mean annual exposure in micrograms per cubic meter)
Public health	 Immunization for measles, % deaths by communicable diseases, Current health expenditure, Current health expenditure per capita, Diabetes prevalence, Immunization for DPT, Immunization for HepB3, Incidence of HIV, Incidence of malaria, Incidence of tuberculosis, % deaths by CVD/cancer/diabetes/CRD, % deaths due to household and ambient air pollution, % deaths due to unsafe water/unsafe sanitation/lack of hygiene, Physicians (per 1,000 people)

Results: Accuracy of US Projections

Model	March 28 forecasts (before the peak)		April 11 forecasts (During the peak)		April 25 forecasts (After the peak)	
	7 days	14 days	7 days	14 days	7 days	14 days
YYG			-6,470	-10,528	-662	-1,458
Imperial			<u>-1,757</u>		<u>14</u>	
LANL			-6,010	<u>-3,161</u>	-2,018	-2,989
MIT-DELPHI					-2,054	<u>549</u>
Gompertz curve			2,174	4,689	-2,728	-7,062
Vanilla SEIR	2,723	4,822	-11,328	-24,189	-9,696	-21,314
IHME	-1,999	-2,289	-6,134	-10,129	-3,623	-9,999
CDC-ensemble			-2,739	-8,188	-4,244	-5,091
PIP model (US only)	<u>-642</u>	-4,380	-3,182	-8,260	-560	-881
PIP model (global)	-867	-1,396	-1,906	-4,518	-439	611

Results: Accuracy of Global Projections

	March 28 forecasts			April 11 forecasts				
Model	IHME	YYG	Imperial	PIP model	IHME	YYG	Imperial	PIP model
United Kingdom	-981	-3,479	-182	<u>-131</u>	658	-3,433	<u>-29</u>	761
Italy	-1,082	451	1,804	<u>294</u>	-2,591	<u>732</u>	1,600	901
Germany	-420	244	-417	<u>104</u>	-661	628	-288	<u>179</u>
Spain	1,104	<u>167</u>	-499	317	102	76	712	<u>50</u>
Brazil		-283		<u>-105</u>		-768		-298
Sweden	311	107	-102	<u>24</u>	693	256	-35	<u>-7</u>
France	-501	803	-2,415	<u>-79</u>	-1,412	1,601	-1,974	-485
Netherlands	512	172	265	<u>-21</u>	360	363	228	-47
Iran		40		<u>9</u>		79		<u>9</u>
Mexico		-82		-56		-518		<u>-315</u>
Japan				-3				-74
South Africa				<u>-8</u>				-34

Counterfactual NPI Scenario Analysis using PIP

Timeline

Covid-19 at the National Level - Resource Planning

NHS Digital	Search
NHS Digital > News and event	S
News Trials begin of system to help manage COVII resources deve and University	machine learning hospitals plan and 0-19 treatment eloped by NHS Digital of Cambridge
Trials have begun of a s to help predict the upco beds and ventilators ne at individual hospitals a	and across regions in England.

Date:

20 April 2020

Adjutorium: AutoPrognosis for Covid-19

Our goal: Provide evidence that reliably assists the difficult decisions clinicians and managers have to make to save lives

Use depersonalized data

• demographic info, comorbidities, hospitalization details, outcomes

to:

- forecast personalized risk for each patient
- forecast personalized patient benefit from resources
- forecast which treatments are needed by each patient and when
- forecast which resources are needed by each patient and when
- forecast future resource requirements at the hospital level

www.vanderschaar-lab.com/covid-19/

Decisions that healthcare professionals need to make

Many diseases, many variables, various needs! All is changing!

Can't craft a model for each disease!

Make Machine Learning DO the Crafting

Previous AutoML? Auto-WEKA and Auto-Sklearn

- Limited performance gains
- Meta-learning
- Simplistic handling of missing data
- Do not capture uncertainty
- Limited to classification problems (survival, competing risks, time-series etc.)

AutoPrognosis [Alaa & vdS, ICML 2018]: A tool for crafting Clinical Scores

Automated ML for clinical analytics

Clairvoyance [Jarrett, Yoon, Bica, Ercole, vdS, 2020]

AutoPrognosis at work Covid-19: Who needs ventilation?

AUC-ROC accuracy for predicting whether a patient will need ventilation based on info available at hospital admission

Model	AUC-ROC
AP: all features	0.771 ± 0.002
AP: age + specific comorbidities	0.761 ± 0.001
AP: age + no. of comorbidities	0.720 ± 0.003
Cox Regression: all features	0.690 ± 0.002
Charlson Comorbidity Index	0.618 ± 0.002

Demonstrator

Covid-19 at the Patient Level

Prediction Results

Adjutorium is a system designed to assist decision-making by offering predictions based on existing data. It can support and inform healthcare professionals, but is not intended to replace their own decision-making processes.

LEARN MORE

Ventilator benefit

GO BACK TO WEBSITE

This table shows the expected survival chance for 14 days after diagnosis based on the patient information.

Treatment	Additional Benefit	Overall Survival %
Non-invasive Ventilator	20%	84%
Invasive Ventilator	23%	87%

SEND FEEDBACK

Build the ecosystem!

How can we turn ML models into actionable intelligence?

We need

- *Risk score understanding*: Users need to understand, quantify and manage risk
- *Transparency*: Users need to comprehend how the model makes predictions
- Avoid implicit bias: Users need to be able to check whether the model does not learn biases
- *Discovery*: Users need to distil insights and new knowledge from the learned model
- Know what we do not know: Users need to have a quantification of the model's prediction uncertainty

Many kinds of interpretations exist...

- Current methods are tailored to <u>one</u> type of interpretation Uncovering one of the following
 - What features are globally important, i.e. for the entire population?
 - What features are locally important, i.e. for this patient?
 - **Feature interaction**
 - Model non-linearity

- Desiderata
 - Model-independent: general, not tailored to specific models
 - Post-hoc: should not interfere with model training which may introduce bias and compromise accuracy

Which features of an individual are relevant for a prediction?

[Yoon, Jordon, vdS, ICLR 2019]

INVASE [Yoon, Jordon, vdS, ICLR 2019]

- How can we learn individualized feature importance?
- Key idea: Use Reinforcement Learning (RL)
 - Make observations
 - Select "actions" on the basis of these observations
 - Determine "rewards" for these actions
 - Ultimately learn a policy which selects the best actions
 - i.e. actions that maximize rewards given observations
- We use the Actor-Critic approach to RL

INVASE

Selector network (actor) takes instances and outputs vector of selection probabilities.

• Predictor network (critic) receives the selected features, makes predictions and provides feedback to the actor.

INVASE: Instance-wise feature importance for prediction

Find selector function S that minimizes features selected S(x) while satisfying equality constraints on the conditional distribution of the predictions.

- **Objective:** minimize S(x)
- Constraints:

$$(Y|\mathbf{X}^{(S(\mathbf{x}))} = \mathbf{x}^{(S(\mathbf{x}))}) \stackrel{\mathrm{d}}{=} (Y|\mathbf{X} = \mathbf{x})$$

- *x*: Features for *a given realization*
- $S: \mathcal{X} \to \{0,1\}^d$: Selector function, S(x): Selected features
- *Y*: Predictions made by black-box model

INVASE: Instance-wise feature importance for prediction

Find selector function S that minimizes features selected S(x) while satisfying equality constraints on the conditional distribution of the predictions.

- **Objective:** minimize S(x)
- Constraints:

$$\left(Y \middle| \boldsymbol{X}^{(S(\boldsymbol{x}))} = \boldsymbol{x}^{(S(\boldsymbol{x}))}\right) \stackrel{\mathrm{d}}{=} \left(Y \middle| \boldsymbol{X} = \boldsymbol{x}\right)$$

• Lagrangian optimization:

$$\mathcal{L}(S) = \mathbb{E}[KL(Y|\mathbf{X}^{(S(x))} = x^{(S(x))})||(Y|\mathbf{X} = x) + \lambda||S(x)||]$$

- Challenging problem:
 - Output space of the selector function is large its size increases exponentially with the dimension of the feature space!
 - We do not have access to the densities required need to be learned

[Yoon, Jordon, vdS, ICLR 2019]

39

Limitations of past methods for model interpretability

Method	Feature importance	Individualized feature importance	Model-independer	t Identifying the set of relevant features for each instance
LASSO [Tibshirani, 1996]	\checkmark		\checkmark	
Knock-off [Candes et al, 2016]	\checkmark			VASE discovers
L2X [Chen et al, 2018]	\checkmark	\checkmark	✓ th	e number
LIME [Ribeiro et al, 2016]	\checkmark	\checkmark	√ of	relevant
SHAPE [Lundberg et al, 2017]	\checkmark	\checkmark	√ fo	r each instance
DeepLIFT [Shrikumar et al, 2017]	\checkmark	\checkmark		
Saliency [Simonyan et al, 2013]	\checkmark	\checkmark		
TreeSHAP [Lundberg et al, 2018]	\checkmark	\checkmark		
Pixel-wise [Batch et al, 2015]	\checkmark	\checkmark		
INVASE [Yoon, Jordon and van der Schaar, 2019]	\checkmark	\checkmark	\checkmark	\checkmark

Are we done?

• NO!

Need to ALSO understand what the model discovered: feature/statistical interactions, model non-linearity, etc.

Method	Feature importance	Individualized feature importance	Feature interaction	Model- independent	Post-hoc
LIME [Ribeiro et al, 2016]	\checkmark			\checkmark	\checkmark
SHAPE [Lundberg et al, 2017]	\checkmark		\checkmark	\checkmark	
DeepLIFT [Shrikumar et al, 2017]	\checkmark				
INVASE [Yoon, Jordon and van der Schaar, 2019]	\checkmark	\checkmark		\checkmark	\checkmark
L2X [Chen et al, 2018]	\checkmark	\checkmark			
GAM [Lou et al, 2013]	\checkmark		\checkmark		
NIT [Tsang et al, 2018]	\checkmark		\checkmark		

What we are aiming for?

- Understand what the model discovered: feature importance, instance-wise feature importance, feature/statistical interactions, model non-linearity, etc.
- Produce a transparent risk equation describing the model for approval in practice guidelines
- Enable model explainability, not only interpretability

Can we have it all?? YES!

Demystifying Black-box Models with Symbolic Metamodels [A. Alaa & vdS, NeurIPS 2019]

- Metamodel = a model of a model.
- A symbolic metamodel outputs a transparent function describing the predictions of the black box model
- Metamodeling needs only query access to trained black-box model.

Symbolic Metamodeling

White-box model

Metamodel space

How are we going to achieve this?

• Kolmogorov-Arnold Theorem [Kolmogorov et al, 1961]

Every multivariate continuous function can be written as a finite composition of **univariate** continuous functions

$$g(\mathbf{x}) = \sum_{q=0}^{r} g_q \left(\sum_{p=1}^{n} g_{q,p}(x_p) \right)$$

• The symbolic metamodeling problem

Metamodel representation

Metamodel optimization

$$g(\mathbf{x};\theta) = \sum_{q=0}^{2n} G\left(\sum_{p=1}^{n} G(x_p;\theta_{q,p});\theta_q\right)$$

 $\theta^* = \arg\min_{\theta \in \Theta} \ell(f(\mathbf{x}), g(\mathbf{x}; \theta))$

What basic functions?

• Meijer G-functions [C. S. Meijer, 1936] $G_{p,q}^{m,n} \begin{pmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{pmatrix} |x) = \frac{1}{2\pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j - s)} x^s ds$

- Very general class of functions
- Parameter selection yields many familiar functions

G-function	Equivalent function	G-function	Equivalent function
$G_{0,1}^{1,0}\left(egin{array}{c} - \ 0 \end{array} ight -x ight)$	e^x	$G_{2,2}^{1,2}\left(\begin{smallmatrix}\frac{1}{2},1\\\frac{1}{2},0\end{smallmatrix}\middle x^2\right)$	$2 \arctan(x)$
$G_{2,2}^{1,2}\left(\begin{smallmatrix} 1,1\\ 1,0 \end{smallmatrix} \middle x ight)$	$\log(1+x)$	$G_{1,2}^{2,0}\left(\begin{smallmatrix} 1 \\ lpha, 0 \end{smallmatrix} \middle x ight)$	$\Gamma(lpha,x)$
$G_{0,2}^{1,0} \left(\begin{smallmatrix} - \\ 0, \frac{1}{2} \end{smallmatrix} \middle \frac{x^2}{4} \right)$	$\frac{1}{\sqrt{\pi}}\cos(x)$	$G_{1,2}^{2,0} \left(\begin{smallmatrix} 1 \\ 0, \frac{1}{2} \end{smallmatrix} \middle x^2 \right)$	$\sqrt{\pi} \operatorname{erfc}(x)$
$G_{0,2}^{1,0}\left(\left. \begin{array}{c} - \\ \frac{1}{2}, 0 \end{array} \right \frac{x^2}{4} \right)$	$\frac{1}{\sqrt{\pi}}\sin(x)$	$G_{0,2}^{1,0}\left(\begin{array}{c}-\\\frac{a}{2},\frac{-a}{2}\end{array}\middle \frac{x^2}{4}\right)$	$J_a(x)$

Building a symbolic metamodel

Metamodel construction is "analogous" to a 2-layer neural network

Parameters of a Meijer-G function can be learned by gradient descent! This can be done very fast!

Interpretability using symbolic metamodeling in practice

Example: Use Metamodels for Individual-level feature importance

Individual-level feature importance

$$\frac{\partial g(\boldsymbol{x})}{\partial \operatorname{Age}} = \alpha_0 + \alpha_2 \operatorname{BMI} + \alpha_3 \operatorname{Gender} + \frac{\alpha_6 \operatorname{Diabetes}}{\operatorname{Age}+1}$$

Beyond current feature importance

Explainability =User-dependent Interpretability

Different users seek different forms of "understanding"...

Metamodels: How to use them?

Different forms of interpretations can be extracted from a Metamodel's forward and backward views!

How can researchers use Metamodels?

- Regardless of the model f(x), g(x) is always a symbolic expression
- Unified format for many different types of black-box models: identify common discoveries by comparing their Metamodels

How can clinicians use Metamodels?

- Understand why how predictions or treatment recommendations are being made by the ML-model
- Example: Two patients with apparently similar features get different treatment recommendations!

How can patients use Metamodels?

Patients can be informed how to alter behavior to lower risk.

Can be set through the inverse Metamodel equation

BMI Reduction = g^{-1} (*Family history, Genetics, Diabetes* | *Risk* = X %)

In addition to interpretability & explainability.... trustworthiness is key

Our approach: Post-hoc methodology with frequentist coverage guarantees

Method	Post-hoc vs Built-in	Coverage
Bayesian neural nets (Ritter et al., 2018)	Built-in	No guarantees
Probabilistic backprop. (Blundell et al., 2015)	Built-in	No guarantees
Monte Carlo dropout (Gal & Ghahramani, 2016)	Built-in	No guarantees
Deep Ensembles (Lakshminarayanan et al., 2017)	Built-in	No guarantees
Discriminative Jackknife (Alaa and vdS,ICML2020)	Post-hoc	1-α

Does not interfere with model training or compromise accuracy!

*

Alaa and vdS,ICML2020 - Frequentist Uncertainty in Recurrent Neural Networks via *Blockwise* Influence Functions

Machine Learning & Healthcare: Vision

Transforming healthcare using ML

- New understanding of diseases (Think Covid-19!)
- New understanding of relationships among diseases (multiple morbidities)
- New understanding of effects of interventions/treatments
- New ways of screening and monitoring
- New ways of preventing disease
- New ways of diagnosing and staging disease
- New ways of treating disease
 - Impact on clinical trials
- New ways of allocating resources
- New pathways of care

Join us!

Acknowledgements

Dr. Ahmed Alaa Dr. Hyunsuk Lee Jinsung Yoon Alexis Bellot Changhee Lee Yao Zhang

Ioana Bica Zhaozhi Qian Trent Kyono James Jordon Dan Jarrett Alihan Huyuk

Email: mv472@cam.ac.uk Website: http://www.vanderschaar-lab.com/

http://www.vanderschaar-lab.com

We are hiring brilliant students and post-docs