
 

 

2023 IEEE SPS Video and Image Processing (VIP) Cup 
 

Ophthalmic Biomarker Detection 
 

Overview 

Ophthalmic clinical trials that study treatment efficacy of eye diseases are performed 

with a specific purpose and a set of procedures that are predetermined before trial 

initiation. Hence, they result in a controlled data collection process with gradual changes 

in the state of a diseased eye. In general, these data include 1D clinical measurements 

and 3D optical coherence tomography (OCT) imagery. Physicians interpret structural 

biomarkers for every patient using the 3D OCT images and clinical measurements to 

make personalized decisions for every patient. 

 
Fig 1: An illustration of personalization challenges within the dataset. 

 

 

Two main challenges in medical image processing has been generalization and 

personalization. 

Generalization aims to develop algorithms that work well across diverse patients and 

scenarios, providing standardized and widely applicable solutions. Personalization, in 



 

 

contrast, tailors algorithms to individual patients based on their unique characteristics, 

optimizing diagnosis and treatment planning. Generalization offers broad applicability 

but may overlook individual variations. Personalization provides tailored solutions but 

requires patient-specific data. While deep learning has shown an affinity towards 

generalization, it is lacking in personalization. 

 

The presence and absence of biomarkers is a personalization challenge rather than a 

generalization challenge. This is shown in Fig.1. The variation within OCT scans of 

patients between visits can be minimal while the difference in manifestation of the same 

disease across patients may be substantial. The domain difference between OCT scans 

can arise due to pathology manifestation across patients (Fig.1a and Fig.1b), clinical 

labels (Fig.1c), and the visit along the treatment process when the scan is taken (Fig.1d). 

Morphological, texture, statistical and fuzzy image processing techniques through 

adaptive thresholds and preprocessing may prove substantial to overcome these fine-

grained challenges. This challenge provides the data and application to address 

personalization. 

 

Task 

PHASE 1: 

The overall task is to predict the presence or absence of six different biomarkers 

simultaneously on every OCT scan in the held-out test set. The training set will consist of 

the labeled OCT scans for biomarkers and associated clinical information, along with the 

biomarker labels as ground-truth. Participants are encouraged to make use of all 

available modalities.  Additionally, we will provide a testing dataset that is derived from a 

recent clinical study in collaboration with RCT. Teams will be provided with the OCT scans 

and their clinical information only for the test set. Participants will use the available data 

to predict the biomarkers associated with each OCT scan in this test set.  



 

 

 

 

PHASE 2: 

In PHASE 1 of the competition, each slice in the test set was treated as its own independent 

entity. However, every set of 49 slices within the test set was associated with a specific patient’s 

eye. In practice, practitioners may be interested in performance with respect to the patient’s eye, 

rather than performance with respect to isolated slices of the retina. Thus, in PHASE 2 of the 

competition we want to assess how well the model can personalize. To perform the 

personalization aspect of the competition, the invited TOP 10 TEAMS from PHASE 1 will have the 

opportunity to re-train their models and submit the same biomarker prediction csv files for each 

image in the test set.  

Suggested methods for improving detection: 

Potential ideas for improvement include: 

1. Using multi-modal integration of OCT scans and clinical labels 

 Clinical labels, such as BCVA and CST, correspond to the health of a patient’s eye, 

and these clinical values can indicate structural changes within the eye. Therefore, a 

multi-modal approach to integrate clinical labels via a joint loss may improve 

accuracy. See reference [1] 

 Example Code for [1] 

2. Using self-supervised learning with clinical labels 

 Exploring self-supervised techniques may be an effective way to leverage clinical 

information for biomarker classification. Since clinical labels can exhibit 

relationships with biomarkers, [2] presents a supervised contrastive loss using 

clinical labels (BCVA, CST, or a combination of both) for biomarker identification. 

https://github.com/olivesgatech/OLIVES_Dataset/tree/main/Multi-Modal%20Integration%20Between%20OCT%20and%20Biomarkers:Clinical%20Labels


 

 

 Example Code for [3] 

3. Exploiting information about disease severity label. 

 Exploiting information about OCT disease severity may help with biomarker 

identification, as patients exhibiting similar disease severity levels are more likely to 

have similar structural characteristics. [4] quantifies how anomalous OCT images 

are relative to a healthy distribution, using this approach to choose pairs for a 

contrastive learning approach for biomarker classification. Other information that 

can potentially be leveraged is DRSS, which indicates the severity of the disease. 

Binning images into similar DRSS scores may also be an approach to understand 

how anomalous OCT images are. 

Data 

Head over to zenodo to download the dataset: https://zenodo.org/record/8040573 

 

Participation 

PHASE 1: 

PLEASE REGISTER FOR THE CHALLENGE THROUGH THE CMS WEBSITE AND BY FILLING UP 

THIS FORM 

The competition will be hosted on Codalab: HERE 

Instructions: 

 All teams must register under the same name in the above form as well as in the 

participating Codalab challenge. 

 Each team needs to have an advising faculty member assigned. 

 Once, you have filled out the above form, go to the Codalab competition below and 

register to participant. The organizers will verify your registration and grant you access to 

the challenge to start your submission. 

https://github.com/olivesgatech/SupCon_OCT_Clinical
https://zenodo.org/record/8040573
https://www2.securecms.com/VIPCup/VIPRegistration.asp
https://alregib.ece.gatech.edu/form/
https://codalab.lisn.upsaclay.fr/competitions/14006
https://alregib.ece.gatech.edu/form/


 

 

PHASE 2: 

The TOP 10 TEAMS from the PHASE 1 leaderboard will be invited to re-train their models and 

submit the same biomarker prediction csv files for each image in the test set to assess how well 

the model is able to personalize. 

Submission 

PHASE 1: 

Once participants have trained a model with the provided training data, they are expected to 

complete the following steps: 

 Perform inference for the presence or absence of each biomarker on each individual OCT 

scan in the test set.  

 To submit please fill out the provided template [also available in the Participate tab of 

Codalab] using the model output for each image in the test set. There should be the file 

path followed by a one or zero for the presence or absence of each of 6 biomarkers for 

the associated image. 

 Please zip ONLY your csv file and submit the zip file on codalab for evaluation. 

 SUBMIT THE ZIP FILE HERE 

 

Starter Code Usage: 

The link to the starter kit is: [HERE] 

 

Fill this out with the appropriate file path fields for the training and test data to train a model 

and produce a numpy that can act as a valid submission once the file paths are appended and 

saved as a csv. 

PHASE 2: 

At the end of PHASE 1, the TOP 10 Teams who will qualify for PHASE 2 will be required to submit 

a minimum 1-page description of the team composition (organization, member names), the 

general approach used in the work, system specifications of the devices used to train and test 

https://github.com/olivesgatech/VIPCUP2023_OLIVES/blob/main/csv_dir/test_set_submission_template.csv
https://codalab.lisn.upsaclay.fr/competitions/14006#participate-submit_results
https://github.com/olivesgatech/VIPCUP2023_OLIVES


 

 

the model, and any other detail that relates to the implementation and the deployed 

algorithms, along with their CSV submission for PHASE 2 

The submission form for PHASE 2 will be available soon. 

Evaluation 

To measure the performance of the biomarker detection task, we will make use of the macro 

averaged F1-score. 

Calculation: 

 
The equation for F1 score 

 

If we express it in terms of True Positive (TP), False Positive (FP), and False Negative (FN), we get 

this equation: 

 
The alternative equation for F1 score 

 

The macro-averaged F1 score (or macro F1 score) is computed using the arithmetic mean 

(aka unweighted mean) of all the per-class F1 scores. 

This method treats all classes equally regardless of their support values. 

PHASE 1: 

There are several characteristics of the dataset that makes this metric desirable. The first is that 

the test set is imbalanced as it is impossible to guarantee an equal distribution of biomarkers 

within each OCT scan. Therefore, we need F1-score as it is the harmonic mean of precision and 



 

 

recall which are both sensitive to dataset imbalances. Furthermore, we want our metric to treat 

each class of biomarker as equally important, rather than reflecting a bias towards classes with 

more instances present. In PHASE 1 of the competition, each slice in the test set will be treated 

as its own independent entity. Therefore, we will select the TOP 10 TEAMS for PHASE 1 with 

the highest macro-averaged F1-score across all 6 biomarkers. 

PHASE 2: 

We will compute the macro f1-score for each slice in the same way as PHASE 1. However, we will 

now average the f1-scores with respect to each set of slices associated with an individual patient, 

rather than averaging across the test set as a whole. This will result in an associated macro f1-

score with respect to each individual patient. Teams will be ranked with respect to performance 

on each of the 40 patients in the test set. Afterwards, the ranking of each team will be averaged 

across all patients. The team with the highest average ranking will win the personalization 

task of the competition and VIP CUP 2023 as a whole. 

Leaderboard 

PHASE 1: 

The leaderboard for PHASE 1 will be hosted on Codalab HERE 

Due to the allowance of multiple submissions for each team, there may be chances of overfitting 

of the model on the test data. For this reason, the public leaderboard, during the running phase 

of the competition [July 1st to Aug. 27th, 2023], will display the macro F1 scores for validation on 

70% of the test set, and the final decision for the TOP 10 for PHASE 1 will be made based on the 

private leaderboard [which will be made public at the end of the challenge] which will rank the 

teams based on their performance on the other 30% of the set. 

PHASE 2: 

Evaluation will be conducted on the submissions made by the TOP 10 teams and their reports 

will be reviewed by September 3, 2023. The team with the highest average ranking in this 

phase will win the personalization task of the competition and VIP CUP 2023 as a whole. 

Results for PHASE 2 will be published on our website. 

Note: In the event of a tie, the performance in phase 1 will determine the winner. 

https://codalab.lisn.upsaclay.fr/competitions/14006#results
https://alregib.ece.gatech.edu/2023-vip-cup/


 

 

Important Dates 

 
 

 
 

 

Prizes 

Please check the IEEE VIP Cup Website for 

prizes: https://signalprocessingsociety.org/community-involvement/video-image-processing-

cup.  

The THREE TEAMS with highest performance in the FINAL competition (PHASE 2) will be invited 

to present their work in the final phase at ICIP 2023. The champion team will receive a grand 

prize of $5,000. The first and the second runner-up will receive a prize of $2,500 and $1,500, 

respectively, in addition to travel grants and complimentary conference registrations. 

 Up to three student members from each finalist team will be provided travel support to 

attend the conference in-person. In-person attendance of the physical conference is 

required for reimbursement. 

 Complimentary conference registration for the three finalist team members from each 

team who present at ICIP. These complimentary conference registrations cannot be used 

to cover any papers accepted by the conference. If you are one of the three finalist team 

https://signalprocessingsociety.org/community-involvement/video-image-processing-cup
https://signalprocessingsociety.org/community-involvement/video-image-processing-cup


 

 

members from each team and wish to receive complimentary registration and/or 

conference banquet access, you must email Jaqueline Rash, Jaqueline.rash@ieee.org, with 

this information once your team has been selected as a finalist. 

 The three finalist team members from each team will also be invited to join the 

Conference Banquet and the SPS Student Job Fair, so that they can meet and talk to SPS 

leaders and global experts. Please note registration to the Conference Banquet and 

Student Job Fair is limited and based on availability. 
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Extra Reading: Clinical Labels and their Generation 
 

This information is for the medically curious minded and that this is not relevant for performing 

the task itself. 

Full clinical Labels: The clinical labels obtained from the PRIME trials include BCVA, DRSS, CST, eye 

ID, patient ID, diabetes type, BMI, age, race, gender, HbA1c, leakage index, years with diabetes, and 

injection arm. The clinical labels from the TREX-DME trials include BCVA, Snellen score, CST, Eye ID, 

and Patient ID. Since OLIVES is a combination of the two, we use only the common labels from both 

trials as our clinical labels in our experiments. These common labels include BCVA, CST, Patient ID 

and Eye ID 

The Early Treatment Diabetic Retinopathy Study (ETDRS) diabetic retinopathy severity scale (DRSS) 

has 13 levels describing DR severity and change over time based on color fundus photograph 

grading. The scale starts at level 10 and ends at level 90 with irregular scale numbering. 

Nonproliferative diabetic retinopathy (NPDR) DRSS levels on the scale are below 61 and proliferative 

diabetic retinopathy (PDR) levels are 61 and above. Diabetes type refers to the patient’s diagnosis of 

either type one or type two diabetes mellitus. HbA1c is the measurement of glycated hemoglobin, 

commonly referred to as blood sugar, which serves as an indicator for diabetes diagnosis or diabetic 

control. Leakage index refers to the panretinal leakage index used in the PRIME trial in which areas 

of leakage, regions of hyperfluorescence in fluorescein angiography images, were divided by areas of 

mailto:zfowler3@gatech.edu


 

 

interest, region of total analyzable retinal area, and converted to a percentage. Injection arm refers 

to either the DRSS-guided cohort or the PLI-guided cohort in the PRIME trial. Snellen score is the 

visual acuity testing procedure commonly used in ophthalmic clinical settings. The first number 

indicates the distance in feet that the letter chart was read, in U.S., this number is commonly 20, 

followed by a number indicating the distance a person with “normal” vision (20/20) would have to be 

to read something the person tested could read at 20 feet. Thus, a larger denominator would 

indicate poorer vision. 

Other self-explanatory demographic information including body mass index (BMI), age, race, and 

gender are provided. We caution the users regarding the societal impact of using these labels since 

the underlying PRIME trial did not study the causality of these labels. 

ML Centric Clinical Labels: We describe BCVA and CST in this section. ETDRS best-corrected visual 

acuity (BCVA) is a visual function assessment performed by certified examiners where a standard 

vision chart is placed 4-meters away from the patient. The patient is instructed to read the chart 

from left to right from top to bottom until the subject completes 6 rows of letters or the subject is 

unable to read any more letters. The examiner marks how many letters were correctly identified by 

the patient. Central subfield thickness (CST) is the average macular thickness in the central 1-mm 

radius of the ETDRS grid. CST was obtained from the automated macular topographic information in 

the Heidelberg Eye Explorer OCT software. 

The remaining clinical labels of Patient ID and Eye ID are self-explanatory and collected on clinical 

visits. 

 

Extra Reading: Structural Biomarkers 

 
This information is for the medically curious minded and that this is not relevant for performing 

the task itself. 

The term “biomarker”, a portmanteau of “biological marker”, refers to a broad subcategory of 

medical signs – that is, objective indications of medical state observed from outside the patient – 

which can be measured accurately and reproducibly. Medical signs stand in contrast to medical 

symptoms, which are limited to those indications of health or illness perceived by patients 

themselves. 

Biomarkers are measurable indicators of a patient’s medical state, helping detect diseases. While 

they can be surrogate endpoints in clinical trials, caution is advised unless trials are specifically 



 

 

designed for that purpose. Biomarkers indicate disease presence but are not causal. Medical 

causality can be singular, involving linked events, or general, examining event relationships. 

The six different biomarkers studied in this experiment are Intraretinal Hyperreflective Foci (IRHRF), 

Partially Attached Vitreous Face (PAVF), Fully Attached Vitreous Face (FAVF), Intraretinal Fluid (IRF), 

and Diffuse Retinal Thickening or Diabetic Macular Edema (DRT/ME) and Vitreous debris (VD). 

 
 

Fig 2: The six different biomarkers studied in this experiment are Intraretinal Hyperreflective Foci (IRHRF), 

Partially Attached Vitreous Face (PAVF), Fully Attached Vitreous Face (FAVF), Intraretinal Fluid (IRF), and Diffuse 

Retinal Thickening or Diabetic Macular Edema (DRT/ME) and Vitreous debris (VD). 

 

Biomarker Labelling 

Intraretinal Hyperreflective Foci (IRHRF) were indicated as present with the appearance of 

intraretinal, highly reflective spots, which correspond pathologically to microaneurysms or hard 

exudates, with or without shadowing of the more posterior retinal layers. 



 

 

A Partially Attached Vitreous Face (PAVF) was indicated as present with evidence of perifoveal 

detachment of the vitreous from the internal limiting membrane (ILM) with a macular attachment 

point within a 3-mm radius of the fovea. 

A Fully Attached Vitreous Face (FAVF) was indicated as present with no evidence of perifoveal or 

macular detachment from the ILM. 

Intraretinal Fluid (IRF) was indicated as present when intraretinal hyporeflective areas or cysts had 

a minimum fluid height of 20 µm 

Diffuse Retinal Thickening or Diabetic Macular Edema (DRT/ME) was indicated as present when 

there was increased retinal thickness of 50 µm above the otherwise flat retina surface with 

associated reduced reflectivity in the intraretinal tissues 

Vitreous Debris (VD) was indicated as present with evidence of hyperreflective foci in the vitreous 

or shadowing of the retinal layers in the absence of an intraretinal hemorrhage. 

 

 

Terms & Conditions 

 Please check the team formation and eligibility rules 

at: https://signalprocessingsociety.org/community-involvement/video-image-processing-

cup 

 Specifically “Each team participating should be composed of one faculty member or 

someone with a PhD degree employed by the university (the Supervisor), at most one 

graduate student (the Tutor), and at least three, but no more than ten undergraduate 

students. At least three of the undergraduate team members must hold either regular or 

student memberships of the IEEE Signal Processing Society. Undergraduate students who 

are in the first two years of their college studies, as well as high school students who are 

capable to contribute are welcome to participate in a team. A participant cannot be on 

more than one team.” 

 Participants must register with a contact email, team name, and e-signing a document 

that acknowledges an honest result reporting policy to receive the held out clinical trial 

test set. 

 Previously published methods that are adapted to this challenge must be properly cited 

by the participants. Contributions of the participants on top of these existing methods 

must be properly documented and highlighted.  

https://signalprocessingsociety.org/community-involvement/video-image-processing-cup
https://signalprocessingsociety.org/community-involvement/video-image-processing-cup
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