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ABSTRACT 

 

In the array signal processing research, estimation of the direction-

of-arrival (DOA) of the transmitted source signal has long been of great 

interest and plays an important role in both civilian and military applications 

such as radar, sonar, geophysics, acoustics, bioengineering, seismology, 

multimedia, radio astronomy and wireless communication. Non-uniform 

linear array (NULA) design, also known as the sparse linear array (SLA) 

design has been developed for DOA estimation considering the limitations 

seen in the uniform linear array (ULA) design. The SLA design can attain a 

large effective array aperture with fewer array elements and also mitigates the 

influence of mutual coupling effects between array elements. Recently, the 

co-prime linear array (CLA) design has gained considerable research interest 

among several SLA designs such as minimal redundant array (MRA), 

minimum-hole array (MHA) and nested linear array (NLA). However, CLA 

designs such as general co-prime linear array (GCLA) and unfolded co-prime 

linear array (UCLA) face the critical problem of ambiguity resulting in an 

ambiguous estimate of true DOAs. Specifically, GCLA suffers from the 

problem of pair-matching ambiguity in subarray domain processing but both 

GCLA and UCLA suffer from the problem of grating-angle ambiguity.   

This thesis focuses on the key objectives as follows (i) To resolve 

the ambiguity problem such as pair-matching and grating-angle ambiguity in 

estimating the DOA of the incoming source signals using the GCLA and 

UCLA (ii) To achieve a reliable estimation of true DOAs with superior 

estimation performances in terms of accuracy, angular resolution and degrees-

of-freedom (DOF) compared to the existing methods (ii) To offer good 

generalization and robustness in estimation performance with less 



iv 
 

 

computational complexity and execution time compared to the existing 

methods.  

 In the first proposed solution, the true DOAs are distinguished 

from ambiguous estimates obtained from UCLA-MUSIC using the estimated 

power of the transmitted source signals. Here, the source power function 

derived is based on the signal subspace eigenvalues and its associated 

eigenvectors to estimate the power of the transmitted source signals. In the 

second proposed solution, an improved polynomial rooting-based method for 

high-resolution unambiguous DOA estimation is performed. A polynomial 

function is derived based on the orthogonality between the noise subspace 

eigenvectors and array directional vectors. A maximum signal power function 

is proposed based on the spatial filtering and second-order differential 

counterparts for the selection of the signal roots associated with the true 

DOAs over the ambiguous roots. In the third proposed solution, a 

computationally efficient DOA estimation method based on support vector 

regression (SVR) is proposed. The ambiguity problem is resolved by treating 

DOA estimation as approximating the unknown regression function that maps 

the signal subspace eigenvectors with the DOA of the incoming source 

signals.  

The effectiveness and superiority of the aforementioned proposed 

solutions are supported by several standard simulation studies in terms of 

estimation reliability, estimation accuracy, angular resolution, computational 

complexity, execution time and DOF.  
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CHAPTER 1 

INTRODUCTION 

 

In the last few decades, sensor array systems have gained 

considerable attention wherein the set of sensors is positioned in a specific 

configuration. It spatially captures the propagating signals from different 

sources in the field-of-view (FOV) and extracts the desired information from 

the observation in the presence of noise and interference (Manikas 2004). 

Sensor array systems are greatly supported by array signal processing 

techniques for its accomplishment. It processes the signals received by an 

array of sensors and brings out an estimation of the source signal parameters 

such as power, frequency and location based on the temporal and spatial 

characteristics. A combination of communication systems and array signal 

processing methods has been developed into a well-established technology. 

This technology is transitioning from traditional direction nulling phase arrays 

to sophisticated super-resolution spatiotemporal arrays. The MIMO array 

systems and arrayed wireless sensor networks use the channel's spatial and 

temporal features for handling multipath that improves the capacity and 

spectral efficiency (Liao et al.2018). 

1.1  DOA ESTIMATION 

In the research community of sensor array signal processing, 

estimation of the DOA of the source signals has long been of great interest in 

both civilian and military applications (Krim et al.1996). DOA estimation is 

an important problem seen in radar, sonar, geophysics, acoustics, 

bioengineering, seismology, multimedia, radio astronomy and wireless 
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communication. It finds applications in target localization and tracking in 

electronic warfare systems (Joshi et al. 2022), emergency rescue assistance, 

speech enhancement in hearing aid devices (HAD) (Tokgoz et al. 2021; 

Dehghan Firoozabadi et al. 2020), brain source localization (Albera et al. 

2008),  electronic surveillance, navigation, geophysical exploration, seismic 

exploration, freight tracking, intelligent transportation (Pohlmann et al. 2022), 

drone localization (Fu et al. 2019), parametric channel estimation (Wang et 

al.2020) and user localization in massive MIMO (Shu et al. 2018; Shu et al. 

2020; Grenier et al.2016). 

An adaptive antenna array is a potential technology for 

improvements in both military and civilian applications such as radar, 

electronic warfare systems, wireless communications and satellite navigation 

(Razavizadeh et al.2014; Balanis et al. 2007). Wireless technology is rapidly 

evolving, and 5G or beyond 5G (B5G) technology will soon take precedence 

(Shu et al. 2020) and for meeting its stringent demands, one potential solution 

is adaptive antenna array systems also known as smart antenna systems 

(Balanis et al. 2007; Gross 2005). In smart antenna systems, DOA estimation 

plays a key task in localizing the source signal directions. For instance, when 

the desired signal's DOA is known, adaptive beamforming methods can be 

used for steering the beams toward the desired source directions instead of the 

undesired directions (Bellofiore et al. 2002). In addition, DOA estimation 

plays a vital role in direction-finding (DF) for the next-generation mobile and 

stealth communication systems (Kiang et al. 2004). 

In cellular radio systems, spatial division multiple access (SDMA) 

with its advanced spatial-processing capabilities allows it to distinguish the 

radio signals in the angular domain by forming a beam for each user based on 

its DOA. As a result, there is a significant increase in interference suppression 

and frequency reuse, leading to improved capacity and throughput of a 
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network with lower infrastructure costs (Balanis et al. 2007). DOA estimation 

of underwater targets plays a crucial role in SONAR systems for 

oceanographic and naval applications such as vessel navigation, torpedo 

localization and the internet of underwater things (IoUT) (Lan et al. 2021). 

High-resolution DOA estimation is an essential requirement of multiple-input 

and multiple-output (MIMO) RADAR systems for accurate localization and 

tracking of targets (Xu et al. 2022). Another usage for DOA estimation is in 

audio zooming for audio enhancement (Evers et al. 2018), in which, once the 

sound source has been located, it is possible to zoom in or amplify the 

specific sound to make it louder and clearer. In emergency rescue assistance, 

accurate localization of electromagnetic beacon sources is always necessary 

for search and rescue operations. The FCC (Federal Communications 

Commission 2022) has adopted a mandatory regulation for location accuracy 

in wireless emergency calls. Also, the localization of source nodes is crucial 

in sensor networks for optimal performance. Furthermore, the localization of 

animals and birds based on their sound is of great interest in bio-engineering 

studies. 

DOA estimation is the process of determining the direction of the 

incoming source signals received by the sensor array, where the signals are 

located at a different point in space (Foutz et al. 2008). The DOAs of all the 

source signals are computed based on the temporal delays between the sensor 

array elements. In order to provide good insight, the problem of DOA 

estimation is explained with a human auditory system analogy (Balanis et al. 

2007). A person's ability to ascertain the DOA of a sound can be viewed as 

the signals received by the ears, which function as acoustic sensors. The ears 

are separated and so each ear gets the signal with a distinct time delay. The 

brain, the human "signal processor" performs a large number of computations 

to correlate information and determine the direction of the received sound 

based on the temporal differences or delays received by the two ears. In a 
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similar way, the array of sensors is used in the measurement of the 

propagating fields. The propagating fields could be acoustic waves in 

hydrophone (sonar), microphone (acoustics), geophone (seismology), 

ultrasound probe (biomedical) array applications and electromagnetic waves 

in RF antenna array and optical receivers (wireless communication) (Manikas 

2004). The digital signal processor (DSP) computes the DOA of the 

propagating fields based on the temporal differences or delays received by the 

sensor array. 

1.2 OVERVIEW OF DOA ESTIMATION METHODS 

The development of multi-source localization methods has been 

burgeoning in signal processing, communications, and underwater acoustics 

literature. There have been several reports concerning defense-oriented 

localization systems since World War I. Stansfield (Stansfield 1947) reports 

the statistical theory of emitter localization. Many further notable 

comprehensive reports followed, including a review work by Torrieri 

(Torrieri 1984), extensive reviews of array processing by Krim (Krim et al. 

1996), Wax (Wax 1995) and a book devoted entirely to array processing by 

Van Trees (Van Trees 2022). 

In general, DOA estimation methods can be broadly categorized 

into conventional methods, maximum likelihood (ML) methods, subspace-

based methods, and integrated methods (Liberti et al. 1999). The conventional 

methods (also referred to as classical methods) for DOA estimation are 

essentially based on the concept of beamforming. Two methods are classified 

as conventional methods which are the delay-and-sum method (Bartlett 1961; 

Bartlett 1948) (also referred to as the classical beamformer (CBF) method or 

Fourier method or Bartlett method) and Capon‘s minimum variance method 

(also known as minimum variance distortionless response (MVDR)) (Capon 

1969). The basic idea behind both the aforementioned methods is to steer a 
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beam in all possible directions and measure the output power from each 

direction. The directions for which the largest output power is observed are 

considered as the DOA of the source signals. These methods are simple in 

terms of implementation perspective and their non-parametric solutions are 

obtained without exploiting the statistics of the received signal. In the delay-

and-sum method, the spatial power spectrum exhibits peaks when the 

beamforming weights are equal to the directional vectors of source signals. 

The angles corresponding to the peaks of the spatial spectrum are the DOA of 

the source signals. The major limitation of the delay-and-sum method is its 

poor angular resolution capability for resolving the DOA of multiple closely 

spaced source signals (Chen et al 2010). On the other hand, Capon‘s 

minimum variance method is designed for minimizing the output power for 

signal-not-of-interest (SNOI) and maximizing the output power for signal-of-

interest (SOI) with the constraint of maintaining unity gain for the desired 

direction-of-interest. Capon‘s minimum variance method involves additional 

matrix inversion computation and exhibits better angular resolution compared 

to the delay-and-sum method. The downside of this approach is the inverse 

matrix computation that is expensive for large sensor arrays and becomes ill-

conditioned (singular) in the presence of correlated source signals (Chen et al. 

2010). 

Research has been carried out on the maximum likelihood (ML) 

methods (Ziskind et al. 1988; Ziskind et al. 1990) for the DOA estimation 

problem which provides an optimal solution, especially at a low signal-to-

noise ratio (SNR) and correlated source signal conditions. However, it is 

rarely used in practice because of its intense computational complexity to find 

the global maximum of the likelihood function. 

Unlike the conventional methods and ML methods, the subspace-

based methods exploit the statistics of the received signal and exhibit high-
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resolution DOA estimation performance (Tuncer et al. 2009). Within the class 

of subspace-based methods, the multiple signal classification (MUSIC) and 

estimation of signal parameters via rotational invariance (ESPRIT) have been 

most widely examined. The MUSIC method proposed by Schmidt is a 

popular high-resolution eigenstructure method (Schmidt 1986). It yields an 

asymptotically unbiased DOA parameter estimate for multiple source signals 

and achieves superior estimation performance by exploiting the orthogonality 

between the signal and noise subspaces of the received signal array 

covariance matrix. In comparison to ML approaches, MUSIC performs a 

spectral search across a reduced parameter space, resulting in significantly 

lower computational complexity. However, it suffers in the presence of highly 

correlated source signals and the spectral search process involved may be 

computationally expensive for real-time applications. Moreover, it requires 

prior knowledge of the second-order spatial statistics of the signal and noise. 

Several efforts have been taken for enhancement of the resolution 

performance and reduction in computational complexity of the traditional 

MUSIC method. Xu has proposed the Fast Subspace Decomposition (FSD) 

technique for a reduction in the computational complexity seen in the MUSIC 

method (Xu et al.1994).  

A search-free method called the Root-MUSIC method based on 

polynomial rooting has been proposed by Barbell (Barbell 1983).  It offers 

improved resolution at low SNR levels and is computationally efficient 

compared to the traditional MUSIC method. However, it is applicable only 

for ULA configurations. The Cyclic MUSIC method suggested (Gardner 

1988), is a selective direction-finding technique that takes advantage of the 

spectral coherence characteristics of the received signal to resolve signals that 

are spaced closer together than the array's resolution threshold. Additionally, 

Cyclic MUSIC does not adhere to the requirement of the total number of 

signals impinging on the array being lower than the total number of array 
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elements. The performance of MUSIC suffers greatly in a multipath 

environment where the signals received are strongly correlated. The array 

covariance matrix is subjected to a process known as spatial smoothing to 

overcome this drawback (Pillai et al.1989; Shan et al. 1985). 

In addition, mean-square error-based approaches such as the linear 

prediction (LP) method (also referred to as the autoregressive (AR) method) 

(Johnson 1982) and Pisarenko harmonic decomposition (PHD) method 

(Pisarenko 1973) have been proposed. The maximum entropy (ME) method 

derived by Burg, maximizes the entropy function subject to certain constraints 

(Burg 1972). Kumaresan and Tufts (Kumaresan et al. 1983) have proposed a 

min-norm method based on the minimum norm vector residing in the noise 

subspace and its explanations are presented by Ermolaev and Gershman 

(Ermolaev et al. 1994). All the aforementioned methods such as LP, PHD, 

ME and min-norm exhibit an inferior estimation performance compared to the 

MUSIC method. 

In reality, the resolution and estimation accuracy are limited by 

noise as well as inaccuracies in the presumed data model. Array calibration 

refers to the process of adjusting the presumed array response model for 

inaccuracies caused as a result of various imperfections such as phase errors, 

gain errors, uncertain sensor placements, an imbalance between the I (In-

phase) and Q (Quadrature) channels, and an inaccurately defined mutual 

coupling model (Tuncer et al. 2009). Sakaguchi (Sakaguchi et al. 2002) has 

illustrated a hardware-based calibration technique. Auto-calibration is the 

other option where array response parameters are computed concurrently with 

the DOAs using the measured data (Li et al. 2003). Levi and Messer (Levi et 

al. 1990) and Rockah and Schultheiss (Rockah et al. 1987) have illustrated 

the fundamental constraints of the combined estimate of sensor locations and 

DOAs. Belloni (Belloni et al.2007) provided a more recent contribution in 
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which the array interpolation approach is effectively combined with the Root-

MUSIC algorithm. The experimental results of array calibrations are 

presented in (Dandekar et al. 2000; Gupta et al. 2003; Pettersson et al. 2003; 

Pierre et al. 2004). 

The aforementioned limitations of the MUSIC method have urged 

Roy and Kailath (Roy et al. 1989) to propose a method called ESPRIT 

through the exploitation of the rotational-invariance property of the sensor 

array. The major advantages of the ESPRIT method are its involvement of 

less computational complexity and the absence of the requirement of 

exhaustive spectral search and array calibration compared to the MUSIC 

method. Several variants such as unitary ESPRIT (Zoltowski et al. 1996), 

QR-ESPRIT (Strobach 1998), DFT-beamspace ESPRIT (Xu et al. 1994), 

Multiple-Invariance ESPRIT (MI-ESPRIT) (Swindlehurst et al. 1992) and 

Equirotational stack ESPRIT (ES-ESPRIT) (Strobach 2000) have been 

proposed for the enhancement of estimation performance and reduction in the 

computational complexity seen in the ESPRIT method. 

The integrated method, which combines the property restoral and 

the subspace-based method, is the last category of DOA estimation methods. 

The property restoral method features the Iterative Least Squares Projection 

Based Constant Modulus Algorithm (ILSP-CMA) overcoming many of the 

challenges associated with Multistage CMA algorithms (Parra et al. 1995). 

Xu and Lin (Xu et al. 1995) have presented a novel technique by combining 

the ILSP-CMA with the subspace DOA approach for the enhancement of the 

DOF. Muhamed and Rappaport (Muhamed et al. 1996) demonstrated the 

improvement in estimation performance by combining the subspace-based 

approaches such as MUSIC and ESPRIT  with the ILSP-CMA. 

The practical aspects of design and applications of direction-finding 

(DF) systems are discussed in (Tuncer et al. 2009). A wide range of 
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contemporary DOA estimation methods is discussed in (Chandran 2005). 

Several attempts at higher-order statistics extension of subspace-based 

methods have been proposed (Chevalier et al. 2005). It offers enhanced DOF, 

insensitiveness to Gaussian background noise, and robustness to modeling 

errors. However, its main weakness is high computational complexity, poor 

angular resolution and higher sensitivity to finite sample effects (Tuncer et al. 

2009). 

Recently, nonuniform linear array (NULA) designs have gained 

popularity due to their offer of larger array aperture with fewer sensors 

(Tuncer et al. 2009). However, its estimation performance can be increased 

only when the information on the missing sensors is compensated.  It can be 

obtained with the help of array mapping techniques (Tuncer et al. 2007). 

Various array-mapping techniques are seen in the literature such as Davies' 

transformation (Davies 1965) is one example that can be used in a variety of 

cases, but it is sensitive to parameter selection and array geometry. One of the 

most efficient techniques for array mapping is array interpolation (Bronez 

1988).  

Within array interpolation techniques, Classical Array Interpolation 

(CAI) (Friedlander et al. 1992) was introduced that interpolates using a 

mapping matrix with calibration angles. However, it is limited by small 

interpolation sectors and ill-condition of the inverse matrix involved in the 

mapping matrix. (Tuncer et al. 2007) have proposed a Wiener Array 

Interpolation (WAI) technique based on Mean-Square Error (MSE) for 

overcoming the limitations of CAI. It exhibits better performance than CAI at 

low SNR levels and is relevant for NULAs when fast algorithms like Root-

MUSIC are applied. However, the computational complexity of these 

approaches is high due to the involvement of array mapping alongside the 

subspace methods such as Root-MUSIC and ESPRIT. To address this, several 
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relevant adaptations of Root-MUSIC and ESPRIT to more wide classes of 

array geometries have been proposed such as generalized ESPRIT (Gao et al. 

2005), Fourier Domain (FD) Root-MUSIC (Rübsamen et al. 2008) FD-

Weighted Least-Squares (FDWLS) Root-MUSIC algorithm (Rübsamen et al. 

2009),  and Rank Reduction Estimator (RARE) (Pesavento et al. 2002). In 

contrast, the orientation of designing a NULA in such a way that the 

conventional DOA estimation methods can be applied without compensating 

the missing sensor information by using array mapping techniques has gained 

significant interest. For this purpose, several SLA designs have been 

proposed. 

Recently, co-prime linear array (CLA) designs such as general co-

prime linear array (GCLA) (Vaidyanathan et al. 2011) and unfolded co-prime 

linear array (UCLA) (Zheng et al. 2018) have gained considerable research 

interest among the several SLA designs such as minimal redundant array 

(MRA) (Moffet 1968; Ishiguro 1980), minimum-hole array (MHA) 

(Vertatschitsch et al. 1986) and nested linear array (NLA) (Pal et al. 2010). 

Despite the potential advantages, both GCLA and UCLA suffer from the 

critical problem of ambiguity resulting in an ambiguous estimate of true 

DOAs. Specifically, GCLA suffers from the problem of pair-matching 

ambiguity in subarray-domain processing but both GCLA and UCLA suffer 

from the problem of grating-angle ambiguity. 

1.3  OBJECTIVES OF DISSERTATION 

In this thesis, the problem of estimating the DOA of the incoming 

source signals with a general co-prime linear array (GCLA) and unfolded co-

prime linear array (UCLA) is of prime research interest. 
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The key objectives of this dissertation are as follows : 

(i) To resolve the ambiguity problem such as pair-matching and 

grating-angle ambiguity in estimating the DOA of the 

incoming source signals with general co-prime linear array 

(GCLA) and unfolded co-prime linear array (UCLA). 

(ii) To achieve a reliable estimation of true DOAs with superior 

estimation performances in terms of accuracy, angular 

resolution and degrees-of-freedom (DOF) compared to the 

existing methods. 

(iii) To offer good generalization and robustness in estimation 

performance with reduced complexity in terms of 

computational complexity and execution time compared to the 

existing methods. 

1.4  CONTRIBUTIONS OF DISSERTATION 

The main contributions of the dissertation are summarized as follows : 

(i) First, the proposed unambiguous DOA estimation method 

incorporates the initial estimation of DOAs through UCLA-

MUSIC. The true DOAs are distinguished from ambiguous 

estimates obtained from UCLA-MUSIC using the estimated 

power of the transmitted source signals. The source power 

function is derived based on the signal subspace eigenvalues 

and its associated eigenvectors to estimate the power of the 

transmitted source signals. The proposed approach 

distinguishes and detects the true DOAs successfully without 

any ambiguity. The simulation results guarantee the 

superiority of the proposed method over the existing methods 

in terms of reliability and accuracy. 
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(ii) In the second solution, an improved polynomial rooting-based 

method for high-resolution unambiguous DOA estimation is 

proposed. A polynomial function is derived based on the 

orthogonality between the noise subspace eigenvectors and 

array directional vectors.  A signal power function is derived 

based on spatial filtering for the selection of the signal roots 

that are associated with true DOAs over ambiguous roots 

obtained from the polynomial function. Furthermore, a 

maximum signal power function based on the second-order 

differential counterparts of the signal power function is 

proposed for the enhancement of the angular resolution 

capability of the signal power function in resolving DOAs of 

multiple closely spaced source signals. The error analysis is 

performed for confirmation of the achievement of better 

estimation accuracy of the proposed method that closely 

follows the fundamental limits of the Cramer-Rao lower 

bound (CRLB). The simulations have been performed to 

demonstrate the effectiveness and superiority of the proposed 

method in terms of reliability, accuracy, angular resolution 

and computational complexity. 

(iii) In the third solution, a computationally efficient DOA 

estimation method based on support vector regression (SVR) 

has been proposed to address the ambiguity problem 

associated with GCLA and UCLA. The ambiguity problem is 

resolved by treating DOA estimation as approximating the 

unknown regression function that maps the signal subspace 

eigenvectors with the DOA of the incoming source signals. 

The proposed formulation uses only one regression model for 

the detection of multiple DOAs whereas the other SVR 
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formulation requires a multiple regression model. This 

provides computational efficiency for the proposed method. 

The proposed formulation estimates the DOAs involving full 

DOF without increasing the training complexity. It also offers 

good generalization for a varying number of sources and 

robustness in estimating the DOAs successfully without any 

ambiguity. The analysis and simulation findings show the 

proposed method outperforms the existing methods in terms 

of estimation reliability, estimation accuracy, computational 

complexity, execution time and DOF. 

1.5  OUTLINE OF DISSERTATION 

Chapter 1 introduces the thesis by presenting the following: array 

signal processing theory and its importance in various applications; definition 

of direction-of-arrival (DOA) estimation and its significant roles in various 

applications; evolutions of DOA estimation methods; motivation; objectives; 

main contributions and outline of the dissertation. 

Chapter 2 lays the foundation for the thesis through the 

presentation of the ambiguity issues in DOA estimation with GCLA and 

UCLA with associated detailed literature reviews. The ULA is described first, 

along with its sensor array design, mathematical description of the received 

signal model, and the concept of spatial sampling. The GCLA and UCLA are 

then explained, along with its sensor array design and mathematical 

description of the received signal model and DOA estimation respectively. 

The Cramer-Rao lower bound (CRLB) for GCLA and UCLA is presented. 

Finally, a comprehensive investigation of ambiguity issues such as pair-

matching ambiguity and grating-angle ambiguity in DOA estimation 

associated with GCLA and UCLA is discussed. 
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Chapter 3 presents the proposed method for the resolution of the 

critical issue of grating-angle ambiguity in the estimation of the DOA 

parameter with UCLA. Initially, the literature review related to the problem 

formulation and its existing solutions is detailed. Then, the mathematical 

description of the proposed unambiguous DOA estimation method based on 

the source power function is presented. The effectiveness of the proposed 

method is illustrated by several standard simulations. 

Chapter 4 presents the mathematical description of an improved 

polynomial rooting-based method proposed to resolve the DOAs of multiple 

closely spaced source signals in the ambiguity problem situation. The 

simulation results presented show the effectiveness and superiority of the 

proposed method in terms of reliability, accuracy, angular resolution and 

computational complexity. 

Chapter 5 presents a computationally efficient DOA estimation 

method based on support vector regression (SVR) for addressing the 

ambiguity problem associated with GCLA and UCLA. Initially, the literature 

related to the problem formulation and its existing solutions is detailed. Then, 

the mathematical formulation of the proposed SVR method for addressing the 

ambiguity problem with GCLA and UCLA is described. The complexity and 

DOF analysis of the proposed method in comparison with the existing 

methods is presented. The simulation results have been presented to show the 

effectiveness and superiority of the proposed method in terms of reliability, 

accuracy, computational complexity and execution time. 

Chapter 6 summarizes the thesis highlighting the main 

contributions and discusses the future scope of the work presented in this 

dissertation. 
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CHAPTER 2 

AMBIGUITY IN DIRECTION-OF-ARRIVAL ESTIMATION 

 

2.1 INTRODUCTION 

This chapter lays the foundation for the thesis through the 

presentation of the ambiguity problem in DOA estimation with the general 

co-prime linear array (GCLA) and the unfolded co-prime linear array 

(UCLA). The uniform linear array (ULA) is described first, along with its 

sensor array design, mathematical description of the received signal model, 

and the concept of spatial sampling. The GCLA and UCLA are then 

explained, along with its sensor array design, mathematical description of the 

received signal model and DOA estimation respectively. Finally, the 

investigation of ambiguity problems such as pair-matching and grating-angle 

in DOA estimation associated with GCLA and UCLA are discussed. 

In general, DOA estimation has been widely investigated through 

the utilization of a ULA, in which the spacing between array elements is 

limited to less than half the signal wavelength (Van Trees 2022). However, 

the ULA design places restrictions on the effective array aperture and leads to 

mutual coupling between the array elements, affecting the performances of 

DOA estimation in terms of accuracy, resolution, and DOF (Tuncer et al. 

2009). Typically, the idea of a large effective aperture provides high 

estimation accuracy and resolution in DOA estimation. This can be 

accomplished by increasing the number of array elements and the spacing 

between them. However, increasing the number of array elements could be 
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costly in terms of system hardware needs and computational complexity  

(He et al.2012). 

The non-uniform linear array (NULA) designs, also known as the 

sparse linear array (SLA) designs (Moffet 1968; Ishiguro 1980; Vertatschitsch 

et al. 1986; Pal et al. 2010; Vaidyanathan et al. 2011) have been developed 

considering the restrictions of the ULA design. SLA design consists of array 

elements with an inter-element spacing of more than half the signal 

wavelength. It enables the SLA design to attain a large effective array 

aperture with fewer array elements and also mitigates the influence of mutual 

coupling between array elements. However, SLA suffers from the problem of 

spatial ambiguity due to the inter-element spacing being greater than half the 

signal wavelength. To prevent the formation of spatial aliasing in DOA 

estimation, array elements must be positioned optimally in SLA 

(Aboumahmoud et al. 2021). In the literature, numerous SLA designs have 

been proposed, including minimal redundant array (MRA) (Moffet 1968; 

Ishiguro 1980), minimum-hole array (MHA) (Vertatschitsch et al. 1986), and 

nested linear array (NLA) (Pal et al. 2010). MRA and MHA require an 

exhaustive search process for sensor positioning. In addition, an iterative 

process is involved in getting the suitable covariance matrix. In contrast, the 

NLA has an analytic expression for sensor positioning but it suffers from 

mutual coupling effects due to the dense distribution array elements in one 

subarray having an inter-element spacing of less than half the signal 

wavelength (Aboumahmoud et al. 2021). 

Recently, the co-prime linear array (CLA) design (Vaidyanathan  

et al. 2011) has gained considerable research interest among the several SLA 

designs due to the following benefits: (i) the closed-form solution for 

positioning the array elements that make the design and analysis process 

simple, which lacks in the MRA and MHA (ii) the mutual coupling between 
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array elements is insignificant and provides higher estimation robustness 

compared to the NLA design (Tan et al.2014). A general CLA referred to as 

GCLA consists of two ULAs (subarrays), each with a co-prime number of 

array elements having more than half the signal wavelength as inter-element 

spacing (Vaidyanathan et al. 2011). Generalized CLA designs, such as co-

prime array with compressed inter-element spacing (CACIS) and co-prime 

array with displaced subarrays (CADiS), have been suggested by (Qin et al. 

2015) based on the difference-coarray of GCLA for enhancement of the DOF. 

DOA estimation with GCLA is performed via two categories of 

approaches such as difference-coarray domain processing and subarray 

domain processing (Xiao et al. 2019). In the difference-coarray domain 

processing, the number of distinct consecutive covariance lags is virtually 

more than the number of physical array elements, providing the enhanced 

DOF (Liu et al.2015; Xie et al.2019). However, it is constrained by the 

presence of "holes" in the difference-coarray of GCLA and also entails a high 

degree of computational cost due to the requirement of a large number of 

snapshots. In subarray domain processing, the signal received from two 

subarrays is processed independently and the DOAs are estimated based on 

the co-prime property. In literature, numerous DOA estimators have been 

presented, in which subspace-based estimators such as MUSIC, ESPRIT and 

its variants offer superior estimation performances compared to the maximum 

likelihood estimators and beamformer estimators such as LCMV and MVDR 

(Schmidt 1986; Roy et al. 1989). 

Zhou et al.(2013) have proposed a subspace-based estimator called 

DECOM, which decomposes the GCLA into two separate subarrays and 

applies the MUSIC estimator individually. The MUSIC spectrum of both the 

subarrays exhibits peaks at true DOAs and also peaks at ambiguous angle 

locations due to the inter-element spacing of the subarrays being greater than 
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half the signal wavelength. However, the co-prime property allows the peaks 

of the MUSIC spectrum of two subarrays to coincide for pair of angle 

locations that constitutes the true DOAs. Considerable efforts have been taken 

for the bypassing of spectral searching process in DECOM for GCLA by 

developing a partial spectral searching method (Sun et al.2015) and 

polynomial-rooting-based methods (Zhang et al. 2017; Liu et al. 2018;  

Yan et al. 2018). The major drawbacks of the above-aforementioned methods 

(Sun et al.2015; Zhang et al. 2017; Liu et al. 2018; Yan et al. 2018) are as 

follows (i) maximum DOF is equal to a subarray with a minimum number of 

array elements i.e., less than the total number of array elements  

(ii) estimation performances are limited in terms of resolution and accuracy 

(iii) additional complexity due to the pair-matching process (iv) suffers from 

pair-matching ambiguity in the case of signals are transmitted from multiple 

emitters (v) the information of the entire array is not utilized (Zheng et al. 

2018). 

To circumvent the restrictions mentioned above, the approach 

called adjoined subarray (AdS) based method presented by (Zheng et al. 

2018) collectively utilizes the two subarrays rather than handling them 

separately. The method (Zheng et al. 2018), stacks the received signal from 

two subarrays of GCLA and applies the MUSIC estimator. Utilization of the 

entire array helps the method (Zheng et al. 2018) in the enhancement of the 

DOF and also in the elimination of the pair-matching process. However, the 

effective array aperture remains unchanged. As a result, there is no 

improvement seen in the estimation performance metrics such as resolution 

and accuracy. 

Zheng et al. (2018) have proposed a new CLA design known as 

unfolded co-prime linear array (UCLA) also recognized as a co-prime array 

with adjoined subarrays (CAAdS) for meeting the aforementioned limitations. 
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The UCLA involves the cascading of two subarrays together, which results in 

the enlargement of the effective array aperture compared to the GCLA. This 

advantage helps the MUSIC estimator in its application to UCLA and it offers 

better estimation performances than GCLA. In (He et al.2020), a polynomial 

rooting approach called UCLA-Root MUSIC is proposed for the 

improvement of the resolution and avoidance of the spectral searching process 

where (Zheng et al. 2018) involves.  

Despite the potential benefits of UCLA, it suffers from the critical 

issue of grating-angle ambiguity also referred to as directional matrix 

ambiguity or non-trivial ambiguity (Liu et al. 2013). It occurs due to the non-

uniform linear array design of UCLA, in which there exists a set of DOAs 

with linearly dependent directional vectors. As a result, directional vectors 

that are not associated with true DOAs tend to reside in the signal subspace, 

yielding an estimate of true and ambiguous DOAs. The strategy proposed in 

(Yang et al.2019; Huang et al.2021) have used a beamformer-based approach 

to suppress the ambiguous estimate. However, it fails to resolve the problem 

of grating-angle ambiguity when the DOA of signals from multiple emitters is 

closely distributed. It also involves high computational complexity due to the 

spectral searching process and provides lower estimation performances in 

terms of reliability, accuracy and angular resolution. 

2.2 UNIFORM LINEAR ARRAY 

Figure 2.1 shows a ULA design consisting of   sensor elements 

that are uniformly spaced apart by distance ‗ ‘ and linearly positioned at 

   (      )                  along the x-axis. 
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Figure 2.1  Design of ULA 

2.2.1 Received Signal Model of ULA 

Assume that an incoming far-field (plane wave) signal s( ) 

impinges on the ULA from direction   as shown in Figure 2.2. Let, s( ) is a 

narrowband modulated signal and it is given by 

s( )   ( )         (2.1) 

 

Figure 2.2 System model of ULA 

where  ( ) denotes the modulated message or the complex envelope of s( ) 

and    is the carrier frequency. Then, the signal received by ULA can be 

expressed as 
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where s(    ) is the signal received by the sensor element positioned at   , 
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Let,                   
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where   
   

 
. The bandwidth of  ( ) is narrow and substantially less than 

the carrier frequency. Thus,  ( )   (    )   (    )  ...  

 (      ). Then, the received signal vector can be written as  
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where     ( ) is the array directional vector, it can be also referred to as 

array response vector or array steering vector or array manifold vector and it 

contains the information about direction-of-arrival ( ). In practice, the 

number of source signals is more than one, and noise exists in the propagation 

environment. Consider,     (   ) source signals from directions   

*  +   
  impinging on   element ULA with the field-of-view (FOV) such 

that      (   
       ). Then, the observed array output received signal 

vector can be expressed as 

    ( )  

                [

 

        (  )

 

    (   )    (  )

 

        (  )
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    (   )    (  )

] [

  ( )
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]             

                   [

  ( )

  ( )
 

    ( )

] (2.6) 

The matrix form of the observed array output received signal vector 

is expressed as  

     ( )         ( )   ( ) (2.7) 

where       [  (  )    (  )      (  )]    
      is the array directional 

matrix, it can also be referred to as array steering or array manifold matrix or 

array response matrix.      (  )    
      is the array directional vector 

associated with      source signal,   ( )  [  ( )    ( )       ( )]
 

          

represents the incoming source signal vector and 

  ( )  [  ( )    ( )         ( )]
 

           represents the zero-mean 
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additive white noise vector with covariance E* ( )  ( )+    
   , where   

  

is the noise power and    denotes the       identity matrix. 

2.2.1.1  Concept of spatial sampling 

This section briefs the choice of inter-element spacing ‗ ‘through 

the concept of spatial sampling. The Nyquist frequency theorem implies that a 

minimum sampling frequency is necessary for avoiding aliasing in a time-

sampled signal (Ifeachor et al. 2022) and is given by 

   
 

  
       (2.8) 

where    denotes the sampling frequency,    denotes the sampling period and 

     denotes the maximum frequency of the signal in the frequency spectrum. 

Similarly, the spatial sampling with the ULA (McCowan 2001) can be 

expressed as 

    
 

 
       (2.9) 

where     denotes the spatial sampling frequency,   denotes the spatial 

sampling period and      denotes the maximum frequency of the signal in the 

spatial spectrum. The spatial frequency      
 

 
, Thus, 

 

 
 2 

 

 
. Then, the 

Nyquist condition for avoiding aliasing in spatial sampling is given by   

  
 

 
 (2.10) 

 Using the Nyquist condition to avoid aliasing in spatial sampling, 

the inter-element spacing of ULA is set as   
 

 
. Equation (2.6) is given as 

follows: 
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where   
   

 
. Substituting   

 

 
,    
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  , Then, the observed array 

output received signal vector can be written as 
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An   element ULA can resolve     source signals through the 

use of subspace-based DOA estimators such as ESPRIT and MUSIC. The 

output of the sensors in an array is influenced by their neighboring sensors, 

and this impact manifests as mutual coupling. This scenario becomes more 

prevalent and adversely impacts the sensor output when the sensors are 

arranged closely in the array. This impact in the arrays is quantified through 

the use of the weight function, which defines the number of sensor pairs in the 

array with a given degree of inter-element spacing. 

Definition: The weight function  ( ) of an array refers to the 

number of sensor pairs corresponding to the index   which indicates the 

spacing between the underlined sensor pair (Liu et al. 2016) and it is given by  
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 ( )  *(     )     |         + (2.13) 

 ( )       ( ( ) ) (2.14) 

where   is the set that contains the sensor positions of an array. 

     ( ( ) ) is the cardinality of the set  ( ), which indicates the number 

of elements in the set  ( )  Say, the first three weights,  ( ),  ( ), and 

 ( ) denotes the number of sensor pairs in an array with  , 2 , and 3  inter-

element spacing respectively. For example, consider an    element ULA 

(    ) with its sensor positions   *                         +, whose 

weight function is  ( )      indicates that    sensor pairs in an array have 

  inter-element spacing. It clearly shows that the ULA design has a 

significant effect on the mutual coupling between array elements and 

influences the DOA estimation performances. 

2.3 CO-PRIME LINEAR ARRAY 

Figure 2.3 shows the GCLA design with   sensor elements 

consisting of a superposition of two subarrays with one common element 

(Vaidyanathan et al. 2011). Subarray 1 has    elements of ULA with the 

inter-element spacing of      
 

 
  Likewise, subarray 2 has    elements of 

ULA with the inter-element spacing of      
 

 
, where   is the wavelength 

of the source signal. Thus, the total number of sensor elements in GCLA is  

          . 

The effective array aperture obtained by GCLA is given by  

((    )    ) . For example, consider a    element GCLA (      

i.e.,      and     ) with its inter-element spacing     
 

 
 and      

 

 
 

respectively. The sensor position of subarray 1 is    *                  + 

and subarray 2 is    *               +. Thus, the sensor position of GCLA 
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is given by        *                                +. The first three 

weights of GCLA are  ( )     ( )     ( )    indicating 2 sensor 

pairs in an array having  ,    and    inter-element spacing respectively. The 

   element GCLA can obtain     as an effective array aperture. It clearly 

shows that the GCLA design has significant improvement to counter mutual 

coupling and yields better sparsity (array aperture) compared to the ULA 

design. 

 

Figure 2.3  Design of GCLA 

2.3.1 Received signal model of GCLA 

Consider,     (   ) far-field source signals from directions 

  *  +   
  impinging on   element GCLA with the field-of-view (FOV) 

such that      (   
       ) as shown in Figure 2.4. Then, the observed 

array output received signal vector by     subarray of GCLA can be expressed 

as  

   ( )      ( )    ( )                 (2.15) 

where   ( )    
      and   ( )    

      represents the received output vector 

of subarray 1 and subarray 2 of GCLA. Here,    represents the array 

directional matrix of     subarray and for each subarray, it is given by 
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Figure 2.4 System model of GCLA 

   ,  (  )    (  )      (  ) -    
       (2.16) 

   ,  (  )    (  )      (  ) -    
       (2.17) 

where   (  ) and   (  ) represents the array directional vector of subarray 

1 and subarray 2 and it is given by  

  (  )  [   
        (  )           (    )    (  )]

 
          (2.18) 

  (  )  [   
        (  )           (    )    (  )]

 
          (2.19) 

Then, the observed array output received signal vector of GCLA 

can be expressed as follows  

  ( )  [

 
         (  )

 
     (    )    (  )

 
         (  )

 
     (    )    (  )

    

 
         (  )

 
     (    )    (  )

] [

  ( )

  ( )
 

  ( )

] 

                                             

[
 
 
 
    ( )

    ( )

 
       ( )]

 
 
 

    ( )    ( )  (2.20) 
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  ( )  [

 
         (  )

 
     (    )    (  )

 
         (  )

 
     (    )    (  )

  

 
         (  )

 
     (    )    (  )

] [

  ( )

  ( )
 

  ( )

] 

                                                                

[
 
 
 
    ( )

    ( )

 
       ( )]

 
 
 

    ( )    ( )     (2.21) 

Here,   ( )  [  ( )    ( )       ( )]
 

          represents the 

incoming source signal vector,    ( )     
        and   ( )     

       represents 

the zero-mean additive white noise of subarray 1 and subarray 2 with 

covariance E*  ( )  
 ( )+     

            where    
  is the noise power and 

   is the identity matrix (Vaidyanathan et al. 2011). 

2.3.2 DOA Estimation with GCLA 

The subarray-based method divides the GCLA into two ULAs 

(subarrays), and DOA estimation is performed independently on each ULA 

(Zhou et al.2013). The covariance of the received signal from two subarrays 

can be expressed as 

     *  ( )   
 ( )+ 

                
     

            (2.22) 

where   =  *   + denotes the source covariance matrix and    denotes the 

identity matrix. In practice, the actual covariance matrix     is unknown, 

therefore its sample estimate  ̂   is computed for   snapshots and it is given 

by  
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 ̂    *  ( )   
 ( )+ 

 
 

 
∑  ( )   

 ( )

 

   

                                                      (    ) 

The Equation (2.23) can be re-written as follows 

 ̂    *  ( )   
 ( )+  

 

 
∑  ( )   

 ( )                           (    )

 

   

 

 ̂    *  ( )   
 ( )+  

 

 
∑  ( )   

 ( )

 

   

                          (    ) 

The eigenvalue decomposition (EVD) of  ̂              and  

 ̂     
        yields 

 ̂    ̂  ̂  ̂ 
  (2.26) 

 ̂    ̂  ̂  ̂ 
  (2.27) 

where  ̂  [              ]    
       ,  ̂       {                }  ̂  

[              ]    
       ,  ̂       {                 }. The columns of 

 ̂  and  ̂  indicates the eigenvectors of  ̂   and  ̂   associated to eigenvalues 

of   ̂  and   ̂ . In   ̂  and   ̂ , only   eigenvalues are significant and related 

to the source signals and the remaining eigenvalues are approximately equal 

to noise power (Schmidt 1986). As a result,   ̂ ,  ̂  and its associated 

eigenvectors  ̂ ,  ̂  can be re-written as follows 

 ̂        *                + (2.28) 

 ̂        *                + (2.29) 
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 ̂        *                       + (2.30) 

 ̂        *                       + (2.31) 

 ̂   ,             -   
        (2.32) 

 ̂   ,             -   
        (2.33) 

 ̂   ,                    -   
           (2.34) 

                   ̂   ,                    -   
           (2.35) 

Thus,  ̂   and  ̂  in Equation (2.26) and Equation (2.27) can be rewritten as  

 ̂    ̂    ̂   ̂  
    ̂    ̂    ̂  

  (2.36) 

 ̂    ̂    ̂   ̂  
    ̂    ̂    ̂  

  (2.37) 

The columns of  ̂   and  ̂   (eigenvectors) that span the space is 

referred to as the signal subspace of  ̂   and  ̂   respectively. Similarly, the 

columns of  ̂   and  ̂   (eigenvectors) that span the space is referred to as the 

noise subspace of  ̂   and  ̂   respectively. Furthermore, the signal subspace 

and directional vector of the source signals span the same space and are 

orthogonal to the noise subspace (Pal et al.2011). As a result, the directional 

vector can be used in the search for all possible angles across the noise 

subspace to determine the DOA of transmitted source signals, and the MUSIC 

null spectrum of each subarray is provided by 

 ̂ ( )    
 ( )  ̂    ̂  

    ( )   ‖ ̂  
    ( ) ‖

 
 (2.38) 

 ̂ ( )    
 ( )  ̂    ̂  

    ( )   ‖ ̂  
    ( ) ‖

 
  (2.39) 
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The pseudo spectrum of Equation (2.38) and Equation (2.39) can 

also be expressed as 

 ̂ ( )  
 

  
 ( )  ̂    ̂  

    ( )
 

 

‖ ̂  
    ( ) ‖

  (2.40) 

 ̂ ( )  
 

  
 ( )  ̂    ̂  

    ( )
 

 

‖ ̂  
    ( ) ‖

  (2.41) 

The MUSIC spectrum of subarray 1  ̂ ( ) exhibits peaks at true 

DOAs ( ̂  ) and ambiguous angles ( ̂ 
   ) are taken into consideration as 

the candidate angles ( ̂   
    ). As a result, the following relationship exists 

between  ̂   and  ̂   
     and it is given by 

   ( ̂ )     ( ̂   
    )  

    

  
 (2.42) 

where     is an integer.  ̂   
     corresponds to true DOA at       and for 

     (    )             (    )  ̂   
     corresponds to ambiguous 

angles. Similarly, the MUSIC spectrum of subarray 2 has the following 

relationship 

   ( ̂ )     ( ̂   
    )  

    

  
  (2.43) 

where     is an integer.  ̂   
     corresponds to true DOA at       and for 

     (    )             (    )  ̂   
     corresponds to ambiguous 

angles. By using Equation (2.42) and Equation (2.43), the relationship 

between the two spectra can be obtained and it is expressed as  

   ( ̂   
    )     ( ̂   

    )   .
   

  
 
   

  
/ (2.44) 
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As a result, the uniqueness of DOA estimation is given by   

 ̂   
      ̂   

      ̂   exist for          . For                , the 

two spectrum exhibit  ̂   
      ̂   

     under    and    are co-prime integers 

referred to as co-prime property (Zhou et al.2013). Hence, the common angle 

pairs in the two spectra are considered to be the true DOAs  ̂ . A partial 

spectral search method (Sun et al.2015)  and polynomial rooting-based 

methods (Zhang et al. 2017; Liu et al. 2018; Yan et al. 2018) have been 

proposed for a reduction in the computational complexity seen in the  

(Zhou et al. 2013) method. The DOF achieves by   element GCLA in 

subarray domain processing is    (     )    (Zheng et al. 2018). 

2.4 UNFOLDED CO-PRIME LINEAR ARRAY 

Figure 2.5 shows the UCLA design with   sensor elements 

consisting of cascading of two subarrays with one element as common  

(Zheng et al. 2018). Here, subarray 2 is cascaded with subarray 1. As a result, 

the total number of sensor elements in UCLA is           . The inter-

element spacing of each subarray is defined as      
 

 
 and       

 

 
 

respectively, where   is the wavelength of the source signal. 

The effective array aperture obtained by UCLA is given by  

((    )   (    )    ) . For example, consider a    element 

UCLA (     i. e.,      and     ) with its inter-element spacing 

    
 

 
 and      

 

 
 respectively. The sensor position of subarray 2 is 

   *               + and subarray 1 is    *                    +. 

Thus, the sensor position of UCLA is given by 

       *                                 +.   
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Figure 2.5 Design of UCLA 

The first three weights of UCLA are  ( )    ( )    ( )    

indicating no sensor pairs in an array having  ,     and    inter-element 

spacing respectively. The    element UCLA can obtain     as an effective 

array aperture. It clearly shows the UCLA design has significant mitigation of 

mutual coupling effects and yields good sparsity (enhanced array aperture) 

compared to the GCLA design. 

2.4.1 Received Signal Model of UCLA 

Consider,     (   ) far-field source signals from directions 

  *  +   
  impinging on   element UCLA with the field-of-view (FOV) 
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such that      (   
       ) as shown in Figure 2.6. Then, the observed 

array output received signal vector        ( )          of UCLA is given by 

      ( )          ( )    ( ) (2.45) 

where        [  (  )    (  )      (  )]    
      represents the array 

directional matrix and   (  )  ,  
 (  )    

 (  )-
          represents the 

array directional vector of UCLA. The directional vector of    (  ) and 

  (  ) in UCLA can be expressed as 

  (  )  [    
        (  )            (    )    (  )]

 
      (2.46) 

  (  )  [ 
   (  (    )   )    (  )          (  (    )   (    ))    (  )]

 
 

(2.47) 

 

Figure 2.6 System model of UCLA 

As a result,   (  )    
      of UCLA can be written as  

  (  )  ,    
        (  )            (    )    (  )     (  (    )   )    (  )  

       (  (    )   (    ) )   (  )-                     (2.48) 
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  ( )  ,  ( )   ( )      ( )-
           represents the vector of emitter signal 

amplitudes and  ( )  ,  ( )   ( )       ( ) -
           represents the zero-

mean additive white noise with covariance E* ( )  ( )+    
   , where   

  

is the noise power and    denotes the       identity matrix (Zheng et al. 

2018). The observed array output received signal vector       ( )          of 

UCLA can be expressed as follows 

      ( )   

[
 
 
 
 
 
 

 
         (  )

 
      (    )   (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

 
         (  )

 
      (    )   (  )

    (  (    )   )    (  )

 
    (  (    )   (    ))   (  )

   

 
         (  )

 
      (    )   (  )

    (  (    )   )    (  )

 
    (  (    )   (    ))   (  )

 

]
 
 
 
 
 
 

 

[

  ( )

  ( )
 

  ( )

]  [

  ( )

  ( )
 

    ( )

] (2.49) 

2.4.2 DOA Estimation with UCLA 

UCLA is considered as a single array design, and so the covariance 

        
     of the received signal       ( )          is directly obtained 

instead from two subarrays separately and it is given by   

    *     ( )      
 ( )+ 

                     
    

    (2.50) 

where   =  *   + denotes the source covariance matrix,   
  is the noise 

power and    denotes the       identity matrix. In practice, the actual 
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covariance matrix    is unknown, therefore its sample estimate  ̂  is 

computed for   snapshots and it is given by  

 ̂  
 

 
∑     ( )      

 ( )

 

   

  [
 ̂  ̂ 
 ̂  ̂ 

]                             (    ) 

Here, the array covariance  ̂  inherently contains the self and 

mutual information relating to two subarrays due to the utilization of the 

entire array. It can be seen via the block matrices such as  ̂ ,  ̂  as the array 

auto-covariance and  ̂ ,  ̂  as the array cross-covariance of two subarrays in 

 ̂  of Equation (2.51) (Zheng et al. 2018). The eigenvalue decomposition 

(EVD) of  ̂  yields 

 ̂   ̂   ̂  ̂ 
    ̂   ̂   ̂ 

  (2.52) 

where  ̂  ,            -    
        and  ̂   ,                -  

          

contains the signal- and noise-subspace eigenvectors of  ̂  corresponding to 

the eigenvalues in the diagonal matrix  ̂       *            + and 

 ̂      *                +. Furthermore, the signal subspace and 

directional vector of the source signals span the same space and are 

orthogonal to the noise subspace. As a result, the directional vector can be 

used in the search for all possible angles across the noise subspace to 

determine the DOA of transmitted source signals, and the UCLA-MUSIC 

pseudo spectrum is given by 

 ̂          ( )  
 

   ( )  ̂   ̂ 
   ( ) 

 
 

‖ ̂ 
   ( ) ‖

  (2.53) 

Thus, the angles ( ) correspond with the highest peaks of 

 ̂          ( ) are the DOA of the transmitted source signals. He et al. 

(2018) have proposed a polynomial rooting approach called UCLA-Root 
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MUSIC for the improvement of the resolution and avoidance of the spectral 

searching process involved in UCLA-MUSIC (Zheng et al. 2018). The DOF 

achieved by   element UCLA using UCLA-MUSIC (Zheng et al. 2018) and 

UCLA-Root MUSIC (He et al. 2020) is          

2.5 AMBIGUITY IN DOA ESTIMATION WITH GCLA AND 

UCLA 

This section deals with the ambiguity issues such as pair-matching 

and grating-angle in DOA estimation associated with GCLA and UCLA. 

2.5.1 Pair-Matching Ambiguity 

In the subarray-based DOA estimation with GCLA, the common 

angle pairs in the MUSIC spectra of two subarrays are regarded as the true 

DOAs  ̂  based on the co-prime property. However, the uniqueness of DOA 

estimation given in section 2.3.2 is not always true in the case of multiple 

incoming source signals (Xiao et al.2019). Let us consider, that two signals 

impinge on GCLA from different directions    and    i.e.,      . The 

MUSIC spectrum of subarray 1 exhibits two ambiguous angles  ̂   
    and 

 ̂   
   associated to    and    respectively by having the following relationship  

   ( ̂ )     ( ̂   
   )  

      

  
 (2.54) 

   ( ̂ )     ( ̂   
   )  

      

  
 (2.55) 

where       and       are integers in the range  (    ) to  (    )  

i.e.,   (    )             (    ). Similarly, the MUSIC spectrum of 

subarray 2 exhibits two ambiguous angles  ̂   
    and  ̂   

   associated to    and 

   respectively by having the following relationship  
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   ( ̂ )     ( ̂   
   )  

      

  
 (2.56) 

   ( ̂ )     ( ̂   
   )  

      

  
 (2.57) 

where       and       are integers in the range  (    ) to (    )  

i. e., (    )             (    ). Thus, the relationship between the two 

spectra that can be obtained based on Equation (2.42) and Equation (2.43) 

respectively is expressed as follows 

   ( ̂ )     ( ̂ )   .
     

  
 
     

  
/   (2.58) 

   ( ̂ )     ( ̂ )   .
     

  
 
     

  
/ (2.59) 

By Subtracting the Equations (2.56),(2.55),(2.58) and Equations 

(2.57),(2.54),(2.59) respectively results as follow 

   ( ̂   
   )     ( ̂   

   ) (2.60) 

   ( ̂   
   )     ( ̂   

   ) (2.61) 

Thus, the MUSIC spectrum of subarray 1 and subarray 2 exhibits 

common angle pairs (overlapped peaks) at the ambiguous angles in addition 

to the true DOA angles are referred to be pair-matching errors. As a result, it 

leads to the ambiguous estimate of true DOAs referred to as pair-matching 

ambiguity in DOA estimation with GCLA (Xiao et al.2019). 

For example, consider two source signals (   ) from the 

direction          
   and          

   impinges on GCLA with   

            (         ) under signal-to-noise ratio (SNR) of 10 dB 

and a snapshot of      . The method proposed in (Zhou et al.2013) 
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exhibits overlapped peaks for a set of angles that includes true DOAs such as 

 ̂        
   and  ̂        

   as well as ambiguous angles such as 

 ̂ 
             and  ̂ 

            as shown in Figure 2.7. Similarly, the 

partial spectral search-based method (Sun et al.2015) also suffered from this 

ambiguity problem. Furthermore, the polynomial rooting-based methods 

(Zhang et al. 2017; Liu et al. 2018; Yan et al. 2018) result in more than 

    common roots i.e., 4 roots (closer to unit magnitude) related to 

 ̂        
    ̂        

    ̂ 
             and  ̂ 

             leading 

to an ambiguous estimate of true DOAs which can be seen in Table A1.1 of 

Appendix 1. Persistence of pair-matching ambiguity is seen for at least any 

two direction angles of the set *                                 +  

(Xiao et al.2019). 

 

Figure 2.7 (Continued) 
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(c) 

Figure 2.7 The problem of pair-matching ambiguity in GCLA:  

(a) Subarray 1 MUSIC Spectrum (b) Subarray 2 MUSIC 

Spectrum (c) Pair-matching error diagram 

 

The problem of pair-matching ambiguity in DOA estimation with 

GCLA is resolved through the use of adjoined subarray (AdS) based method. 

The method (Zheng et al. 2018) stacks the signal received from two subarrays 

together and applies the MUSIC estimator. The received array output signal 

vector of subarray 1     ( ) and subarray 2      ( ) of GCLA are stacked. This 

can be expressed as 
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[
     ( )

     ( )
]  

[
 
 
 
 
 
 
 

 
         (  )

 
      (    )   (  )

 
         (  )

 
     (    )    (  )

 
         (  )

 
      (    )   (  )

 
         (  )

 
     (    )    (  )

   

 
         (  )

 
      (    )   (  )

 
         (  )

 
     (    )    (  )

 

]
 
 
 
 
 
 
 

[

  ( )

  ( )
 

  ( )

]  

                                                                                                                                  

[
 
 
 
 
 
 
 
 
    ( )

    ( )

 
       ( )

    ( )

    ( )

 
       ( )]

 
 
 
 
 
 
 
 

 (2.62) 

 ( )  [
     ( )

     ( )
]  [

  
  
]   ( )  [

  ( )

  ( )
] 

    ( )   ( )   (2.63) 

where    [
  
  
]  ,  

    
  - =, (  )  (  )    (  )-    

(     )     is the 

array directional matrix. Here,  (  ) is the array directional vector and it can 

be written as  (  )  ,  
 (  )    

 (  ) -
    (     )     ,  ( ) and  ( )  

,  
 ( )    

 ( ) -    (     )     represents the source signal vector and noise 

vector respectively. 

In adjoined subarray (AdS) based DOA estimation method  

(Zheng et al.2018), the estimated covariance  ̂     
(     )   (     )  of the 

array output signal vector  ( )     (     )      with   snapshots can be given 

as 

 ̂  
 

 
∑ ( )   ( )

 

   

  [
 ̂  ̂ 
 ̂  ̂ 

]                                           (    ) 
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Utilization of the two subarrays together through the stacking of its 

received array output signal vector helps the array covariance  ̂  containing 

the self and mutual information of two subarrays. It can be seen via block 

matrices such as  ̂ ,  ̂  as the array auto-covariance and  ̂ ,  ̂  as the array 

cross-covariance of two subarrays respectively. The adjoined subarray (AdS) 

based method has been utilizing the self and mutual information whereas the 

subarray-based method utilizes only the self-information of two subarrays. 

The eigenvalue decomposition (EVD) of  ̂  yields 

 ̂   ̂   ̂  ̂ 
    ̂   ̂   ̂ 

  (2.65) 

where  ̂  ,            -    
(     )       and  

 ̂   [               (     )]  
(     )   ((     )  )   contains the signal- 

and noise-subspace eigenvectors of  ̂  corresponding to the eigenvalues 

 in the diagonal matrix  ̂       *            + and 

 ̂      {               (     )}. Furthermore, the signal subspace and 

directional vector of the source signals span the same space and are 

orthogonal to the noise subspace. As a result, the directional vector can be 

used in the search for all possible angles across the noise subspace to 

determine the DOA of the transmitted source signals, and the adjoined 

subarray (AdS) MUSIC pseudo spectrum is given by 

 ̂         ( )  
 

 ,  ( )    ( ) -  ̂   ̂ 
  [  

 ( )    
 ( ) ]

 
 
 (2.66) 

Thus, the angles ( ) corresponds with the highest peaks of 

 ̂         ( ) are the DOA of the transmitted source signals. In  

(He et al. 2020), a polynomial rooting extension of adjoined subarray (AdS) 

MUSIC is proposed to improve resolution with reduced computational 

complexity. The estimation results with the associated observations on the 

existence of ambiguity, DOF and complexity of the above-aforementioned 
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methods such as subarray-based methods (Zhou et al.2013; Sun et al.2015; 

Zhang et al. 2017; Liu et al. 2018; Yan et al. 2018) and adjoined subarray-

based methods (Zheng et al.2018; He et al.2020) in the case of pair-matching 

ambiguity for GCLA are summarized in Table A1.1 of Appendix 1. 

2.5.2 Grating-Angle Ambiguity 

DOA estimation performance has a significant influence from the 

array directional vector  (  ), which contains information about the DOA 

parameter    (Tuncer et al. 2009). Generally, the unique solution of the DOA 

estimation is assured if the mapping of the DOA parameter      
   to array 

directional vector  (  )   
  is one-to-one by having array directional matrix 

  as full rank i.e.,     ( )     (Manikas 2004). Due to the large inter-

element spacing of each subarray in GCLA and UCLA, the one-to-one 

mapping is not assured and arises a problem of ambiguity in estimating the 

true DOAs.  

 

Figure 2.8 Geometric view of grating-angle ambiguity 
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Specifically, both GCLA and UCLA suffer from a type of array 

ambiguity known as grating-angle ambiguity, also known as directional 

matrix ambiguity or non-trivial ambiguity (Liu et al.2013). It occurs when the 

directional vector   (  ) and   (  ) of both the subarrays are identical for 

different direction angles and resulting in columns of   that are linearly 

dependent i.e.,     ( )    . For instance, consider     ;    *  +   
 , 

the array directional vector of    belongs to the signal subspace spanned by 

the columns of   such that  (  )     , - where    is the grating 

(ambiguous) angle as shown in Figure 2.8. It happens due to the linear 

dependence of array directional vector  (  ) on the array directional vectors 

of    and it is expressed as 

 (  )  ∑    (  )

 

   

    (  )     (  )        (  )    (    ) 

Alternatively, Equation (2.67) can be written as  

    [
  (  )

  (  )
]    [

  (  )

  (  )
]    [

  (  )

  (  )
]       [

  (  )

  (  )
] (2.68) 

where    represents the constant coefficient. 

The problem of grating-angle ambiguity is seen with the use of 

Gram matrix  ( )         (Nannuru et al.2017) and it is given by 

 ( )    ( )  ( ) (2.69) 

The Gram matrix is computed for each     (          ) and it is 

given by        (   )    ;              , where    is the angular 

separation.  For instance, if       then       , and if         then 

      . Using Equation (2.69) with        ,       , the Gram 
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matrix  ( ) is computed for ULA having         with the inter-sensor 

spacing of       
 

 
, Figure 2.9 shows each angle having one major lobe (no 

spatial aliasing). Whereas, for UCLA having      i. e.,      and      

with its inter-element spacing     
 

 
 and      

 

 
 respectively, resulting in 

one main lobe for each angle and side lobes with substantial strength (spatial 

aliasing), as depicted in Figure 2.10. 

 

Figure 2.9 Gram matrix of ULA (                   
 

 
) 

 

Figure 2.10 Gram matrix of UCLA (               and      

with     
 

 
 and      

 

 
) 

The subspace-based method for DOA estimation demands that the 

signal eigenvectors and directional vectors of the source signals should span 
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the same subspace.  However, UCLA's non-uniform linear array design leads 

to the existence of a set of direction angles with linearly dependent directional 

vectors. As a result, directional vectors that are not associated with true DOAs 

also reside in the signal subspace, resulting in an ambiguous estimate. This is 

referred to as the grating-angle ambiguity problem (Tan et. al 2002). 

For instance, consider a UCLA having      i.e.,      and 

     with its inter-element spacing     
 

 
 and      

 

 
 respectively.  

For this design, the set of direction angles 

*                               + *               ,                 + and 

*                                + that satisfies Equation (2.68) is given by 

  (  )    (  ) ;   (  )    (  );   (  )    (  ) and   (  )    (  ) 

(Xiao et al. 2019). As a result, the directional vector of each four angles can 

be linear dependent on the other three directional vectors and it is given by  

[
  (  

   )

  (  
   )

]   [
  (  )

  (  )
]  [

  (  )

  (  )
]  [

  (  )

  (  )
] (2.70) 

Here   
    is the grating (ambiguous) angle (  ). 

Different examples are considered for the purpose of illustration of 

the grating-angle ambiguity. Firstly, assume     transmitted source signals 

impinges on GCLA with               (         ) from the 

direction         
           

              
  under signal-to-noise 

ratio (SNR) of 10 dB and a snapshot of      . The method proposed in 

(Zhou et al.2013) exhibits overlapped peaks for a set of angles that includes 

true DOAs such as  ̂       
  ,  ̂        

   and  ̂        
  as well as 

ambiguous angles such as  ̂ 
             as shown in Figure 2.11. 

Similarly, the partial spectral search-based method (Sun et al.2015) also 

suffered from this ambiguity problem. The polynomial rooting-based methods 
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suggested by (Zhang et al. 2017; Liu et al. 2018; Yan et al. 2018) result in 

more than     common roots i.e., 4 roots (closer to unit magnitude) related 

to  ̂       
  ,  ̂        

  ,  ̂        
   and  ̂ 

            leading to 

an ambiguous estimate of true DOAs and it can be seen in Table A1.2  of 

Appendix 1. 

 

Figure 2.11 The problem of grating-angle ambiguity in GCLA for the 

case of     

 

Now, assume     transmitted source signals impinges on UCLA 

with               (         ) from the direction  

        
           

              
  under signal-to-noise ratio 

(SNR) of 10 dB and a snapshot of      . The UCLA- MUSIC estimator 

(Zheng et al.2018) is expected to exhibit the three highest peaks at the true 

angle location of the spectrum. However, the issue of grating-angle ambiguity 

leads to the UCLA-MUSIC estimator in the exhibition of  significant  

peaks at true and ambiguous angle locations i.e., 

      *     
                  + and    *      

  + as shown in  
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Figure 2.12. Likewise, the method (He et al.2020) also exhibits more than 

three roots that lie inside the unit circle with the largest magnitude i.e., three 

signal roots related to       *     
                   + and one ambiguous 

root related to    *      
  + and it can be seen in Table A1.3 of Appendix 1. 

 

 

Figure 2.12 The problem of grating-angle ambiguity in UCLA for the 

case of     

 

Similarly, consider     transmitted source signals from  

the direction         
           

           
           

      

                
   with an SNR of 10 dB and a snapshot of      . The 

UCLA-MUSIC estimator (Zheng et al.2018)  is expected to exhibit the six 

highest peaks at the true angle location of the spectrum. However, the issue of 

grating-angle ambiguity leads to the UCLA-MUSIC estimator in the exhibition 

of significant peaks at true and ambiguous angle locations i.e.,       

*                                               +and 
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   *     
           + as shown in Figure 2.13. Likewise, the method (He et 

al.2020)  also exhibits more than six roots that lie inside the unit circle with 

the largest magnitude i.e., six signal roots related to 

      *     
                                          + and two 

ambiguous roots related to    *     
           +. In both cases, the method 

suggested by (Zheng et al.2018) shows peaks at ambiguous angle locations as 

noticeably high compared to the peaks of the true angle locations, resulting in 

indistinguishability of the ambiguous peaks and leading to the ambiguous 

estimation of true DOAs. Similarly, the method suggested by (He et al.2020) 

shows the roots related to ambiguous angles as significantly high compared to 

the roots related to true angles, resulting in the indistinguishability of the 

ambiguous roots and leading to the ambiguous estimation of true DOAs. 

 

 

Figure 2.13 The problem of grating-angle ambiguity in UCLA for the 

case of      
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The "beamformer-like" approaches proposed by (Yang et al.2019; 

Huang et al.2021) help resolution of the grating-angle ambiguity where the 

Classical Beamforming (CBF) approach is utilized in the identification of the 

true DOAs and ambiguous angles resulting from the MUSIC method based on 

the CBF power values. However, it fails to resolve the ambiguity when the 

DOA of the transmitted signals from multiple sources are closely distributed. 

It also involves high computational complexity due to the spectral searching 

process and offers lower estimation performances in terms of reliability, 

accuracy and angular resolution. 

To illustrate this, consider     (closely spaced case) transmitted 

source signals from directions         
           

           
      

          
   impinges on UCLA with     . Figure 2.14 (a) shows that 

the UCLA-MUSIC spectrum exhibits peaks at the true and ambiguous angle 

locations i. e.,       *     
                   + and    *      

  +  under 

SNR of 10 dB and a snapshot of      . Figure 2.14 (b) and Table 2.1 

clearly show  the CBF power at a grating (ambiguous) angle         
   as 

substantial in comparison with the CBF power of true DOAs. 

 

(a) 

Figure 2.14 (Continued) 
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(b) 

Figure 2.14 (a) The UCLA-MUSIC spectrum for the case of      

(b) The CBF power spectrum for the case of      

Table 2.1  DOA estimation result of the Yang et al.2019 method for the 

case of      

Set of 

Angles 

True 

   

        

True 

   

        

True 

   

        

True 

   

     

True 

   

     

Generated 

Ambiguous 

   

        

 ̂                                                     

 ̂    0.6805 0.8611 0.4930 0.5277 0.4444 0.5486 

True or 

Ambiguous 
True True True True Ambiguous True 

 

 The estimation results with associated observations on the existence 

of ambiguity, DOF and complexity of the above-aforementioned methods: 

subarray-based methods (Zhou et al.2013; Sun et al.2015; Zhang et al. 2017; 

Liu et al. 2018; Yan et al. 2018) and adjoined subarray-based methods (Zheng 

et al. 2018; He et al.2020) in the general case of grating-angle ambiguity for 

GCLA are summarized in Table A1.2 of Appendix 1. Similarly, the 

estimation results with associated observations on the existence of ambiguity, 

DOF and complexity of the above-aforementioned methods: subarray-based 
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methods (Zhou et al.2013; Sun et al.2015; Zhang et al. 2017; Liu et al. 2018; 

Yan et al. 2018), adjoined subarray-based methods (Zheng et al. 2018; He et 

al.2020) and beamforming-like methods (Yang et al.2019; Huang et al.2021) 

in the general and closely distributed cases of grating-angle ambiguity for 

UCLA are summarized in Table A1.3, Table A1.4 and Table A.15 

respectively of Appendix 1. Table 2.1, Table A1.4 and Table A1.5 show the 

failure of the beamforming-like method involving CBF (Yang et al.2019; 

Huang et al.2021) to distinguish the true DOAs and results in the ambiguous 

estimation of true DOAs. 

 

2.6 CRAMER-RAO LOWER BOUND (CRLB) 

This section briefs the Cramer-Rao lower bound (CRLB) for 

GCLA and UCLA. The CRLB is one of the important tools used in parameter 

estimation problems providing the lower bound on the accuracy of unbiased 

estimators (Cramer 1951). In DOA estimation problems, CRLB is considered 

as one of the key performance metrics in the assessment of the accuracy of 

unbiased DOA estimators (Stoica et al.1990). According to (Zheng et al. 

2018), the CRLB for GCLA is given as follows 

                    
  

  
{ 0  . ̂       

  ̂ 
  
       ̂ /1

 

}
  

 (2.71) 

where 

      [
  
  
]  ,  

    
  - =, (  )  (  )    (  )- 

   ̇    
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      )
       

 - ̇     

 ̂         ̂       
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 ̂  
 

 
∑ ( )   ( )

 

   

 

Here,  ̇     is the first-order derivative of       i. e.,  ̇     

       

  
 and  ̇(  )  

   (  )

   
 where  (  )  ,  

 (  )    
 (  ) -

    [.] 

represents the real part and   denotes the Hadamard product. Similarly, the 

extension of CRLB for UCLA is straightforward and  is given as follows 

         
  

  
{ 0  . ̂       

  ̂ 
  
       ̂ /1

 

}
  

 (2.72) 
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2.7 SUMMARY 

This chapter has provided the groundwork for the rest of the thesis 

by addressing ambiguity concerns in DOA estimation using GCLA and 

UCLA. Initially, a description of the ULA design has been provided with its 

mutual coupling impacts via weight function. Then, the mathematical 

description of the received signal model, and the concept of spatial sampling 

for the choice of inter-element spacing in ULA have been discussed. A 

description of the design of GCLA and UCLA has been provided with its 

mutual coupling impacts and sparsity via weight function. It is shown that, 

compared to GCLA,  the UCLA design has enhanced effective array aperture 
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and mitigates the mutual coupling effects. Then, the mathematical description 

of the received signal model and DOA estimation with GCLA and UCLA is 

discussed. The DOA estimation with UCLA offers better estimation 

performance than GCLA due to the enlarged effective array aperture of 

UCLA over GCLA. Finally, the comprehensive investigation of ambiguity 

problems such as pair-matching and grating-angle in DOA estimation 

associated with GCLA and UCLA has been discussed. Since ambiguity 

problems are crucial in DOA estimation, the following chapters focus on 

resolving ambiguity problems with superior estimation performances in terms 

of reliability, accuracy, and angular resolution with low computational 

complexity and execution time. 
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CHAPTER 3 

AMBIGUITY ELIMINATION METHOD BASED ON THE 

ESTIMATION OF SOURCE POWER 

 

3.1  INTRODUCTION 

The ambiguity issues in DOA estimation with co-prime linear 

arrays have been discussed in chapter 2. As a result, there is a potential need 

to address the critical issue of grating-angle ambiguity in estimating the 

direction-of-arrival (DOA) parameter with unfolded co-prime linear array 

(UCLA). In the proposed method, the true DOAs are distinguished from 

ambiguous estimates obtained from UCLA-MUSIC using the estimated 

power of the source signals. The source power function based on the signal 

subspace eigenvalues and its associated eigenvectors has been derived to 

estimate the power of the source signals. Simulation studies are carried out to 

validate the proposed method's performance in terms of estimation accuracy 

and reliability. 

3.2  SIGNAL MODEL 

Consider,     (   ) far-field source signals from directions 

  *  +   
  impinging on   element UCLA with the field-of-view (FOV) 

such that      (   
       ) as shown in Figure 2.6 of chapter 2. Then, the 

observed array output received signal vector        ( )          of UCLA is 

given by 
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      ( )          ( )    ( )  (3.1) 

where        [  (  )    (  )      (  )]    
      represents the array 

directional matrix and   (  )  ,  
 (  )    

 (  )-
          represents the 

array directional vector of UCLA. The directional vector of    (  ) and 

  (  ) in UCLA can be expressed as 

  (  )  [    
        (  )            (    )    (  )]

 
        (3.2) 

  (  )  [ 
   (  (    )   )    (  )          (  (    )   (    ))    (  )]

 
(3.3) 

As a result,   (  )    
      of UCLA can be written as  

  (  )  ,    
        (  )            (    )    (  )     (  (    )   )    (  )  

       (  (    )   (    ) )   (  )-             (3.4) 

  ( )  ,  ( )   ( )      ( )-
           represents the vector of emitter signal 

amplitudes and  ( )  ,  ( )   ( )       ( ) -
           represents the zero-

mean additive white noise with covariance E* ( )  ( )+    
   , where   

  

is the noise power and    denotes the       identity matrix (Zheng et al. 

2018). The observed array output received signal vector       ( )          of 

UCLA can be expressed as follows 

      ( )   

[
 
 
 
 
 
 

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

   

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

 

]
 
 
 
 
 
 

 

[

  ( )

  ( )
 

  ( )

]  [

  ( )

  ( )
 

    ( )

] (3.5) 
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The signal model given in Equation (3.5) is seen as similar to the 

signal model given in Equation (2.49). 

3.3  PROPOSED METHOD 

This section describes the method proposed for the elimination of 

the ambiguous angles estimated from the UCLA-MUSIC. UCLA is 

considered as a single-array design, and so the covariance         
     of the 

received signal       ( )          is directly obtained instead from two 

subarrays separately and it is given by   

    *     ( )      
 ( )+ 

                     
    

     (3.6) 

where   =  *   + denotes the source covariance matrix,   
  is the noise 

power and    denotes the       identity matrix. In practice, the actual 

covariance matrix    is unknown, therefore its sample estimate  ̂  is 

computed for   snapshots and it is given by  

 ̂  
 

 
∑     ( )      

 ( )

 

   

  [
 ̂  ̂ 
 ̂  ̂ 

]                               (   ) 

Here, the array covariance  ̂  inherently contains the self and 

mutual information of two subarrays due to the utilization of the entire array. 

It can be seen via the block matrices such as  ̂ ,  ̂  are the array auto-

covariance and  ̂ ,  ̂  are the array cross-covariance of two subarrays in  ̂  

of Equation (3.7) (Zheng et al. 2018). The eigenvalue decomposition (EVD) 

of  ̂  yields 

 ̂   ̂   ̂  ̂ 
    ̂   ̂   ̂ 

   (3.8) 
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where   ̂  ,            -    
        and  ̂   ,                -  

           

contains the signal- and noise-subspace eigenvectors of  ̂  corresponding to the 

eigenvalues in the diagonal matrix  ̂       *            + and  ̂  

    *                +. Furthermore, the signal subspace and directional 

vector of the source signals span the same space and are orthogonal to the 

noise subspace. As a result, the directional vector can be used in the search for 

all possible angles from              across the noise-subspace to 

determine the DOA of transmitted source signals, and the UCLA-MUSIC 

pseudo spectrum is given by 

 ̂          ( )  
 

   ( )  ̂   ̂ 
   ( ) 

 
 

‖ ̂ 
   ( ) ‖

   (3.9) 

Thus, the angles ( ) corresponding with the highest peaks of 

 ̂          ( ) are the DOA of the transmitted source signals. 

In the case of grating-angle ambiguity, the  ̂          ( ) fails to 

exhibit the highest peaks at true DOAs as illustrated in section 2.5.2 of 

chapter 2. A source covariance function is derived for distinguishing and 

eliminating the ambiguous angles from the initial estimate of UCLA-MUSIC. 

To start with, using Equation (3.6), the source covariance matrix    can be 

expressed as    =  *   + and it is generally unknown in practice. Thus, a 

relation is established through consideration of only the contribution of source 

signals using Equations (3.6) and Equation (3.8) and it is given by  

       ̂       
   ̂  ̂  ̂ 

 
                                                     (3.10) 

Upon multiplying  ̂  and  ̂ 
 

to        ̂       
  in Equation (3.10) results in   

  ̂ 
 
       ̂       

  ̂       *             +   ̂       (3.11) 
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Equation (3.11) allows for the following derivation of  ̂  and it is given by  

 ̂  . ̂ 
 
      /

  

 ̂  (     
  ̂ )

  
                                     (3.12) 

The     * ̂ + contains the estimate of the power of the transmitted 

source signals. In the case of grating-angle ambiguity, the  ̂          ( ) 

exhibits more than   highest peaks given by   (   ). Assume the total 

number of peaks exhibited by  ̂          ( ) is given by T (   )  Now, 

for the computation of the total number of highest peaks   (   )  from the 

total number of peaks T (   ) exhibited by  ̂          ( ), the amplitudes 

of the T peaks are sorted in descending order and it is given by        

      . The angles associated with   ,   ,...,    can be indicated as   , 

  ,...,   . The total number of   (   ) highest peaks can be computed by   

         
 
  ( )                                                                   (3.13) 

where   ( )  
       

    
,                . Here, the  ( ) result is low 

when both the    and      are nearly equal, while  ( ) result is high when 

   is low and      is high and vice versa. Then, the angles associated with the 

highest peaks   (   ) exhibited by  ̂          ( ) can be represented as  

  *  +   
                                                                                 (3.14) 

The existence of ambiguity can be confirmed through the use of the 

following conditions (i) if     then ambiguity exists (ii) if     then 

ambiguity does not exists. In the case of ambiguity, the set of possible 

combinations of angles can be obtained and it is given by  

   {    }   
 

,                                                                     (3.15) 
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where     
  

  

   (   ) 
,      can be obtained from the initial estimate ( ) 

and it is given by 

      ,〈   〉 -                                                                     (3.16) 

where 〈 〉  is the modulo operation i.e., 〈   〉  (   )        The 

equivalent array directional matrix  ̂    
  for     can be computed and 

expressed as  

 ̂    
  , ̂(    )   ̂(    )     ̂(    )-                            (3.17) 

The signal source power function (matrix)  ̂  for each  ̂    
  can 

be computed and it is given by 

 ̂ 
  . ̂ 

 
 ̂    
 /

  

 ̂  (  ̂    
    ̂ )

  
                                    (3.18) 

Because the diagonal of  ̂ 
  comprises the estimate of the power of 

the transmitted source signals, the       ( ̂ 
 ) is computed and it is given by  

         ( ̂ 
 )                                                                                (3.19) 

The index of minimum value of     can be used for getting the 

source covariance matrix   ̂  related to the transmitted source signals and it 

can be expressed as  

         
 
 (  )                                                                     (3.20) 

Finally, the   true DOAs can be obtained through the utilization of 

the index ( ) and it is given by 

 ̂  {    }    
 

                                                                           (3.21) 
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Thus, the   true DOAs of the transmitted source signals can be 

obtained without ambiguity from  ̂ defined in Equation (3.21). Table 3.1 

summarizes the steps of the proposed method. 

Table 3.1 Steps of the proposed method 

Step 1 Estimate the sample covariance matrix  ̂  using Equation (3.7)  

Step 2 Perform EVD on  ̂  and obtain the   ̂ ,  ̂   and  ̂ . 

Step 3 Using pseudo spectrum  ̂          ( ) in Equation (3.9) obtain the 

initial estimate   *  +   
   

Step 4 Construct the equivalent array directional matrix  ̂    
  for    using 

Equation (3.17) 

Step 5 Obtain the source covariance matrix  ̂ 
  for each  ̂    

  using 

Equation (3.18) 

Step 6 Find the  ̂  corresponds to the true DOAs using Equation (3.19) 

and Equation  (3.20) 

Step 7 Obtain the   true DOAs using Equation (3.21) 

 

3.4  SIMULATION RESULTS AND DISCUSSION 

This section details the simulations used for validation of the 

proposed method‘s estimation performances in terms of reliability and 

accuracy. 

3.4.1  Estimation Reliability 

To show the estimation reliability of the proposed method, two 

cases are considered such that case 1:     and case 2:    . In case 1 of 

    transmitted source signals from directions         
      

                
   impinges on UCLA with       under the SNR of 10 

dB and a snapshot of      . Figure 3.1 and Figure 3.2 show the failure of 
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the method (Zheng et al. 2018) and method (He et al.2020) in the consistent 

estimate of the true DOAs for 10 unbiased simulation trials. The method 

proposed by (Zheng et al. 2018) helps estimation correctly only once due to 

the exhibition of highest peaks at true DOAs, whereas it fails in the remaining 

simulation trials due to the exhibition of the highest peaks at           
   

instead of         
    The method (He et al.2020) estimates correctly 

twice, whereas it fails in the remaining simulation trials due to the existence 

of ambiguous roots related to           
   that lie close to the unit circle. 

In contrast, Figure 3.3 shows the proposed method overcoming the problem 

of grating-angle ambiguity and successfully estimating the true DOAs for all 

10 unbiased simulation trials.  

 

Figure 3.1 Estimation reliability of Zheng et al. 2018 method for the 

case of     
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Figure 3.2 Estimation reliability of He et al.2020 method for the case of  

    

 

Figure 3.3 Estimation reliability of the proposed method for the case of  

    

 



64 
 

 

Consider case 2 of     transmitted source signals  

from directions         
           

           
           

      

                
   impinges on UCLA with      under the SNR of 10 

dB and a snapshot of       for demonstration of the superiority of the 

proposed method. Figure 3.4 shows the method proposed by (Zheng et al. 

2018) fails in the estimation of true DOAs due to the existence of the highest 

peaks at      *     
          +. Figure 3.5 shows the failure of the 

method (He et al.2020) due to the existence of ambiguous roots related to 

     *     
          + that lie closest to the unit circle. However, the 

proposed method yields a reliable estimation of true DOAs consistently 

without any ambiguity as shown in Figure 3.6. It is worth noting that the 

proposed method achieves superior estimation reliability compared to the 

existing methods even if the number of transmitted signal sources increases. 

 

Figure 3.4 Estimation reliability of the Zheng et al. 2018 method for the 

case of     
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Figure 3.5 Estimation reliability of the He et al.2020 method for the 

case of     

 

Figure 3.6 Estimation reliability of the proposed method for the case of  
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3.4.2  Estimation Accuracy 

To show the estimation accuracy of the proposed method with 

method (Zheng et al. 2018) and method (He et al.2020), a performance metric 

called Root mean square error (RMSE) is used and it is expressed by 

     √
 

  
∑∑( ̂      )

 

 

   

 

   

                                          (    ) 

where   ̂    is the estimate of    DOA at     Monte-Carlo simulation trial of 

its total   and    is the     true DOA. Firstly, RMSE is evaluated for 

different SNR (dB) varying from      to     with the step of     for       

Monte-Carlo simulation trails. Considering case 1 of      transmitted 

source signals from directions         
           

           
   

impinges on UCLA with      under the fixed snapshot of      . 

Figure 3.7 shows the proposed method outperforming the existing method 

(Zheng et al. 2018) and method (He et al.2020) by offering better estimation 

accuracy. Furthermore, the proposed method closely follows the limits of the 

Cramer-Rao lower bound (CRLB) even at low SNR levels. 

Evaluation of RMSE has been done for case 2 of     transmitted 

source signals from directions         
           

             
      

                
           

   impinges on UCLA with     , under 

a fixed snapshot of       for demonstration of the superiority of the 

proposed method.  Figure 3.8 shows that the proposed method exhibits better 

estimation accuracy compared to the method (Zheng et al. 2018) and method 

(He et al.2020) as the SNR increases and also closely follows the limits of 

CRLB. 
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Finally, evaluation of RMSE has been done for different snapshots 

with variations from 30 to      with fixed SNR of 10 dB for the above-

mentioned case 1 of     and case 2 of     source signals. Figure 3.9 

and Figure 3.10 show the proposed method‘s RMSE as lower compared to the 

method (Zheng et al. 2018) and method (He et al.2020). Furthermore, the 

RMSE performance of the proposed method closely follows the limits of the 

CLRB even at the lower number of snapshots. 

 

Figure 3.7 RMSE versus SNR for the case of      
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Figure 3.8 RMSE versus SNR for the case of     

 

Figure 3.9 RMSE versus snapshots for the case of     
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Figure 3.10 RMSE versus snapshots for the case of     

3.5  SUMMARY 

In this chapter, a method has been proposed for the resolution of 

the critical issue of grating-angle ambiguity in the estimation of the DOA 

parameter with UCLA. The proposed unambiguous DOA estimation method 

incorporates an initial estimation of DOAs through UCLA-MUSIC. The true 

DOAs are distinguished from ambiguous estimates obtained from UCLA-

MUSIC with the use of the estimated power of the transmitted source signals. 

The source power function based on the signal subspace eigenvalues and its 

associated eigenvectors has been used in the estimation of the power of the 

source signals transmitted. The proposed approach distinguishes and detects 

the true DOAs successfully without any ambiguity. The simulation results 

guarantee the outperformance of the proposed method over the existing 

methods through the exhibition of superior estimation in terms of reliability 

and accuracy. 

 



70 
 

 

 

CHAPTER 4 

AN IMPROVED POLYNOMIAL ROOTING-BASED 

METHOD FOR HIGH-RESOLUTION UNAMBIGUOUS 

DOA ESTIMATION 

 

4.1  INTRODUCTION 

Despite the method based on the source covariance function 

proposed in chapter 3 successfully resolving the ambiguity problem, the 

estimation performances are limited in terms of angular resolution. It also 

involves high computational complexity due to the spectral searching process 

involved in UCLA-MUSIC (Zheng et al. 2018). An improved polynomial 

rooting-based method has been proposed for overcoming the limitations of the 

aforementioned method and for the resolution of the ambiguity problem.  

The proposed method derives a polynomial function for DOA 

estimation with UCLA based on the orthogonality between the noise subspace 

eigenvectors and array directional vectors spanned by the signal subspace. A 

signal power function based on spatial filtering is established for the selection 

of the signal roots that are related to true DOAs over ambiguous roots for 

circumventing the grating-angle ambiguity. A maximum signal power 

function based on the second-order differential counterparts of the signal 

power function is proposed for the enhancement of the angular resolution 

capability of the signal power function in resolving DOAs of closely spaced 

signal emitters. The error analysis is carried out for establishing the 

achievement of better estimation accuracy by the proposed method that 
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closely follows the fundamental limits of the CRLB. The proposed method 

overcomes the grating-angle ambiguity and estimates the true DOAs 

successfully with improved estimation performances in terms of reliability, 

accuracy and angular resolution involving low computational complexity. 

Finally, the simulations have been performed to show the effectiveness and 

superiority of the proposed method. 

4.2  SIGNAL MODEL 

Consider,     (   ) far-field source signals from directions 

  *  +   
  impinging on   element UCLA with the field-of-view (FOV) 

such that      (   
       ) as shown in Figure 2.6 of chapter 2. Then, the 

observed array output received signal vector        ( )          of UCLA is 

given by 

      ( )          ( )    ( )  (4.1) 

where        [  (  )    (  )      (  )]    
      represents the array 

directional matrix and   (  )  ,  
 (  )    

 (  )-
          represents the 

array directional vector of UCLA. The directional vector of    (  ) and 

  (  ) in UCLA can be expressed as 

  (  )  [    
        (  )            (    )    (  )]

 
        (4.2) 

  (  )  [ 
   (  (    )   )    (  )          (  (    )   (    ))    (  )]

 
  

(4.3) 

As a result,   (  )    
      of UCLA can be written as  

  (  )  ,    
        (  )            (    )    (  )     (  (    )   )    (  )  

       (  (    )   (    ) )   (  )-                        (4.4) 
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  ( )  ,  ( )   ( )      ( )-
           represents the vector of emitter 

signal amplitudes and  ( )  ,  ( )   ( )       ( ) -
           represents 

the zero-mean additive white noise with covariance E* ( )  ( )+    
   , 

where   
  is the noise power and    denotes the       identity matrix (Zheng 

et al. 2018). The observed array output received signal vector 

      ( )          of UCLA can be expressed as follows 

      ( )   

[
 
 
 
 
 
 

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

   

 
         (  )

 
      (    )    (  )

    (  (    )   )    (  )

 
    (  (    )   (    ) )   (  )

 

]
 
 
 
 
 
 

 

[

  ( )

  ( )
 

  ( )

]  [

  ( )

  ( )
 

    ( )

]  

(4.5) 

The signal model given in Equation (4.5) is seen as similar to the 

signal model given in Equation (2.49). 

4.3  PROPOSED METHOD 

The estimated covariance matrix  ̂     
       of the array output 

received signal vector       ( ) with   snapshots can be expressed as  

 ̂  
 

 
∑     (  )     

 (  )

 

   

 

         
 

 
            

  

        [
 ̂  ̂ 
 ̂  ̂ 

]                                                                           (4.6) 
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where       ,     (  )      (  )          (  ) -     
       block 

matrices such as  ̂ ,  ̂  are the array auto-covariance and  ̂ ,  ̂  are the 

array cross-covariance that contain the self and mutual information of two 

subarrays respectively. The eigenvalue decomposition (EVD) of  ̂    

results  ̂   ̂ ̂ ̂
   ̂  ̂  ̂ 

   ̂  ̂  ̂ 
 , where  ̂  [ ̂   ̂ ],  ̂  

,            -    
       and  ̂   ,                -  

          contains 

the signal- and noise-subspace eigenvectors of  ̂  corresponding to the 

eigenvalues in the diagonal matrix  ̂       *            + and  ̂  

    *                +. Here,  ̂  [ ̂   ̂ ] is a unitary matrix, hence the 

signal subspace  ̂  and noise subspace  ̂  are orthogonal to each other i. e., 

 ̂ 
  ̂   . The co-prime property and joint utilization of self and mutual 

information of two subarrays in UCLA allows the space spanned by  ̂  and 

columns of       to be equal and orthogonal to  ̂ . As a result, the array 

directional vectors of      and eigenvectors of noise subspace are orthogonal 

and hold a property   ̂ 
         . Using this property, a polynomial 

function  ( ) is defined by 

  ( )     (  ⁄ ) ̂  ̂ 
   ( )                      (4.7) 

where  ( ) is the array directional vector of UCLA and it can be expressed as 

 ( )  ,  
 ( )    

 ( ) - . Then,   ( ) and   ( ) can be written as 

  ( )|         ( )  [    
                 (    )  ]

 
                     (4.8) 

  ( )|         ( )  [  
(    )         (    )              (    )   (    )  ]

 
  

(4.9) 

Thus,  ( ) can be written as  

 ( )|         ( )   ,    
              (    )    (    )      

           (    )           
(    )   (    )  ⏟              

 -      (4.10) 
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The solution to polynomial function  ( ) results in    number of 

roots where              . Here, the    roots appear as conjugate 

reciprocal pairs {  }   
 
     {   

 ⁄ }
   

 
and the roots that lie inside the unit 

circle have information about the DOA of the emitter signals. Therefore, the 

roots that lie inside the unit circle with the highest magnitude such that 

*  +   
  {  }   

 
are used in the estimation of the   DOAs. In the situation 

of grating-angle ambiguity, there exist more than   roots that lie closest to 

the unit circle and are not distinguishable concerning true DOAs. Therefore, a 

signal power function  ( ) is defined based on the spatial filtering technique 

to find the   signal roots corresponding to the true DOAs. The signal power 

function  ( ) is defined as the mean power of      
 ( ), where      

 ( ) is 

the weighted linear combination of array output signal vector       and it is 

given by  

     
 ( )                    (4.11) 

Here, the weight vector   is equal to the array response vector  ( ) 

(Tuncer et al. 2009) and the signal power function  ( ) can be expressed as  

  ( )    *|     
 ( )| + 

              *|  ( )      ( )|
 + 

               ( )( *     ( )      
 ( )+)  ( ) 

   ( )

(

 
  

 
∑     (  )     

 (  )

 

   ⏟                
 ̂ )

 
 
 ( ) 

   (   ) ̂   ( )                                                           (4.12) 



75 
 

 

The signal power function  ( ) yields a higher power for signal 

roots but is unable to resolve the closely distributed signal roots with a higher 

power. Therefore, the second-order differential of  ( ) is defined to improve 

the resolution and it is expressed as   

   ( )  
  ( )

  
    

  (    )  ( )  (    )

  
                                     (4.13) 

where              is a discrete root interval. Here,    ( ) being local 

maxima for convex upward of  ( ), it resolves the closely spaced signal roots 

with higher power and simultaneously yields higher power for other roots. 

Therefore, a maximum signal power function  ( ) is defined as a product of 

 ( ) and its second-order differential counterparts    ( ) to find the signal 

roots related to true DOAs and it is given by  

  ( )   ( )      ( )                                                                         (4.14) 

Thus,  ( ) yields higher power for *  +   
  signal roots relating to 

  true DOAs among {  }   
 

roots. Finally, using     
      (  ), the DOA 

of the emitter signals is obtained from *  +   
 signal roots are given by  

 ̂       
  .

 (  )

 
/                                                   (4.15) 

where  (  )     
  ( (  )  (  )⁄ ) is the phase angle of   ,  (  ) and 

 (  ) are the imaginary- and real- parts of   . Table 4.1 summarizes the 

processing steps of the proposed method. 
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Table 4.1 Processing steps of the proposed method 

Step 1 Estimate the array covariance matrix  ̂  using Equation (4.6) 

Step 2 Perform EVD on  ̂  and obtain the noise subspace  ̂  

Step 3 Obtain the roots of the polynomial function  ( ) defined in 

Equation (4.7) 

Step 4 Obtain   signal roots i. e., *  +   
  using maximum signal 

power function  ( ) defined in Equation (4.14) 

Step 5 From *  +   
  roots, obtain   DOAs i. e., { ̂ }   

 
 using 

Equation (4.15) 

 

4.4  SIMULATION RESULTS AND DISCUSSION 

This section details the simulations for the validation of the 

estimation performances of the proposed method in terms of reliability, 

accuracy, angular resolution and computational complexity in comparison 

with (Zheng et al. 2018) method, (He et al.2020) method, (Yang et al.2019) 

method and (Huang et al.2021) method. To start with, two distinct grating-

angle ambiguity cases are considered for the illustration of the estimation 

results of the proposed method. Case 1:     incoming emitter signals from 

directions         
           

              
    Case 2:     

incoming emitter signals that are closely spaced in directions    

                
           

           
               

  impinging 

on a UCLA having      elements (         ) under SNR of       

and       snapshots. 
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For case 1 and case 2, the polynomial  ( ) in Equation (4.7) results 

in        roots as {  }   
  
     {   

 ⁄ }
   

  
. Table 4.2, for case 1, shows 

{  }   
 

 roots among {  }   
  

 as closer to the unit circle with the largest 

magnitude (|  |    ). Table 4.3 shows, for case 2, {  }   
 

 roots among 

{  }   
  

 as closer to the unit circle with the largest magnitude and it is referred 

to as RoI (Roots of Interest). Among the RoI, signal roots such as *  +   
  

and *  +   
  of case 1 and case 2 respectively yields a higher value for the 

maximum signal power function  (  ) with        . As a result, the DOA 

of the emitter signals that are obtained using Equation (4.15) shows the 

proposed method successfully estimating the true DOAs without ambiguity 

for both the cases taken into consideration. 

Table 4.2 The propo ed method’  DOA e timation re ult for ca e 1 

Case 1 :         
           

              
   

 

{  }   
  

 

RoI {  }   
 

 Remaining 

Roots 

      

         

       

         

       

         

       

         
{  }   

  
 

|  |                                    

 (  )                                      

   (  )                                      

 (  )                                      

{ ̂ }   
 

                         NA* NA* 
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Table 4.3 The propo ed method’  DOA e timation re ult for ca e 2 

Case 2:         
           

           
    

        
                

   

 

{  }   
  

 

RoI {  }   
 

 
Remaining 

Roots 

      
         

      
         

      
         

       
         

       
         

       
         

{  }   
  

 

|  |                                                  

 (  )                                                   

   (  )                                                   

 (  )                                                   

{ ̂ }   
 

      
           NA*                         NA* 

* Not applicable 

4.4.1  Reliability Comparison 

For the demonstration of the reliability of the improved polynomial 

rooting-based DOA estimation method, 10 unbiased simulation trials were 

carried out under the consideration of     ,           and       . 

For case 1, Figure 4.1 (c) shows the proposed method successfully resolving 

the ambiguity problem and resulting in a consistent estimate of true DOAs in 

contrast to the methods suggested by (Zheng et al. 2018; He et al.2020) which 

fail to resolve and result in an inconsistent estimate of true DOAs as it can be 

seen from Figure 4.1 (a) and Figure 4.1 (b). It is noted that the proposed 

method‘s results accord with the results of the methods (Yang et al.2019; 

Huang et al.2021). However, the methods suggested by (Yang et al.2019; 

Huang et al.2021) result in an ambiguous estimate of true DOAs for case 2 as 

shown in Figure 4.2 (a) and Figure 4.2 (b), whereas the proposed method 

successfully resolves the closely spaced emitter signal DOAs and results in a 
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consistent estimate of true DOAs without ambiguity as it can be seen from 

Figure 4.2 (c). 

 

Figure 4.1 Reliability comparison for case 1 : (a) Zheng et al.2018 

method (b) He et al.2020 method (c) Proposed method 
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Figure 4.2 Reliability comparison for case 2 : (a) Yang et al.2019 

method (b) Huang et al.2021 method (c) Proposed method 
 

4.4.2  Estimation Accuracy 

The estimation accuracy of the proposed method is assessed against 

the methods in (Zheng et al. 2018; He et al.2020) and (Yang et al.2019; 
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Huang et al.2021) for case 2 using root mean square error (RMSE) under 

different SNR and number of snapshots variations. For       Monte-Carlo 

simulation trails, RMSE is evaluated for different SNR variations i.e.,       

 SNR       with       fixed number of snapshots.  

 

 

Figure 4.3 (a) RMSE comparison versus SNR (b) RMSE comparison 

versus the number of snapshots 
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Figure 4.3 (a) shows the proposed method exhibiting better 

estimation accuracy compared to the methods (Zheng et al. 2018;  

He et al.2020; Yang et al.2019; Huang et al.2021). It also closely follows the 

limits of the CRLB even at low SNR. Similarly, RMSE is also evaluated for a 

different number of snapshot variations i.e., 50       500 with SNR       

fixed. Figure 4.3 (b) shows the proposed method exhibiting better estimation 

accuracy compared to the methods in (Zheng et al. 2018; He et al.2020; Yang 

et al.2019; Huang et al.2021). Furthermore, it closely follows the limits of the 

CRLB even at a lower number of snapshots. 

4.4.3  Angular Resolution 

 The angular resolution capability of the proposed method is 

assessed against the methods suggested by (Yang et al.2019; Huang et 

al.2021) using the resolving probability for different angular separations. 

Considering two closely distributed emitters in case 2 such as 

*                                             +, where    is the 

angular separation. The resolving probability is given by  
  
 

 ⁄ , where   
  is 

the number of successful detections of true DOAs satisfying the condition 

given as follows 

                {| ̂    | | ̂    | | ̂    | | ̂    | | ̂    |}   
  

 
 (4.16) 

where   is the total number of Monte-Carlo simulation trials. Here, resolving 

probability is evaluated for angular separation (  )  with variations from 

      to      in steps of      . Figure 4.4 shows the proposed method 

exhibiting better resolution capability compared to the methods proposed by 

(Yang et al.2019; Huang et al.2021) in the range of                 . 
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Figure 4.4 Resolving probability comparison versus angular separation 

4.4.4  Complexity Analysis 

Assessment of the computational complexity has been made using 

the number of complex multiplications involved. The proposed method 

involves estimation of the array covariance matrix, eigenvalue decomposition 

(EVD) and finding signal roots with complexities that are  (   ),  (  ) 

and  (   ) respectively. Details of the computational complexity 

comparison of the proposed method and the methods proposed by (Yang et 

al.2019; Huang et al.2021) are given in Table 4.4. Complexity has been 

evaluated for a varying number of array elements i. e.,        with fixed 

      snapshots for the consideration of    , search step          

and      (Yang et al.2019; Huang et al.2021). Similarly, complexity has 

been evaluated for a varying number of snapshots i. e.,              with 

     fixed number of array elements. Figure 4.5 (a) and Figure 4.5 (b) 

show the proposed method involving less computational complexity 

compared to the methods in (Yang et al.2019; Huang et al.2021). 
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Table 4.4 Computational complexity comparison 

Method Computational Complexity 

Yang et al.2019 
 (        

     

   
 (   )     ) 

Huang et al.2021  (         (    )     ) 

Proposed Method  (            ) 

 

 

Figure 4.5 (a) Complexity comparison versus the number of array 

elements (b) Complexity comparison versus the number of 

snapshots 
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4.5  SUMMARY 

The proposed method aims at providing high-resolution 

unambiguous DOA estimation with UCLA. The proposed improved 

polynomial rooting-based method involves a maximum signal power function 

based on spatial filtering and second-order differential for the selection of the 

signal roots that are associated with true DOAs over ambiguous roots 

obtained from the polynomial function. The proposed method overcomes the 

grating-angle ambiguity and estimates the true DOAs successfully with 

improved estimation performance. The analysis and simulation findings show 

the superiority and effectiveness of the proposed method over the existing 

methods in terms of estimation reliability, estimation accuracy, angular 

resolution and computational complexity. 
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CHAPTER 5 

COMPUTATIONALLY EFFICIENT UNAMBIGUOUS DOA 

ESTIMATION BASED ON SUPPORT VECTOR 

REGRESSION 

 

5.1  INTRODUCTION 

In this chapter, a computationally efficient DOA estimation method 

based on support vector regression (SVR) has been proposed for addressing 

the ambiguity problem associated with the GCLA and UCLA. As discussed in 

the previous chapters, the estimation performances in terms of reliability, 

accuracy and angular resolution of the existing subarray-based methods (Zhou 

et al.2013; Sun et al.2015; Zhang et al. 2017; Liu et al. 2018; Yan et al. 

2018), adjoined subarray-based methods (Zheng et al. 2018; He et al.2020)  

and beamforming-like methods (Yang et al.2019; Huang et al.2021) degrade 

in the ambiguity problem situation of GCLA and UCLA. Furthermore, the 

aforementioned methods entail high computational complexity and execution 

time. 

The problem of DOA estimation can be approached as a non-linear 

approximation wherein the non-linear function has to be approximated that 

maps the array output received vector and DOA of the incoming source 

signals. This can be accomplished effectively through learning-based methods 

wherein the radial basis-function neural network (RBFNN) (El Zooghby et 

al.2000; Sun et al.2018; Liu et al.2018) and support vector regression (SVR) 

(El Gonnouni et al.2012; Randazzo et al.2007; Tarkowski et al.2019; Wu et 
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al.2019) performs comparably better than the subspace-based methods with 

reduced computational complexity. The RBFNN is one of the simplest types 

of a neural network with only one hidden layer and each neuron in the hidden 

layer consists of the RBF activation function. It also involves trial-and-error 

procedures in the determination of the number of hidden neurons (Wu et 

al.2019; Liu 2020). Compared to RBFNN, the SVR-based methods for DOA 

estimation are relatively simple to implement and have good generalization 

capabilities that offer better estimation performances with less computational 

complexity. As a result, the SVR-based methods for DOA estimation are 

considered as the most promising and well-experimented learning-based 

method. 

In the existing SVR-based formulations, the array covariance 

matrix mapped to its corresponding DOA of the incoming source signals is 

approximated using SVR. The foremost limitation of the existing SVR-based 

methods is that as the number of sources varies, its overall performance 

severely degrades or even fails to work (Chen et al. 2020). It also requires a 

multiple regression model for the estimation of the DOAs in the case of more 

than one incoming source signal. This increases the training complexity and 

makes it cumbersome in considering all possible sources with different 

angular separations (Elbir 2020). Moreover, the generalization of the existing 

SVR formulation is not guaranteed in the varying number of incoming source 

signals. This leads to the failure of the models presented in (El Gonnouni et 

al.2012; Randazzo et al.2007; Tarkowski et al.2019; Wu et al.2019) in the 

detection and estimation of the true DOAs and imposes constraints on 

achieving the full DOF. 

To overcome the aforementioned limitations of the existing 

formulations, a modified formulation is proposed which approximates the 

unknown regression function that maps the signal subspace eigenvectors with 
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its associated DOA of the incoming source signals using SVR. The proposed 

formulation uses only one regression model for the estimation of multi-source 

DOAs without increasing the training complexity. It also offers good 

generalization in the varying number of source signals situation and results in 

the achievement of full DOF with reduced complexity compared to the 

existing SVR-based methods. Numerous simulations are presented in 

comparison with existing methods to show the superiority and efficacy of the 

proposed method in terms of estimating reliability, estimation accuracy, DOF, 

and complexity analysis. 

5.2  PROPOSED METHOD FOR DOA ESTIMATION WITH 

GCLA 

Consider,     (   ) far-field source signals from directions 

  *  +   
  impinging on   element GCLA with the field-of-view (FOV) 

such that      (   
       ) as shown in Figure 2.4 of chapter 2. Then, the 

observed array output received signal vector by     subarray of GCLA can be 

expressed as  

                            ( )      ( )    ( )                 (5.1) 

where   ( )    
      and   ( )    

      represents the received 

output vector of subarray 1 and subarray 2 of GCLA. Here,    represents the 

array directional matrix of     subarray and for each subarray, it is given by 

   ,  (  )    (  )      (  ) -    
       (5.2) 

   ,  (  )    (  )      (  ) -    
       (5.3) 

 



89 
 

 

where   (  ) and   (  ) represents the array directional vector of subarray 

1 and subarray 2 and it is given by  

  (  )  [   
        (  )           (    )    (  )]

 
          (5.4) 

  (  )  [   
        (  )           (    )    (  )]

 
          (5.5) 

Then, the observed array output received signal vector of GCLA 

can be expressed as follows  

  ( )  [

 
         (  )

 
     (    )    (  )

 
         (  )

 
     (    )    (  )

    

 
         (  )

 
     (    )    (  )

] [

  ( )

  ( )
 

  ( )

]    

      

[
 
 
 
    ( )

    ( )

 
       ( )]

 
 
 

    ( )    ( )     (5.6) 

  ( )  [

 
         (  )

 
     (    )    (  )

 
         (  )

 
     (    )    (  )

    

 
         (  )

 
     (    )    (  )

] [

  ( )

  ( )
 

  ( )

]    

      

[
 
 
 
    ( )

    ( )

 
       ( )]

 
 
 

    ( )    ( )     (5.7) 

Here,   ( )  [  ( )    ( )       ( )]
 

          represents the 

incoming source signal vector,    ( )     
        and   ( )     

       represents 

the zero-mean additive white noise of subarray 1 and subarray 2 with 

covariance E*  ( )  
 ( )+     

            where    
  is the noise power and 

   is the identity matrix (Vaidyanathan et al. 2011). The proposed method 

aims at the resolution of the ambiguity problem in DOA estimation through 
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the approximation of the unknown non-linear function that maps the signal 

subspace eigenvectors with the DOA of the incoming source signals. The co-

prime property makes the space spanned by signal subspace eigenvectors and 

directional vectors associated with true DOAs to be the same. The distinct 

training pairs comprise signal subspace eigenvectors and its associated DOAs 

allow the mapping processing feasible. The proposed method involves pre-

processing, training, and testing (estimation) phase. 

5.2.1  Pre-Processing Phase 

In the pre-processing phase, the estimated array covariance matrix 

of the output signal vector from individual subarrays  ̂    ,  ̂     and 

between the subarrays  ̂    ,  ̂     of GCLA with   snapshots can be 

expressed as  

 ̂      *  ( )  
 ( )+  

 

 
∑  ( )   

 ( )

 

   

         *   +       (   ) 

Using Equation (5.8), the total estimated array covariance matrix of 

GCLA can be constructed and it is given by 

 ̂  [
 ̂     ̂    
 ̂     ̂    

]           (5.9) 

The eigenvalue decomposition (EVD) of  ̂  yields  ̂  

 ̂   ̂  ̂ 
    ̂   ̂   ̂ 

   where  ̂  ,            -    
        and  ̂   

,                -  
           contains the signal- and noise-subspace 

eigenvectors of  ̂  corresponding to the eigenvalues in the diagonal matrix 

 ̂       *            + and  ̂      *                +. 

Alternatively, the signal subspace eigenvectors associated with the DOA of 

the incoming source signals are computed from the total array covariance 
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matrix  ̂  using a linear operator termed propagator   (Meng et al. 2019). 

 The total array directional matrix            of GCLA is partitioned 

into two block matrices              and        (   )     as 

  [
  
  
] (5.10) 

 Here, the linear relationship exists between    and    can be  

given by  

       (5.11) 

The propagator    is determined by minimizing the cost function 

||      ̂||
  and the resulting solution is   (  

   ) 
    

   . However, 

information relating to the total array directional matrix   of the incoming 

source signals is not known. As a result, the propagator   is estimated from 

the estimated total array covariance matrix  ̂   and it can be represented as  

 ̂  ,     - where    ̂(     ) and    ̂(       ). Based on this, 

the cost function is now reformulated as ||    ̂|| , then the propagator 

 ̂ can be obtained by minimizing the cost function and the resulting solution 

is given by 

 ̂   (   )       (5.12) 

Now, defining a        
      matrix using  ̂ is given by  

    [
  
 ̂ 
] (5.13) 

Combining Equation (5.11) and Equation (5.13) results       

,     ̂
 -    ,        -

     Here, the space spanned by        
      and 

            are same (Wang et al.2013). The signal subspace eigenvectors 
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associated with the source signals are the columns of       
      such that 

      
     . 

5.2.2  Training Phase 

The training phase is an offline process in which the DOA 

estimation model  ̂      is obtained from the available training pairs 

through the process of learning. The generated    set of training pairs utilized 

for learning is given by *(  
    ) (  

    )    (  
    )    (  

    )+. The total 

array covariance matrix  ̂ 
  is computed for each angle    that is uniformly 

distributed in the range              i.e.,       
   (   )     

         for the acquisition of the training set, where    is the angular 

separation. Then, the signal subspace eigenvector   
  for each angle    is 

computed from the corresponding total array covariance matrix  ̂ 
  using 

Equation (5.13). The SVR model learns using the given training set is defined 

as 

 ̂(  )  〈   (  )〉    (5.14) 

where 〈   〉 indicates the inner product,   represents the orientation of the 

regression, b represents the position of the regression,   is a non-linear 

transformation function that maps the input vector    from its original space 

to a higher-dimensional space termed Hilbert space (HS). In the testing 

(estimation) phase, the generalization capabilities of the model in the 

estimation of the unknown DOAs (not included in the training phase) are 

decided by the parameters   and  . It can be computed by minimizing the 

regression risk        (Smola et al.2004) and it is given by  

          ∑  (  
    )  

 

 
      

 

   

 (5.15) 
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where   denotes the regularization constant and   (  
    ) denotes the  -

insensitive cost function that specifies the margin of allowable error during 

the training process (Smola et al.2004)  and it is given by  

  (  
    )  {

  |    ̂(  
 )|   

|    ̂(  
 )|             

 (5.16) 

where   is the limit of allowable error. According to the Vapnik theory 

(Vapnik et al.1997), by introducing Lagrange multipliers, the primal 

optimization problem (minimization problem) in Equation (5.15) can be 

recast into a dual optimization problem and the optimal solution can be 

obtained based on the Karush – Kuhn  – Tucker (KKT) conditions. The KKT 

conditions for the primal optimization problem can be given as follows  

     

  
   ∑(     

 ) (  
 )

 

   

                                          (    ) 

     

  
 ∑(  

    )                                                               (    )

 

   

 

The dual optimization problem can be given by 

   {  ∑(  
    )

 

   

 ∑  (  
    )   

 

 
 ∑(  

    )(  
    )  (  

    ) 

 

   

 

   

}     

Subject to 

       
    

∑(  
    )   

 

   

 
                (5.19) 
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where  (  
    ) represents the kernel trick and   ,   

  represents the 

Lagrange multipliers. The Gaussian radial basis kernel (Randazzo et al.2007) 

is the kernel trick used and defined as  (  
    )     (     

  –    
 ) 

where   is the kernel parameter. The dual optimization problem in Equation 

(5.19) can be solved and the Lagrange multiplier variable    and   
  can be 

computed using standard quadratic programming (QP) techniques. Using the 

KKT condition, the parameter   can be computed and it is given as follows 

  ∑(     
 ) (  

 )                                                                  (    )

 

   

 

  ∑    (  
 )  

 

   

                                                               (    ) 

By substituting   and   in Equation (5.14), the function  ̂(  ) can 

be re-written as 

 ̂(  )  ∑(     
 )

 

   

 〈 (  
 )  (  )〉    

 ∑(     
 )

 

   

 (  
    )                                              (    ) 

The explicit representation of the nonlinear transformation function 

of the input vector i. e., 〈 (  
 )  (  )〉 present in  ̂(  ) can be implicitly 

related to the kernel trick and is given by 〈 (  
 )  (  )〉   (  

    ). It is 

important to note that the generalization capability of the proposed model 

depends on the hyper-parameters such as  ,   and  . As per the rules 

suggested in (Cherkassky et al.2004) and (Randazzo et al.2007), the hyper-

parameters are given as follows     ,      √
   

 
 and        
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5.2.3  Testing (Estimation) Phase 

In the testing (estimation) phase, the trained DOA estimation model 

 ̂(  ) is used in the estimation of the unknown   DOAs { ̂ }   
 

of the 

incoming source signals and it is given by 

{ ̂ }   
 

  ̂(  
 )         (5.23) 

where   
  being the signal subspace eigenvector of the     incoming source 

signal and it is computed from the total array covariance matrix  ̂  using 

Equation (5.13). Table 5.1 summarizes the stepwise processing flow of the 

proposed method. 

Table 5.1 Stepwise processing flow of the proposed method 

Training phase 

Step 1 Generate the set of   training pairs 

*(  
    ) (  

    )    (  
    )    (  

    )+ using Equation (5.9)-

(5.13). 

Step 2  Obtain the DOA estimation model  ̂(  ) using the set of training 

pairs.  

Testing phase 

Step 3 Estimate the total output covariance matrix  ̂  of the received signal 

using Equation (5.9). 

Step 4 Compute the signal subspace eigenvector of the incoming source 

signals *  
 +   

  from the total output covariance matrix  ̂  using 

Equation (5.13). 

Step 5 Estimate the   DOAs using the model { ̂ }   
 

  ̂(  
 ) defined 

Equation (5.23). 
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5.2.4  Simulation Results and Discussion 

This section presents various simulations that compare the 

proposed method with methods (Zhou et al.2013; Zheng et al. 2018 and Yang 

et al.2019) for the assessment of the estimation performance in terms of 

reliability and accuracy. In the simulation setup,        training pairs were 

obtained from uniformly spaced angles ranging from               with the 

angular space of      . It is noted that the DOAs involved in the testing phase 

are not included in the training phase. According to rules derived in 

(Cherkassky et al.2004; Randazzo et al.2007), the hyper-parameters are 

chosen as      and       . 

5.2.4.1  Estimation reliability 

Consider the pair-matching ambiguity situation having two sources 

    from the direction          
            

   impinges on GCLA 

with      (         ) under SNR of 10 dB and a snapshot of 200. 

Figure 5.1 (a) shows the failure of the subarray-based method (Zhou et 

al.2013) to estimate the true DOAs consistently. In contrast, the proposed 

method results in a consistent estimate of true DOAs for all 25 unbiased 

simulation trials as shown in Figure 5.1 (b). The results of the proposed method 

accord with the results of the adjoined subarray-based methods (Zheng et al. 

2018; Yang et al.2019) in the case of pair-matching ambiguity situations. 

However, in the grating-angle ambiguity situation having     sources from 

the direction         
           

           
           

      

          
   impinges on GCLA with      (         ) under 

SNR of 10 dB and a snapshot of 200. It can be seen from Figure 5.2 (a) and 

Figure 5.2 (b) that the methods (Zheng et al. 2018; Yang et al.2019) fail to 

estimate the true DOAs consistently. In contrast, the proposed method results in 
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a consistent estimate of true DOAs for all the 25 unbiased simulation trails as 

shown in Figure 5.2 (c) by successfully overcoming the ambiguity problem. 

 

(a) 

 

(b) 

Figure 5.1  Reliability comparison in pair-matching ambiguity case :  

(a) Zhou et al.2013 method (b) Proposed method 
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(a) 

 

(b) 

Figure 5.2 (Continued) 
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(c) 

Figure 5.2  Reliability comparison in grating-angle ambiguity case: (a) 

Zheng et al. 2018 method (b) Yang et al.2019 method (c) 

Proposed method   

 

5.2.4.2  Estimation Accuracy 

Assessment of the estimation accuracy of the proposed method is 

made in both the ambiguity problem situation using an RMSE performance 

metric. For both the ambiguity situation, RMSE is evaluated for different 

SNR values ranging from        to       with a fixed snapshot of     for 

      Monte-Carlo simulation trails. Similarly, RMSE is evaluated for 

varying snapshots ranging from     to     with a fixed SNR of      . Figure 

5.3 and Figure 5.4 show an increase in the estimation accuracy of the 

proposed method with an increase in the SNR and snapshots, closely 

following the limits of the CRLB. 
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(a) 

 

(b) 

Figure 5.3 Estimation accuracy in pair-matching ambiguity case:  

(a) RMSE versus SNR (b) RMSE versus the number of 

snapshots. 
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(a) 

 

(b) 

Figure 5.4  Estimation accuracy in grating angle ambiguity case: (a) 

RMSE versus SNR (b) RMSE versus the number of 

snapshots 
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5.3  PROPOSED METHOD FOR DOA ESTIMATION WITH 

UCLA 

The extension of the proposed method for UCLA is very 

straightforward. UCLA is a single array configuration, hence  ̂  is directly 

obtained instead from two subarrays separately in the pre-processing phase. 

Except for the above change, by following the pre-processing, training and 

testing phase steps described in section 5.2, the DOA of the incoming source 

signals can be estimated without any ambiguity using UCLA. 

5.3.1  Simulation Results and Discussion 

This section presents various simulations that compare the 

proposed method with Yang et al. (2019) method for the assessment of the 

estimation performance in terms of reliability and accuracy. In the simulation 

setup,        training pairs were obtained from uniformly spaced 

angles ranging from               with the angular space of      . It is noted 

that the DOAs involved in the testing phase are not included in the training 

phase. According to rules derived in (Cherkassky et al.2004; Randazzo et 

al.2007), the hyper-parameters are chosen as        and       . 

5.3.1.1  Estimation reliability 

Consider the grating-angle ambiguity situation having     

sources from the direction         
           

           
      

          
   impinges on UCLA with      (         ) under 

SNR of 10 dB and a snapshot of 200. Figure 5.5 (a) shows the failure of Yang 

et al.(2019) method in the consistent estimation of the true DOAs. In contrast, 

the proposed method results in a consistent estimate of true DOAs for all 25 

unbiased simulation trials by successfully overcoming the grating-angle 

ambiguity problem as shown in Figure 5.5(b). 
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(a) 

 

(b) 

Figure 5.5  Reliability comparison in grating-angle ambiguity case :  

(a) Yang et al.2019 method (b) Proposed method 
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5.3.1.2  Estimation accuracy 

Assessment of the estimation accuracy of the proposed method is 

made in a grating-angle ambiguity problem situation using an RMSE 

performance metric. The RMSE is evaluated for different SNR values ranging 

from        to       with a fixed snapshot of     for       Monte-

Carlo simulation trails. Similarly, RMSE is evaluated for varying snapshots 

ranging from     to     with a fixed SNR of      . Figure 5.6 (a)  Figure 5.6 

(b) shows an increase in the estimation accuracy of the proposed method with 

an increase in the SNR and snapshots, closely following the limits of the 

CRLB. 

 

(a) 

Figure 5.6 (Continued) 
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(b) 

Figure 5.6  Estimation accuracy in grating-angle ambiguity case:  

(a) RMSE versus SNR (b) RMSE versus the number of 

snapshots 

5.4  PERFORMANCE ANALYSIS 

This section details the performance analysis of the proposed 

method in terms of complexity and DOF for both GCLA and UCLA. 

5.4.1  Complexity Analysis 

Assessment of the complexity is made in terms of the number of 

complex multiplications and execution time required. In the existing SVR 

formulation (El Gonnouni et al.2012; Randazzo et al.2007; Tarkowski et 

al.2019; Wu et al.2019), the length of the training data set increases in the 

order of   , where   is the number of grid points in the angular region and   

is the number of sources. According to (Dass et al. 2019), the training 

complexity is given by  (   ). However, in the proposed method, the length 
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of the training data set is independent of the number of sources, and its 

training complexity is given by  (  ). As a result, the proposed method can 

estimate multi-source DOAs without increasing the training complexity. 

In the testing phase, the computational complexity of the proposed 

method  is given by  (             ), where  (   ) is the array 

covariance matrix complexity,  (   ) is the propagator complexity, 

 (     ) is the SVR complexity where     is the number of support vectors. 

Table 5.2 summarizes the computational complexity of the proposed method 

and methods (Zhou et al.2013; Zheng et al. 2018 and Yang et al.2019). 

Table 5.2 Computational complexity comparison 

Methods Computational Complexity 

Zhou et al.2013 
 ((  

    
 )    

    
   

    
 

   
  (    ))  

    
 

   
  (    ))  

Zheng et al. 2018  
 (        

    
 

   
 (   ))  

Yang et al.2019 
 (        

    
 

   
 (   )     )  

Proposed Method   (             )  

 

The execution time is evaluated for      sources under     ,  

      snapshots and        on a PC equipped with         and      of 

RAM. Table 5.3 shows the proposed method involving less execution time 

compared to the existing methods (Zhou et al.2013; Zheng et al. 2018 and 

Yang et al.2019). Also, the computational complexity is evaluated for a 

varying number of array elements i.e.,         with fixed       

snapshots for the consideration of    , search step          and     . 
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Similarly, computational complexity is evaluated for a varying number of 

snapshots i.e.,              with      fixed number of array elements. 

Figure 5.7 (a) and Figure 5.7 (b) show the proposed method involving less 

computational complexity compared to the method in (Zhou et al.2013; 

Zheng et al. 2018 and Yang et al.2019). 

Table 5.3 Comparison of Execution time 

Methods Execution Time (ms) 

Zhou et al.2013 141.86 

Zheng et al. 2018 134.06 

Yang et al.2019 135.20 

Proposed Method 8.48 

 

 

(a) 

Figure 5.7 (Continued) 
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(b) 

Figure 5.7 Computational complexity comparison: (a) Number of 

complex multiplications versus the number of array 

elements (b) Number of complex multiplications versus the 

number of snapshots 

5.4.2  Degrees-of-Freedom (DOF) Analysis 

The DOF expresses the capability of the given method in detecting 

the maximum number of sources. The method (Zhou et al.2013) decomposes 

the   element GCLA into two separate subarrays as    and    sensor array 

elements and performs DOA estimation on them individually. Thus, the DOF 

of  (Zhou et al.2013) is given by     (     )    for an   element GCLA 

(          ). On the other hand, the methods (Zheng et al. 2018 and 

Yang et al.2019) consider the GCLA and UCLA as a single array with the 

ability to achieve DOF of      However, the method proposed for UCLA 

estimates multi-source DOAs by using a regression model that relates the 

signal subspace eigenvectors and the DOA of the incoming source signals. In 

the case of     incoming source signal situation, the output array 
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covariance matrix  ̂          of the received signal vector can yield a signal 

eigenvector matrix       
      whose columns are signal eigenvector   

    

      ,            corresponding to the   incoming source signals. As a 

result, the proposed method can estimate   DOAs { ̂ }   
 

 given the   
  and 

thereby achieves the full   DOF for an   element UCLA. 

 

Figure 5.8 Degrees-of-Freedom (DOF) comparison: (a) Zhou et al.2013 

method (b) Zheng et al. 2018 method (c) Yang et al.2019 

method (d) Proposed method 

Simulations have been carried out with       random sources 

(including grating-angle case) from               impinging on      

(         ) element UCLA under SNR of 10 dB and a snapshot of 200 

for the demonstration of the DOF achieved by the proposed method and the 
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methods proposed by (Zhou et al.2013; Zheng et al. 2018 and Yang et 

al.2019). Figure 5.8 shows the proposed method outperforming the methods 

(Zhou et al.2013; Zheng et al. 2018 and Yang et al.2019) by estimating 

     true DOAs without any ambiguity thereby achieving full   DOF. 

5.5  SUMMARY 

This chapter presents a computationally efficient DOA estimation 

method based on support vector regression (SVR) for addressing the 

ambiguity problem associated with GCLA and UCLA. The ambiguity 

problem is resolved by treating DOA estimation as approximating the 

unknown regression function that maps the signal subspace eigenvectors with 

the DOA of the incoming source signals. The proposed formulation uses only 

one regression model for the detection of multiple DOAs whereas the other 

SVR formulation requires a multiple regression model. This provides 

computational efficiency for the proposed method. The proposed formulation 

estimates the multi-source DOAs involving full DOF without any increase in 

the training complexity. Furthermore, it offers good generalization for a 

varying number of sources and robustness in estimating the multi-source 

DOAs successfully without ambiguity. The analysis and simulation findings 

show the proposed method outperforms the existing methods in terms of 

estimation reliability, estimation accuracy, computational complexity, 

execution time and DOF. 

 

 

  



111 
 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE PERSPECTIVES 

 

6.1 CONCLUSION OF CONTRIBUTIONS 

The problem of estimating the DOA of the incoming source signal 

with general co-prime linear array (GCLA) and unfolded co-prime linear 

(UCLA) have been the subjects of this research work. A comprehensive 

investigation of the ambiguity issues such as pair-matching ambiguity and 

grating-angle ambiguity in DOA estimation associated with GCLA and 

UCLA has been presented. The focus of the research work is on the resolution 

of the ambiguity issues associated with GCLA and UCLA. Towards this, 

different methods have been proposed that offer the following advantages (i) 

superior estimation performances in terms of reliability, accuracy and angular 

resolution (ii) good generalization and robustness in estimation performances 

with less complexity in terms of computational complexity and execution 

time (iii) full degrees-of-freedom (DOF). The superiority and effectiveness of 

the proposed methods in comparison with the existing methods have been 

validated with several standard simulations and analysis. The main 

contributions are summarized as follows. 

First, the proposed unambiguous DOA estimation method 

incorporates an initial estimation of DOAs through UCLA-MUSIC. The true 

DOAs are distinguished from ambiguous estimates obtained from UCLA-

MUSIC using the estimated power of the transmitted source signals. The 

source power function derived is based on the signal subspace eigenvalues 
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and its associated eigenvectors for the estimation of the power of the source 

signals transmitted. The proposed approach distinguishes and detects the true 

DOAs successfully without ambiguity. The simulation results guarantee the 

superiority of the proposed method over the existing methods in terms of 

reliability and accuracy. 

In the second solution, an improved polynomial rooting-based 

method for high-resolution unambiguous DOA estimation is proposed. Based 

on the orthogonality between the noise subspace eigenvectors and array 

directional vectors, a polynomial function is derived. Then, a maximum signal 

power function based on spatial filtering and second-order differential has 

been proposed for the selection of the signal roots that are associated with true 

DOAs over ambiguous roots obtained from the polynomial function. The 

proposed method overcomes grating-angle ambiguity and estimates the true 

DOAs successfully with improved estimation performances. Simulations have 

been performed to show the effectiveness and superiority of the proposed 

method in terms of reliability, accuracy and angular resolution involving low 

computational complexity. 

Finally, a computationally efficient DOA estimation method based 

on support vector regression (SVR) has been proposed for addressing the 

ambiguity problem associated with GCLA and UCLA. The ambiguity 

problem is resolved by treating DOA estimation as approximating the 

unknown regression function that maps the signal subspace eigenvectors with 

the DOA of the incoming source signals. The proposed formulation uses only 

one regression model for the detection of multiple DOAs whereas the other 

existing SVR formulation requires a multiple regression model. This provides 

computational efficiency for the proposed method. The proposed formulation 

estimates the DOAs involving full DOF without increasing the training 

complexity. It also offers good generalization for a varying number of sources 
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and robustness in estimating the DOAs successfully without ambiguity. The 

analysis and simulation findings show the proposed method outperforms the 

existing methods in terms of estimation reliability, estimation accuracy, 

computational complexity, execution time and DOF. 

6.2 PERSPECTIVES OF FUTURE WORK 

In this research work, the co-prime arrays considered are linear  

(1-Dimensional) arrays. The investigations on the problem of ambiguity in 

DOA estimation for planar 2-D and 3-D co-prime arrays would be one of the 

subjects for significant future research. The focus of the proposed work is on 

the second-order statistics-based DOA estimation, the investigations on the 

problem of ambiguity in higher-order statistics-based DOA estimation using 

GCLA and UCLA would be another orientation of future research. In contrast 

to the subarray domain processing, the investigations of ambiguity problems 

in difference-coarray domain processing of GCLA and UCLA would be 

another topic of future research. The orientation of extending the presented 

work for massive sparse arrays would be an interesting area of future 

research.   

Developing optimal sparse array configurations is an important 

research direction. This includes determining the optimal placement of 

sensors in the array to achieve higher spatial resolution and better DOA 

estimation performance. Various optimization techniques, such as convex 

optimization, compressive sensing, and sparse reconstruction, can be explored 

to design sparse arrays. Research can focus on developing data-driven 

approaches including deep learning and neural network that exploit the rich 

information captured by sparse arrays to improve the accuracy and robustness 

of DOA estimation. 
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 The proposed formulations can be extended to other general 

practical cases such as mixed far-field and near-field source signals, wideband 

signal sources, moving sources, correlated noise environments and multi-path 

scenarios, etc. The future of DOA estimation using sparse arrays holds great 

potential for real-time applications. The implementation of the proposed 

algorithms in DSP-based hardware systems would be of great interest for 

evaluation of the performance in real-time applications. Sparse arrays can be 

deployed in various scenarios, such as wireless communication systems, radar 

systems, sonar systems, and autonomous vehicles. Real-time DOA estimation 

using sparse arrays can enable accurate localization, beamforming, and 

tracking of signal sources, leading to improved performance in applications 

like wireless communication, radar-based target detection, and navigation. 

DOA estimation using sparse arrays can be integrated into beamforming 

algorithms for adaptive and efficient transmission and reception in dynamic 

wireless environments. 
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APPENDIX 1 

Table A1.1  Pair-matching ambiguity in GCLA - Case 1:          
   and          
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Table A1.1  (Continued) 
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Table A1.2 Grating-angle ambiguity in GCLA - Case 1:          
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Table A1.2 (Continued) 
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Table A1.3 Grating-angle ambiguity in UCLA - Case 1:          
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Table A1.3 (Continued) 
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Table A1.4 Grating-angle ambiguity in UCLA under closely distributed sources - Case 1:          
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Table A 1.5 Grating-angle ambiguity in UCLA under closely distributed sources - Case 2:          
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