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ABSTRACT
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Cyber-Physical Systems (CPSs) are smart systems that include engineered

interacting networks of physical, digital, and computational components. It is

critical to build high-confidence CPSs that behave in a well-understood, predictable,

and justifiably trusted fashion to fulfill life-critical tasks such as medical surgery,

autonomous driving, and nuclear power plant control. The status quo, however,

is remote from this objective due to the challenges that arise from the distinctive

features of CPSs, e.g., diversity and heterogeneity, large-scale connections and
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complex interdependence, human-in-the-loop, and openness and dynamic prop-

erties. Environmental (e.g., cascading failures), accidental (e.g., human errors),

and deliberate threats (e.g., advanced persistent threats) have attested to the

inadequacy of the off-the-shelf defense mechanisms.

This dissertation focuses on developing Defense through AI-powered SYstem-

scientific methods (DAISY) for high-confidence CPSs. To this end, the dissertation

starts by delineating a brief history of security technologies by designating five

generations of Security Paradigms (SPs) that have evolved since the birth of the

Internet. They include the first-generation SP (1G-SP) of laissez-faire security,

the 2G-SP of perimeter security, the 3G-SP of reactive security, the 4G-SP of

proactive security, and the 5G-SP of federated security. DAISY addresses central

challenges of the current security landscape, including lack of security standards

and metrics, human-targeted and human-induced attacks, strategic and intelligent

attacks, imperfect security, piecemeal design of CPS, and defenders’ time, space,

information, and cooperation disadvantages. Positioned as the foundation of 5G-SP,

DAISY enables the following six dimensions of the evolution of security solutions,

i.e., from empirical to theoretical, from technical to socio-technical, from single-

agent to multi-agent, from secure to resilient, from add-on to built-in, and from

reactive to proactive security.

This dissertation develops system-scientific modeling and design frameworks to

achieve the 5G-SP objectives. We organize the contributions in this dissertation

into three parts in accordance with the three types of vulnerabilities that DAISY

aims to mitigate, i.e., posture-related vulnerabilities in Part II, information-related

vulnerabilities in Parts III and IV, and human-related vulnerabilities in Parts

V and VI, respectively. Part II mitigates the defender’s resource disadvantage
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to protect from known and unknown vulnerabilities on the attack surface. Part

III and Part IV aim to tilt the information asymmetry (i.e., the attacker has

more information about the defender than the other way around) by undermining

the attacker’s information advantage (i.e., counteracting adversarial deception)

and establishing information advantage for the defender (i.e., designing defensive

deception), respectively. Following the definition that acquired (resp. innate)

human vulnerability can (resp. cannot) be mitigated through short-term security

training and awareness programs, Part V and Part VI mitigate the acquired

vulnerability of incentive misalignment and the innate vulnerability of bounded

attention, respectively.

This dissertation bridges several research fields, including game theory, data

science, socio-economic sciences, and cybersecurity, which are accustomed to their

individual advances in silos. Its contributions have a multitude of impacts in

both theory and practice. First, the established models and frameworks enable

quantitative design, circumvent laborious and expensive trial-and-error design

procedures, and empower the design of high-confidence CPSs. Second, leveraging

a broad range of system science tools and AI (e.g., control and game theory,

information design, and learning theory), this dissertation lays solid theoretical

foundations to characterize fundamental limits and tradeoffs, discover security

principles and laws, and design strategic security mechanisms. Third, we develop

efficient and scalable algorithms to create implementable technologies and built-in

defense for high-confidence CPSs. Finally, this dissertation contributes to a large

number of critical CPS application fields, including resilient interdependent critical

infrastructure networks in Chapter 3, secure nuclear power plants in Chapter 4,

attack-aware manufacturing systems in Chapter 5, deception-resistant robotics in
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Chapter 6, honeypot-driven security intelligence in Chapters 7 and 8, insider threat

mitigation in Chapters 9 and 10, and human-machine interactions in Chapters 11

and 12.

This dissertation bridges science and technology to create provable and im-

plementable solutions that accelerate the development of high-confidence CPSs.

The proposed methodologies are universal for a broad class of problems, and the

insights from one problem are transferable to another. These insights lead to a rich

volume of future work and are promising in pushing the boundaries of the current

research to encompass more impactful real-world applications. This dissertation is

the epitome of system-thinking that integrates the concepts of feedback, tradeoff,

equilibrium, and data. It canvasses perspectives that rise above the traditional

realm of engineering and create several concomitant impacts in related fields, such

as human factors engineering and meta-system theory.
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Notations

This dissertation includes a wide breadth of models and applications. Therefore,

the mathematical notation is flexible. Each notation will have a specific definition

in each chapter, and the definition of each notation might vary from chapters to

chapters. Nevertheless, we present some consistent styles here.

We use R and Z to represent spaces of real numbers and integers, respectively,

where Rn represents a Euclidean space of dimension n. The Euclidean norm of

a vector x is represented by ||x||2. Calligraphic letter, e.g., A, defines a set, and

|A| represents its cardinality. Define B \ A as the set of elements in B but not in

A. Define ∆(A) as the set of probability distributions over A. Let f : A 7→ B

be a function or a mapping from set A to set B. Define {ai}i∈N := {a1, · · · , aN},

[ai]i∈N := [a1, · · · , aN ], and (ai)i∈N := (a1, · · · , aN) as a set, a vector, and a

tuple of N elements, respectively. We use Pr and E to represent probability and

expectation, respectively, where Ea∼A[f(a)] denotes the expectation of f(a) over

random variable a whose probability distribution is A. The notation A := B means

that A is defined as B. Let 1A=B be an indicator function which equals one when

A = B and zero otherwise. For θi ∈ Θi, i ∈ {1, 2, · · · , I}, let θ−i := {θj}j∈I\{i} and

Θ−i :=
∏

j∈I\{i}Θj, then θ−i ∈ Θ−i.

A piece of information for a group of players is called common knowledge if all

players know it, all players know that all players know it, and so on ad infinitum.
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Motivation and Framework
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Chapter 1

Introduction to High-Confidence

Cyber-Physical Systems

The National Institute of Standards and Technology (NIST) in 2017 has de-

fined Cyber-Physical Systems (CPSs) as “smart systems that include engineered

interacting networks of physical and computational components” [67]. In Section

1.1, we illustrate the integration of cyber and physical layers in different applica-

tion domains, where Industrial Control Systems (ICSs) and Critical Infrastructure

Networks (CINs) are provided as two classical and essential CPS applications.

Using these two CPS applications as running examples, we identify four distinctive

features of CPS in Section 1.2 and the necessity of high-confidence CPS in Section

1.3. After identifying threats and vulnerabilities, we introduce AI-powered system-

scientific defense mechanisms in Section 1.4 to build high-confidence CPS. Finally,

we summarize our contributions and the dissertation organization in Section 1.5

and 1.6, respectively.
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1.1 Applications of CPSs

By integrating computation, communication, sensing, and actuation with physi-

cal objects and infrastructures, CPSs enable varying degrees of interactions with

the environment and humans to fulfill time-sensitive and mission-critical tasks.

The technological advances in CPSs have been applied within and across multiple

“smart” application domains, including smart manufacturing, transportation, energy,

and healthcare. In Sections 1.1.1 and 1.1.2, we select two typical CPS applications

to illustrate the seamless integration of the varied cyber layers and physical layers,

the interdependence within and across layers, and the resulting new features and

functionalities.

1.1.1 Industrial Control Systems

Industrial Control System (ICS) is a collective term to describe different types of

control systems and associated instrumentation for automated industrial processes.

ICS plays critical roles in nearly every industrial sector and critical infrastructure

such as the manufacturing, transportation, energy, and water treatment industries

[204]. Among varied types, the most common one is the Supervisory Control and

Data Acquisition (SCADA) system as shown in Fig. 1.1.

The control center components include data historians, Human Machine In-

terfaces (HMIs), workstations, and control servers (e.g., Master Terminal Units

(MTUs)). These components are connected by a Local Area Network (LAN) and

treated as the cyber layer. The control center is mainly responsible for centralized

alarming, trend analyses, and reporting.

The field site components include low-level control devices (e.g., Remote Termi-
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Data Historian HMI Workstations

Control Server 
(SCADA-MTU) 

Modem 
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Network 

Control Devices 
(PLC or RTU) 
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Flow
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Pressure
Sensor

Temperature
Sensor

Firewall 

Control Center (Cyber Layer) Field Site (Physical Layer)

Figure 1.1: The components and structure of a typical SCADA system that consists
of a control center and multiple field sites over a WAN. The control center collects
real-time control signals and sensor data at different field sites, displays information
via the HMIs, and generates responsive actions autonomously.

nal Units (RTUs) and Programmable Logic Controllers (PLCs)), actuators (e.g.,

valves and pumps), and sensors. These components are also connected by a LAN

and treated as the physical layer. Depending on industrial applications, there are

usually multiple field sites to perform a local control of actuators and monitor

sensors at different physical locations. The components of the control center and

these field sites communicate over a Wide Area Network (WAN), where firewalls

are adopted at the network boundaries to monitor and filter incoming and outgoing

network traffic based on pre-established security rules.

1.1.2 Critical Infrastructure Networks

Presidential Policy Directive 21 (PPD-21) identifies 16 critical infrastructure

sectors, including chemical, food, water, nuclear, healthcare, energy, communication

and transportation systems [161]. Driven by the recent advances in Information and

Communication Technologies (ICTs), cloud computing, and the Internet of Things
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(IoT), these sectors become highly interconnected and interdependent at multiple

levels [164], enabling faster information exchange and a higher level of situational

awareness for real-time operations. We examine in detail the cyber-physical realm

of Critical Infrastructure Networks (CINs) in Fig. 1.2.

Telecom

TransportationElectric Power

Power for 
Switches

SCADA 
communication

Power for 
Switches and 

Signaling

SCADA 
communication

Shipping

Fuel and Crew 
Transport

Figure 1.2: The cyber-physical realm of CINs such as the power, transportation,
and communication networks. These interdependent infrastructures can be viewed
as a large-scale aggregated network that forms the physical layer. The ICTs, cloud
computing, and the IoT are integrated to provide surveillance, storage, computation,
and communication services to these critical infrastructure sectors.

The physical layer includes different infrastructure sectors that rely on each

other to enhance their overall performance and provide essential services. For

example, the communication network provides control signals for subway dispatch

and power generation; the energy sector provides the power to guarantee the normal

operation of the communication and subway networks; the transportation network

provides commute service for the workers and employees in the communication

and power networks. The cyber layer (e.g., data centers to store and analyze
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data collected in communication and power networks) expands the capacity of

infrastructure sectors.

The authors in [179] have defined physical, cyber, geographic, and logical inter-

dependence as the four principal classes of interdependencies in CINs. A physical

interdependence (e.g., shipping and power supplies) arises from a physical linkage

between the inputs and outputs of two agents while a cyber interdependence (e.g.,

SCADA communication) is the result of information transmitted through the in-

formation infrastructure. Infrastructures are geographically interdependent if one

infrastructure affects another due to spatial proximity.For example, an explosion of

a power station may disable transportation services within its proximity. Other

types of interdependence relationships are logical. For example, the explosion of

a power station may lead to the irrational panic of crowds and result in traffic

congestion in a town remote from the station.

1.2 Distinctive Features of CPSs

In Section 1.2, we identify the following four major features of CPSs and

elaborate on them using the ICS and CIN examples in Section 1.1.

1.2.1 Diversity and Heterogeneity

In Section 1.1, we have touched upon the diversity of CPSs based on their

functionalities and applications. Within each CPS, heterogeneous components that

are manufactured, specified, or implemented by different entities are eventually

composed in varied ways. Take the ICS in Fig. 1.1 as an example, there are different

hardware components such as sensors (e.g., flow, temperature, and pressure moni-
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tors), actuators (e.g., valves and pumps), control devices (e.g., PLCs and RTUs),

and computers of different functionalities (e.g., control servers, data historians, and

workstations). There are also different collections of software products for control,

communication, and monitoring [102]. The diverse CPSs and their components

result in heterogeneous attributes.

1.2.2 Large-Scale and Complex Interdependence

Manufacturers have improved CPSs by adding services that rely on open net-

works and wireless technologies that enable large-scale interconnections and complex

interdependence. In the ICS example in Fig. 1.1, one control center can control

multiple field sites remotely and simultaneously. These field sites can be located far

apart and assigned different non-synchronized tasks. The CIN example in Fig. 1.2

also illustrates the cyber (e.g., SCADA communication), physical (e.g., shipping

and power supplies), geographical (e.g., explosions in spatial proximity), and logical

interdependence (e.g., human decisions) across and within different CPS networks.

1.2.3 Human-In-The-Loop

One indispensable element of a CPS is humans, including network administrators,

users, and field operators. Human-In-The-Loop (HITP) integrates human cognition

with the increased level of autonomous capabilities of CPSs and has the potential to

handle complex tasks in unstructured environments [64]. The ICS example in Fig.

1.1 shows that the HMI plays a critical role in generating responsive actions and

managing alerts. The CIN example in Fig. 1.2 also includes human crew transports

and manual inspections for failure prevention and response.
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1.2.4 Openness and Dynamic Property

The dynamic property of a CPS results from the changing devices and the

changing environment. On the one hand, the ‘Plug-n-Play’ functionality of CPSs

introduces openness and enables changing devices and agents without a total

network reconfiguration or the prior knowledge of the entire set of connected

devices. For example, the telecommunication layer of the CIN in Fig. 1.2 needs

to support the channel switch as people commute and change their locations. On

the other hand, the physical layer naturally undergoes uncertainty and dynamic

environmental factors. For example, despite the control systems, the normal

operation of the physical plant in Fig. 1.1 inevitably fluctuates based on the

variations in temperature and atmospheric pressure.

1.3 High-Confidence CPSs

In Section 1.3, we use the ICS and CIN examples in Section 1.1 to illustrate

the meaning and motivation of high-confidence CPSs in Section 1.3.1, the potential

threats in Section 1.3.2, and the status quo in Section 1.3.3, respectively.

1.3.1 Meaning and Motivation

A high-confidence CPS is required to behave in a well-understood, predictable,

and justifiably trusted fashion. Moreover, it needs to protect itself from and

withstand natural disasters and malicious attacks to fulfill life-critical tasks such

as medical surgery, autonomous driving, and nuclear power plant control.

The high-confidence design of a system aims to protect it across the entire

attack cycle, which can be decomposed into three stages: ante impetus, per impetus,
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and post impetus. Ante-impetus high confidence entails that a CPS needs to be

well-prepared before natural or human attacks to reduce the probability of failures.

All the cyber-physical components need to fulfill their functionalities with high

accuracy and reliability, even under extreme events and malicious attacks. In the

ICS example of Fig. 1.1, the essential components should have backups. If a pump

fails due to aging or a compromise, there should be alerts shown on the HMI while

the system automatically implements a backup pump. In the CIN example of Fig.

1.2, it is useful to introduce redundancy both within and across the layers. Once a

component fails within an infrastructure sector, there should be a contingency plan

that prevents a cascading failure of other components within the sector and even

in other sectors.

Per-impetus high confidence requires a CPS to be responsive and resilient during

failures. Once a malfunction or a compromise happens inevitably, the system needs

to detect it timely, locate the anomaly precisely, and respond to it cost-efficiently.

If the system cannot recover in the short run, then the major goal of the response is

to contain the propagation of failures and reduce the damage to the entire system.

Due to the interdependence, we need to guarantee that the response does not

introduce a negative impact on the normal operation of other components. Besides

performance, high confidence also implicitly requires the detection and response

to be cost-efficient so that the defender has sufficient budgets to invest in other

components and prevent their failures proactively.

Finally, post-impetus high confidence means that a CPS needs to be reflective

after the failures. When the system has recovered to its normal operation state, we

need to collect and analyze the information related to the anomaly. The information

provides beneficial guidelines and feedback to update the system design to be more
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ante-impetus and per-impetus high-confidence. For example, after the system

returns to normal, field operators or humans in the control room can analyze the

incident to improve the design of the pump or the structure of the system (e.g.,

the pump may fail because it is located in a room of high temperature).

1.3.2 Threats to High-Confidence CPSs

The features identified in Section 1.2 enhance the performance of a CPS to

provide essential services that support economic prosperity, governance, and quality

of life. However, as a double-edged sword, they also create complex System of

Systems (SoS), introduce vulnerabilities, and bring cross-cutting concerns to build

high-confidence CPSs. The growth of intelligent and sophisticated attacks also

significantly exacerbates the concerns.

The authors in [102] categorize the vulnerabilities based on three types (i.e.,

cyber, physical, and cyber-physical) and five causes (i.e., isolation assumption,

connectivity, openness, heterogeneity, and incoordination among stakeholders).

Under certain circumstances, these vulnerabilities can lead to various threats that

compromise a CPS’s confidentiality, integrity, availability, privacy, safety, and other

composing dimensions of a high-confidence design. According to the ISO/IEC

27001:2013 standard, threats can be environmental, accidental, or deliberate [103].

In the following, we introduce cascading failures (caused by natural dusters), human

errors (e.g., phishing victims and unintentional insider threats), and Advanced

Persistent Threats (APTs) as the representative environmental, accidental, and

deliberate threats, respectively. Note that each representative threat is not exclu-

sively restricted to the associated category. For example, cascading failures caused

by human errors are also accidental threats. Cascading failures caused by attacks
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and intentional insider threats are also deliberate threats. Attacks can also exploit

environmental factors and human errors to save effort and maximize their impact.

Cascading Failures

In Fig. 1.2, we illustrate the cyber, physical, logical, and geographical depen-

dence within and across heterogeneous CINs that are open to devices and inherently

dynamic. These CPS features can lead to cascading failures. First, the openness

and dynamic properties make the entire CPS valuable to faults and attacks. Second,

the heterogeneous attributes make it challenging to develop a unified failure pre-

vention and response mechanism. Third, as a result of the large-scale and complex

interdependence, cyber and mechanical outages in one component can affect others

and exacerbate to cause cascading failures. For example, during Hurricane Sandy,

failures inside the power grids led to a large-size blackout, and then the power

outage propagated negatively to the dependent infrastructures (e.g., transportation

and communications), which wreaked havoc [182].

Human Errors: Phishing and Insider Threats

We classify human vulnerabilities into acquired and innate vulnerabilities [86],

depending on whether they can be mitigated through short-term security training

and awareness programs. Based on the classification, we regard social engineering

and insider threats as examples of innate vulnerability (e.g., bounded attention

and rationality) and acquired vulnerability (e.g., lack of security awareness and

incentive), respectively.

As a quintessential example of social engineering, phishing attacks use emails

or malicious websites to serve malware or steal credentials by masquerading as a
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legitimate entity. The authors in [38] have identified three human vulnerabilities

that make humans the unwitting victims of phishing.

• Lack of knowledge for computer system security; e.g., the Uniform Resource

Locator (URL) www.ebay-members-security.com does not belong to www.

ebay.com.

• Inadequacy to identify visual deception; e.g., a phishing email can contain an

image of a legitimate hyperlink, but the image itself serves as a hyperlink to a

malicious site. Humans cannot identify the deception by merely looking at it.

• Lack of attention (e.g., careless users fail to notice the phishing indicators

such as spelling errors and grammar mistakes) and inattentional blindness

(e.g., users focusing on the main content fail to perceive unloaded logos in a

phishing email [17]).

Insider threats in cyberspace refer to vulnerabilities and risks posed to an

organization due to the misbehavior of its trusted but not trustworthy insiders,

such as employees, maintenance personnel, and system administrators. In 2020,

insider threats have caused around 30% of breaches [15], which result in significant

operational disruption, data loss, and reputation damage. Besides the human-in-

the-loop feature, the openness and the dynamic entering (or leaving) of devices

(or agents) further make it difficult to deter insider threats. For unintentional

insider threats, misbehavior is caused by human errors. As the weakest link in

cybersecurity, humans unavoidably make mistakes due to their innate and acquired

vulnerabilities.

www.ebay-members-security.com
www.ebay.com
www.ebay.com
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Advanced Persistent Threats

Advanced Persistent Threats (APTs) are a class of emerging threats for CPSs

with the following distinct features. Unlike opportunistic attackers who spray and

pray, APTs have specific targets and sufficient knowledge of the system architecture,

valuable assets, and even defense strategies. Thus, APT attackers can tailor their

strategies and invalidate cryptography, firewalls, and Intrusion Detection Systems

(IDSs). Unlike myopic attackers who smash and grab, APTs are stealthy and can

disguise themselves as legitimate users for a long sojourn in the victim’s system.

A few well-accepted APT models have divided the entire intrusion process into

a sequence of phases, such as Lockheed-Martin’s Cyber Kill Chain [105], MITRE’s

ATT&CK [31], the NSA/CSS technical cyber threat framework [37], and the ones

surveyed in [140]. Fig. 1.3 illustrates an exemplary multi-stage structure of APTs.

During the reconnaissance phase, a threat actor collects open-source or internal

intelligence to identify valuable targets. After the attacker obtains a private key

Initial 
Compromise

Reconnaissance Privilege 
Escalation

Lateral 
Movement

Mission 
Execution

Figure 1.3: An example of the multi-stage structure of APTs. The multi-stage
attack is composed of reconnaissance, initial compromise, privilege escalation,
lateral movement, and mission execution. An attack originating from an early-stage
cyber network can damage a physical system.

and establishes a foothold, he escalates privilege, propagates laterally in the cyber

network, and eventually either accesses confidential information or inflicts physical

damage. As a sophisticated class of attacks, standalone defense on a physical
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system cannot deter attacks originating from a cyber network. Solely technical

defense cannot prevent APTs as they can use social engineering to compromise

humans. Moreover, the static defense fails to deal with persistent lateral movement.

1.3.3 Status Quo and Related Works

In Section 1.3.3, we present the status quo of the three threat categories in

Section 1.3.2 and the existing mitigation methods.

Cascading Failures and Risk Management

Cascading failure analysis and modeling has been widely conducted in power

systems [70, 189] and other complex infrastructure systems [40] concerning the

causes, procedures, impact, and restoration. Recently, the impact of cascading

failures on IoT has drawn increasing attention [57, 222]. In [222], the authors identify

seven fundamental causes of cascading failures. They are dynamic conditions, cyber

attacks, physical attacks, operator error, overload, extreme weather, and natural

disasters. The major types of cascading failure models can be characterized as

self-organized critical-based, network-based, and simulation-based [222].

To analyze and manage the risks of interdependent CINs, various models have

been proposed based on network flows [123], numerical simulations [117], dynamic

coupling [180], and the ones summarized in [164]. For risk assessment of intelligent

attacks, a framework for assessing the physical impact of cyber attacks on ICSs

has been proposed in [81]. The proposed method has been demonstrated using a

hardware-in-the-loop testbed with a boiling water power plant model. In [165], a

probabilistic risk analysis framework has been proposed. The risk analysis in the

framework is based on attacker demographics and entry points, attack scenarios, and
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attack impacts. In [121], Markov processes and semi-Markov processes have been

used to model cyber attacks on CPSs and dependability measures, e.g., availability,

reliability, mean time to failure, and confidentiality. In [163], a game-theoretic model

has been proposed to obtain the strategies of the defender and the attacker during

two phases of cyber attacks on CPSs, i.e., the penetration phase and the disruption

phase. In summary, the existing methods for cybersecurity risk assessment can

be divided into two classes: non-game-theoretic approaches and game-theoretic

approaches. In non-game-theoretic approaches, the parameters related to the

attackers (e.g., probability of a certain type of attack) are usually estimated based

on expert opinions or data. The main criticism of such approaches is that they do

not consider the adaptation of intelligent attackers, as pointed out in [33]. Game

theory provides a natural tool to predict the behavior of intelligent attackers and

game-theoretic approaches have been trying to fill the gap of parameter estimation

in traditional risk analysis methods. We provide an overview of game theory for

security (i.e., security games) in Section 2.1.

Human-Induced Vulnerability and Assistive Technologies

Social engineering [186] is a common attack vector that targets the acquired

human vulnerabilities such as fear to express anger, lack of assertiveness to say

no, and the desire to please others. Threat actors use psychological manipulation

techniques to mislead people to break normal security procedures or divulge confi-

dential information. Non-technical anti-phishing solutions include security training

and education programs, while technical solutions include blacklisting, whitelisting,

and feature-based detection. Visual support systems have been used for rapid cyber

event triage [142] and alert investigations [52], and eye-tracking data have been
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incorporated to enhance attention for phishing identification [86]. The authors in

[206] perform an anthropological study in a corporate Security Operation Center

(SOC) to model and mitigate security analyst burnout. To handle zero-day phishing

attacks, (deep) Reinforcement Learning (RL) has been used both to detect phishing

emails [199], phishing websites [24], spear phishing [46], and social bots [129] in

online social networks.

Insider threats can be classified into unintentional or intentional ones. For unin-

tentional insider threats, the authors in [66, 209] have identified three contributing

factors (i.e., organizational, human, and demographic) and a set of proactive miti-

gation strategies (e.g., awareness training, relieving time and workload pressure,

and usability of security tools to help overcome user errors). For intentional insider

threats, the authors in [74, 146, 213] have recognized incentives as a leading factor

and incentive design as a promising mitigation strategy. Insider threat mitigation

needs to rely on an integrated technical (e.g., audit and access control) and social or

organizational (e.g., security policies and positive organizational culture) solution

[65, 104, 188].

Biosensors such as eye trackers and electroencephalogram (EEG) devices enable

an analytical understanding of human perception and cognition to enhance security

and privacy [111]. In particular, researches have investigated the users’ gaze

behaviors and attention when reading URLs [175], phishing websites [144], and

phishing emails [32, 138, 223]. These works illustrate the users’ visual processing

of phishing contents [138, 144, 169, 175] and the effects of visual aids [223]. The

authors in [144] further establish correlations between eye movements and phishing

identification to estimate the likelihood that users may fall victim to phishing

attacks.
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Due to the unpredictability and modeling challenges of human behaviors, RL

and feedback control serve as the tools to affect human incentives and perceptions

effectively and efficiently. In [23], the penalty and reward are changed adaptively

through a feedback system to improve the compliance of human employees and

mitigate insider threats. In [86], RL is used to develop the optimal visual aids

to enhance users’ attention and help them identify phishing attacks. In [98], the

authors use RL to determine resilient and adaptive strategies for alert and attention

management.

APTs: Prevent, Detect, Response, and Recovery

One well-known industrial solution to APT defense is the ATT&CK matrix

[31]. It illustrates disclosed attack methods and possible detection and mitigation

countermeasures at different phases of APTs. However, as argued in [41], it lists all

possible attack methods in one matrix and lacks prioritization. A lot of false alarms

arise as legitimate users may generate a majority of the activities in the ATT&CK

matrix. Besides, despite a persistent update, the matrix is far from complete and

can lead to missed detection.

Many papers have attempted to deal with the above two challenges, i.e., false

alarms and missed detection. To prevent security specialists from overwhelming

alarms, [136] has analyzed high volumes of network traffic to reveal weak signals of

suspect APT activities and ranked them based on the computation of suspiciousness

scores. To identify attacks that exploit zero-day vulnerabilities or other unknown

attack techniques, [55] has managed to learn and maintain a white-list of normal

system behaviors and report all actions that are not on the white-list. There is

also a rich literature on detecting essential components of an APT attack, such
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as malicious Portable Document Format (PDF) files in phishing emails [157],

malicious Secure Sockets Layer (SSL) certificate during command, control, and

communications [62], and data leakage at the final stage of the APT campaign

[197]. These works have focused on a static detection of abnormal behaviors in one

specific stage but have not taken into account the correlation among multiple phases

of APTs. The authors of [60] have managed to build a framework to correlate

alerts across multiple phases of APTs based on machine learning techniques so that

all those alerts can be attributed to a single APT scenario. The authors of [61]

have constructed a correlation framework to link elementary alerts to the same

APT campaign and applied the hidden Markov model to determine the most likely

sequence of APT stages.

An alternative perspective from the aforementioned APT detection frameworks

is to address how to respond to and mitigate potential attacks. The authors of

[125] have captured the dynamic state evolution through a network-based epidemic

model and provided both prevention and recovery strategies for defenders based

on optimal control approaches. Since APTs are controlled by human experts

and can act strategically, the defender’s response should adapt to the change of

APT behaviors. Thus, decision and game theory becomes a natural quantitative

framework to capture constraints on defense actions, attack consequences, and

attackers’ incentives. The authors in [215] have proposed FlipIt game to model

the key leakage under APTs as a private takeover between the system operator

and the attacker. Many works have integrated FlipIt with other components for

the APT defense such as the signaling game to defend cloud service [166], an

additional player to model the insider threats [49], and a system of multiple nodes

under limited resources [231]. FlipIt has described a high-level abstraction of the
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attacker’s behavior to understand optimal timing for resource allocations.

1.4 AI-Powered System-Scientific Defense

Lessons learned from hurricanes Katrina and Sandy, as well as ongoing incidents

caused by human errors and APTs, have shown the inadequacy of the off-the-

shelf defense mechanisms. Given the fast-growing technologies such as Artificial

Intelligence (AI) and the unsatisfying status quo in Section 1.3.3, we need to

develop next-generation defense mechanisms to build high-confidence CPS against

the environmental, accidental, and deliberate threats in Section 1.3.2.

In Section 1.4.1, we first provide a characterization of five generations of Security

Paradigms (SPs) based on a brief history of the epoch-making technologies, attacks,

and defense methods. Then, we position Defense through AI-powered SYstem-

scientific methods (DAISY) as the essence of the fifth-generation SP and elaborate

on the advantages of DAISY induced by its composing six features in Section 1.4.2.

1.4.1 Five Generations of Defense Mechanisms

In recent decades, we have witnessed not only a surge in the number of at-

tacks but also their increasing sophistication and capacity. Researchers, engineers,

and scientists have endeavored to persistently develop new SPs to keep up with

the evolving attacks. We roughly characterize those SPs into the following five

generations as shown in Fig. 1.4.
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SP 3.0
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Figure 1.4: Five generations of SPs are driven by new technologies, attacks, and de-
fense methods. Representative attack categories and attack incidents are positioned
below the timeline in red. Epoch-making technologies and defense methods are
positioned above the timeline in blue. SPs 1.0 to 5.0 are illustrated in progressively
darkening green, respectively.

1G-SP: Laissez-Faire Security

At the infant stage of the Internet (i.e., 1960s to 1980s), the focus has been on

designing reliable systems to share information, whereas security has not been taken

into consideration. Such laissez-faire security is natural and acceptable at that time

as the size of the network is rather small, the components are fully controlled by

trustworthy entities, and the users follow Postel’s law [171].

Even for the infamous Morris worm of November 2, 1988, which was considered

one of the oldest computer worms and Denial-of-Service (DoS) attacks distributed

via the Internet, its creator intended to demonstrate the weaknesses of the networks

rather than to cause damage. Despite the creator’s non-malicious intent, the Morris
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worm infected around 6,000 major Uniplexed Information and Computing System

(UNIX) machines and led to an estimated cost of damage of 100, 000 to 10, 000, 000.

This incident, together with other upcoming malware, marks the end of SP 1.0.

2G-SP: Perimeter Security

The wide application of firewalls marks the beginning of SP 2.0 which mainly

focuses on intrusion prevention. Developed in the 1980s at several technology

companies (e.g., Cisco Systems and Digital Equipment Corporation), the first

firewalls are referred to as the ‘network layer’ firewalls as they monitor and filter

packets based on rules concerning the source, destination, and types of the packets.

As an add-on solution, ‘application layer’ firewalls emerged in the early 1990s to

perform a more thorough inspection, e.g., analyze the application layer headers.

Both types of firewalls set up black-lists or white-lists based on a series of configured

policies and have been proven to reduce indiscriminate attacks effectively. A single

firewall with at least three network interfaces or multiple firewalls can be used to

create a network architecture containing a Demilitarized Zone (DMZ). A DMZ

serves as an isolated network between an untrusted network (e.g., Internet) and

the private network.

Although fast and transparent, rule-based firewalls can be easily deceived and

evaded by targeted attacks. The first known Distributed Denial-of-Service (DDoS)

attack in 1996 targeted Panix, the oldest Internet Service Provider (ISP) in New

York. The attack swamped the computer systems with an SYN flood, and it took

Panix approximately 36 hours to get back on track. SP 2.0 becomes insufficient as

the defender starts to acknowledge that the attacker can evade Intrusion Prevention

Systems (IPSs) and penetrate the system.
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3G-SP: Reactive Security

The 2G-SP of perimeter security mimics the castle defense strategies in the

middle ages, where firewalls at different layers serve the purpose of moats, ramparts,

and walls. Concentric castles with two or more concentric curtain walls create

several DMZs among the internal and external curtain walls. Despite the layers of

walls to break, once an attacker breaches the perimeter and penetrates the system,

the system cannot protect itself from unauthorized lateral movement and asset

compromise.

The third-generation SP complements the static and network-based perimeter

defense with a dynamic protection of users, assets, and resources. Its solution is

a response to enterprise network trends of remote users, Bring-Your-Own-Device

(BYOD), and complexity that has outstripped legacy methods to identify the

perimeter. As an analogy to the above castle defense example, besides IPSs (e.g.,

firewalls and DMZs), 3G-SP further recruits and equips soldiers in the castle to

detect and respond to Trojan horses that have entered the castle. Compared to

perimeter security where defense is enforced at “choke points” to achieve acceptable

security at the minimal effort, the new SP needs persistent monitoring, detection,

and response. Thus, 3G-SP, referred to as the reactive security, only becomes

possible when technology evolves to support the communication and real-time

analysis of the large data and log files.

The growth of various Intrusion Detection System (IDS) and Intrusion Response

System (IRS) in the early 2000s is a landmark of SP 3.0 and the best security

practice at that time. The IDS has also gradually evolved from being rule-based

to behavioral-based, and the growing success of machine learning techniques has

contributed to increasing the detection rate and reducing the false alarm rate.
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The 3G-SP of reactive security combines IPSs, IDSs, and IPSs to achieve the

approach of Defense in Depth (DiD). However, due to the increasing sophistication

and the adoption of new attack methods (e.g., social-engineering and adversarial

cyber deception), IDSs and IPSs become less sufficient to protect a CPS. One

example of APT attacks, Stuxnet, starts its initial infection through the Universal

Serial Bus (USB) driver of the hardware provider. These USB drives are stealthily

compromised by Stuxnet when the hardware provider serves other less secure clients.

Thus, Stuxnet manages to compromise the air gap even though the nuclear system

is carefully isolated from the Internet. Stuxnet and other APT attacks indicate the

insufficiency of SP 3.0 and motivate proactive defense mechanisms.

4G-SP: Proactive Security

Broadly speaking, proactive defense refers to acting in anticipation to counteract

an attack through cyber and cognitive domains. Compared to reactive defense

methods in 3G-SP, proactive defense in 4G-SP focuses on taking initiative by acting

rather than reacting to threat events. Cyber deception is a quintessential proactive

defense method. It strategically changes the attacker’s behaviors by preventing

them from forming a true belief. The use of deception in military defense is not

new, and it can date back to as early as roughly 5th century BC in Sun Tzu’s Art

of War [214]. However, it is not until the 2010s that we have witnessed increased

popularity and advantages of Moving Target Defense (MTD) and honeypots to

support the security need of large-scale CPSs.

MTD makes systems inherently dynamic to limit the exposure of vulnerabilities

and the effectiveness of the attacker’s reconnaissance by increasing the complexities

and costs of attacks. Since its first introduction as a cyber-defense paradigm in
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2009 [63], MTD has shown its success to deter attackers [45]. A honeypot emulates

the real production system but has no production activities or authorized services.

Thus, an interaction with a honeynet, e.g., unauthorized inbound connections to

any honeypot, directly reveals malicious activities, which results in a low false

alarm rate. Moreover, honeypots provide a constrained environment to interact

with attackers and gather threat intelligence, as shown in Chapter 8.

5G-SP: Federated Security

In the late 2010s, we have witnessed the threats from AI-power attacks [30, 68,

225]. For example, researchers have found that tools like OpenAI’s GPT-3 can help

craft spear-phishing messages, which significantly lower the barrier to entry for

crafting spear-phishing campaigns at a massive scale [154]. Equipped with AI and

big data, attackers may launch massive advanced threats of high pertinence at low

cost. These new threats motivate us to integrate intelligently and systematically

the defense technologies (e.g., encryption, IDSs, IPSs, IPSs, and defensive deception

technologies) in prior SP generations to develop a holistic next-generation SP of

federated security. Federated security relies on AI-powered and system-scientific

defense mechanisms that entail varied dimensions on which we will elaborate in

Section 1.4.2.

1.4.2 Six Dimensions of DAISY to Achieve 5G-SP

Compared to the off-the-shelf defense mechanisms in 1G-SP to 4G-SP in Sec-

tion 1.4.1, DAISY as the 5G-SP adopts system science to connect heterogeneous

technologies with holistic and scientific understandings of the entire system. AI,

on the one hand, enables the defender to understand the intents and behaviors
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of attacks and users. On the other hand, it provides planning and learning tools

(e.g., RL in Section 2.3) to obtain knowledge from data and enable data-driven

optimization of the defense.

In Section 1.4.2, we elaborate on the transition from off-the-shelf defense mech-

anisms to DAISY and the current security landscape in the six dimensions sum-

marized in Table 1.1. We further illustrate how our works in Part II to Part VI

achieve the six dimensions of DAISY and address the challenges in the current

security landscape.

Current Security
Landscape

Off-the-Shelf
Defense

Dimensions of
DAISY

Lack of security standards
and metrics

Empirical Theoretical

Human-targeted and
human-induced attacks

Technical Socio-Technical

Strategic attackers Single-Agent Multi-Agent

Imperfect security Secure Resilient

Piecemeal design of CPS Add-On Built-In

Defender’s four disadvantages Reactive Proactive

Table 1.1: The six dimensions of the current security landscape, the off-the-shelf
defense mechanisms, and the next-generation defense mechanisms.

From Empirical to Theoretical

Due to the lack of security standards and metrics in heterogeneous CPSs

illustrated in Section 1.2.1, many defense practices rely on empirical rules and

trial and error, which lead to the following three challenges. First, empirical rules

are inaccurate, unreliable, and time-costly to collect, especially in dynamic and

uncertain environments as shown in Section 1.2.4. Second, it is challenging to

automate the design of rule-based defense and further transfer the design to diverse
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and heterogeneous CPSs. Third, the empirical defense fails to assess the risk of

a CPS to achieve a tradeoff of important security metrics, e.g., Confidentiality,

Integrity, and Availability (the CIA triad), which is exacerbated in large-scale CPSs

of complex interdependence as shown in Section 1.2.2.

To this end, we establish quantitative models in Parts II to VI to distill principles

from the case-by-case investigations, strike security-usability tradeoff, and optimize

the security design based on system-scientific tools and AI. Quantification is

indispensable to developing theoretical defense mechanisms and addressing their

challenges. On the one hand, these quantitative models address the challenges

of uncertainty and risk assessment by incorporating probability and expectation,

respectively, to characterize the randomness and the average impacts of the system

and agents’ behaviors. On the other hand, these quantitative models enable an

automated and transferable design of defense policies by incorporating feedback

and learning. Automated and adaptive defense is instrumental to developing timely

and reliable defenses against AI-powered attacks with dynamic and intelligent

strategies.

From Technical to Socio-Technical

Humans have been closely integrated into CPSs as shown in Section 1.2.3 and

are often treated as the weakest link in CPS security. Following Section 1.3.2, the

increasing human-targeted attacks (e.g., social engineering) and human-induced

attacks (e.g., insider threats), have emphasized the desideratum to transform from

solely technical solutions to socio-technical ones. Socio-technical solutions in CPSs

incorporate both observable human elements (e.g., behaviors, eye-gaze locations,

and EEG signals) and unobservable human elements (e.g., rationality, attention,
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risk attitudes, and learning capacity). With these human elements considered, socio-

technical solutions further aim to understand, characterize, and further guide the

human perception and decision-making processes. For example, the defender can

design negative incentives (e.g., punishments) and positive incentives (e.g., rewards

and recognition) to mitigate insider threats when the insiders are self-interested

and pursue benefits [146].

The socio-technical solutions developed in this dissertation consider human

elements at different granularity levels. Parts II, III, IV, and V model humans

implicitly as rational decision-makers who take action to maximize their benefits.

Focusing on quantifying the impacts of human behaviors on CPS security, these

population-based models simplify the complicated human decision process as opti-

mization problems or game-theoretical problems. In Part VI, we explicitly model

human attention dynamics and real-time decision-making processes when users or

defenders encounter phishing emails or a large number of alerts. Incorporating

empirical laws (e.g., Yerkes–Dodson law), biographical data (e.g., eye-tracking

data and surveys), and essential human factors (e.g., levels of expertise, stress,

and efficiency), these agent-based models make the unobservable human elements

measurable. On the one hand, these agent-based models enable us to understand

human perception of security and lead to the foundation of a theory of security

mind. On the other hand, they lead to the design of assistive technologies (e.g.,

ADVERT in Chapter 11 and RADAMS in Chapter 12) to compensate for the

‘unpatchable’ human attentional vulnerabilities.
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From Single-Agent to Multi-Agent

Compared to natural disasters, man-made and AI-powered threats can strate-

gically and intelligently take actions to counteract defense methods and affect

the outcomes. Therefore, although we can predict floods, hurricanes, and even

earthquakes with increased accuracy and timeliness, it is still challenging to predict,

detect, and deter cyber attacks. To predict natural disasters, we need to under-

stand the physical laws that lead to the outcomes. To predict cyber attacks, we

need to understand the laws of intelligent agents, e.g., the adversaries’ preference,

knowledge, capacity, and rationality when launching the attacks. To discern why

these cyber attacks happen to some CPS components at this time in this way, we

should not treat CPS defense as a single-agent decision problem of the defender

but a multi-agent problem consisting of the following interacting agents.

Attacker is one player in a security game. There are various types of attackers

such as script kiddies, cyber punks, insider threats, and cyber terrorists. Their

different motivations, capacities, and attack goals can affect their behaviors and

payoffs. A defender is another player in a security game. The defenders can

represent security experts in an SOC of a corporate, operators in the control room

and the field, a third-party security provider (e.g., FireEye), a research institution,

and a governmental department (e.g., the Department of Homeland Security (DHS)).

Legitimate users are sometimes overlooked in a security game. As humans are the

weakest link, it is important to increase users’ security awareness and compliance

to prevent social engineering and reduce unintentional insider threats. Security

games can include many other players, including cyber insurance agents [137].

The works in this dissertation provide different characterizations of the multi-

agent interactions based on the security applications. In Chapters 8, 11, and 12, we
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establish models with unknown parameters to characterize the attackers’ response

to honeypot strategies, the users’ response to phishing emails under visual aids, and

the defenders’ response to a large volume of alerts, respectively. Then, we adopt

learning methods such as RL to estimate the unknown parameters from the data.

In Chapters 9 and 10, we develop principle-agent models and design incentive-

compatible mechanisms so that self-interested and adversarial insiders follow the

defender’s security policies. In Chapters 3, 4, 5, and 6, we incorporate game theory

to model the interactions of these agents explicitly. The celebrated concept of Nash

Equilibrium (NE) provides a reliable prediction of the agents’ behaviors and the

interaction outcome because no players can benefit from unilateral deviations from

the equilibrium.

From Secure to Resilient

Lessons from APT incidents have highlighted that perfect security is usually

impossible or cost-prohibitive. Moreover, pursuing absolute security locally and

temporarily can result in unexpected insecurity to the entire system in the long run,

as shown in the following two examples.

• When the defender isolates a computer network from the external network,

the air gap blocks not only attacks but also a real-time update of the virus

database and vulnerability patches. Then, once an attack bridges the air gap,

it can remain in the isolated system without being detected.

• When the company’s security team sets up complicated password rules and

requires a frequent password change, then the employees end up writing down

their passwords and putting them next to their computers, making the entire

corporate network vulnerable to insider threats and social engineering.
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Focusing on both intrusion prevention and response, resilience plays an increasingly

significant role to complement the imperfect security in CPS applications. As

shown in Fig. 1.5, we decompose a resilient SP into the following four stages [101],

referred to as the P2R2 stages. The design goal is to minimize the delays (i.e., D1,

D2, and D3) and the performance degradation (i.e., M and G).

Time

System Performance

Response

M G

Prevention

t0 t1 t2 t4

Preparation

a1 a2

Recovery

d3 d4

t3 t5Offline

D1 D2 D3

Figure 1.5: The four stages of a resilient SP: Preparation, Prevention, Response,
and Recovery (P2R2). The x-axis represents the operation timeline (both offline
and online). The y-axis represents the system performance. The CPSs starts to
operate at t0 while natural disasters or attacks occur at t1, t2, and t5. The system
performance decreases when an attack a2 successfully penetrates the system at t2.
After the detection d3 at t3, defense d4 takes place at t4, and the system partially
restores to its best-effort post-attack performance at t5.

Preparation is the first stage in designing a high-confidence CPS and is often

done offline and ahead of the real-time operations. The goal of preparation is

to identify valuable assets and vulnerabilities to reduce the attack surface, assess

the security risk, and design appropriate security policies, including awareness

and training [2], proper configurations of detection systems [235], and deployment
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of deception technologies [6, 168]. Good preparation can help facilitate effective

prevention and fast response to unanticipated scenarios in later stages.

The second stage is prevention. At this stage, we implement the designed security

policies to protect the CPS in real-time. Due to the meticulous preparation and the

policy design in the preparation stage, some attacks can be readily deterred, detected,

and thwarted. For example, consolidating MTDs [106] into the communication

protocols would make it harder for the attacker to map out the traffic patterns

and consequently thwart the DoS attacks. However, due to the natural inferior

position of the defender against attackers, there is still a probability for an attacker

to become successful, especially for a highly resourceful and stealthy one.

The response stage is critical to defending against attacks when the defense fails

to thwart them at the prevention stage. At this stage, we acquire the information

based on the footprint of the attacker and reconfigure the CPS to minimize the

further risk of the attack [73, 176]. In Fig. 1.5, after attack a2 successfully penetrates

the system at t2, it takes the defender a delay of D1, D2, and D3 to detect, respond,

and contain the attack, respectively. The detection D1 and response delay D2 lead

to the worst-case performance degradation of M .

The fourth stage of a resilient SP is recovery, where the goal is to reduce

the spill-over impact of an attack and restore the system performance as much

as possible. The response to attacks in real-time is often at the sacrifice of the

performance of the CPS. There is a need to maintain the system’s operation and

gradually restore its functionality to normal while reacting to the attacks. In Fig.

1.5, as defense d4 counteracts the adversarial impact of the attack a2, the system

performance gradually restores to the best-effort post-attack performance at t5

with a performance gap G.
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The major challenges for resilience are to withstand uncertainties in dynamics,

pursue long-term benefits, and reduce delay. First, the response needs to be

adaptive and robust due to the dynamic environment (e.g., uncertainty in the

physical plant operation) and the changing devices and agents enabled by the

‘Plug-n-Play’ functionality of CPSs. The human behaviors in a CPS also change

the status of the CPS and lead to additional uncertainty. Second, the defender

needs to properly allocate the limited resources to the P2R2 stages illustrated in

Fig. 1.5. Due to the budget limit, increasing investment in the preparation and

prevention stages to increase security may result in insufficient resources in the

response and recovery stages and consequently impair resilience. To strike a balance

between security and resilience, the defender needs to take non-myopic actions to

maximize long-term benefit. Third, reducing the delay in detection, response, and

containment is challenging due to the complexity and interdependence of CPSs,

the operators’ knowledge limitations, and their increased stress during the incident.

As reported in [131], United States companies in 2018 have taken an average of 197

and 69 days, respectively, to detect and contain a data breach.

To address the first two challenges, we adopt Markov transition models (to

characterize the dynamic and stochastic state transitions) and optimize cumulative

utility functions, respectively, as illustrated in Chapters 3, 4, 5, 6, 8, 11, and 12.

Based on the CPS applications in these chapters, the state could represent the

status of digital and physical components (e.g., Chapters 3, 4, and 5), the physical

locations of robots (e.g., Chapter 6), the location and the status of attacks (e.g.,

Chapter 8), and the status of human attention (e.g., Chapters 11, and 12). Besides

Markov transition models, Chapter 7 adopts stochastic time-expanded networks to

model the random arrivals of attacks and services. To resolve the third challenge in
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delay-sensitive CPS applications, e.g., nuclear power plants, we further incorporate

semi-Markov models in Chapter 4 to obtain a time-sensitive attack response with a

real-time risk assessment.

From Add-On to Built-In

As the CPS components are designed in a piecemeal rather than a holistic

fashion, add-on security leaves parts of a system vulnerable [126] and also brings

challenges to identify valuable assets and vulnerabilities accurately, especially under

large-scale interconnections, complex interdependence, and heterogeneous attributes

identified in Section 1.2. Moreover, add-on security expands the attack surface and

allows adversaries to damage the physical part of a CPS by compromising the cyber

layer. For example, Stuxnet [122], one example of APTs, has infected over 200, 000

computers all over the world to compromise the targeted PLCs in the air-gapped

SCADA system and ruined almost one-fifth of Iran’s nuclear centrifuges (over 1, 000

centrifuges). Without the proper identification of assets and vulnerabilities, it takes

security experts more than 5 years to unveil this stealthy attack.

In this dissertation , we endeavor to make security a built-in feature of CPSs by

holistically consider the six-layer hierarchical structure of CPSs [100] in Fig. 1.6.

The physical layer consists of a physical plant embedded with actuators and sensors.

The control system receives commands and observations and sends commands

to actuators to achieve desired system performance. The communication layer

provides wired or wireless data communications that enable advanced monitoring

and intelligent control. The network layer allocates network resources for routing

and provides interconnections between system units. The supervisory layer serves

as the executive brain of the entire system, provides HMIs, and coordinates and
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Figure 1.6: The six-layer hierarchical structure of a CPS: the physical layer of
control and process, the cyber layer of network and communication, and the human
layer of supervisory and management.

manages lower layers through centralized command and control. The management

layer resides at the highest echelon. It deals with social and economic issues, such

as market regulation, pricing, incentive, and environmental affairs.

In Chapter 3, we develop a holistic model of the interdependence among different

infrastructure sectors to strike the balance of prevention and response under budget

and resource limits. In Chapters 4, 5, and 6, we develop holistic models of multi-

stage multi-phase attacks in cyber and physical layers to enable proactive defense

at these attack stages and make the attacks less dominant when they reach the final

stage. In Chapter 7, we consider time and spatial locations holistically to discover

latent attack paths. In Parts V and VI, we further integrate human elements of

incentives and attention with the cyber and physical layers for mitigating acquired

and innate human vulnerabilities and improving organizational cyber hygiene.
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From Reactive to Proactive

Reactive defense methods in Section 1.4.1 naturally suffer from the defender’s

disadvantages of space, time, information, and cooperation. First, compared to

attackers who only need to compromise one component to sabotage the entire

CPS, a defender has to protect all CPS components. Second, attackers can launch

attacks at any time and only need to succeed once, while a defender has to protect

the system during the entire operation time. Third, persistent attackers can collect

information about the system in their reconnaissance stages in Fig. 1.3 to find the

weakest link. Constrained by budget and defense technology, the defender usually

cannot collect and analyze all the user data to identify attackers and learn the threat

intelligence. Fourth, a successful defense requires coordination of multiple parties

with varied goals and conflicting incentives. A typical example is insider threats,

where compromises are caused by the intentional and unintentional misbehavior

of insiders, such as employees, maintenance personnel, and system administrators.

On the contrary, an attacker, either an individual or a state-sponsored group,

has determined targets and can independently launch attacks of his own volition.

Capable of tilting these disadvantages, proactive defense mechanisms have drawn

increasing attention.

This dissertation develops proactive defense methods to mitigate the defender’s

four disadvantages. The methods in Chapters 3, 5, and 6 make it less likely

for the attacks to succeed at any time and location. The defensive deception

methods in Chapters 7 and 8 delay the adversarial lateral movement and yield

threat intelligence, respectively. The incentive mechanisms in Chapters 9 and 10

facilitate the cooperation between the defender and insiders of different incentives.
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1.5 Contributions

The contributions of this dissertation span multiple dimensions, which are

summarized as follows.

1.5.1 Models and Frameworks

The proposed models and frameworks enable a quantitative design, avoid

lengthy and expensive trial-and-error design procedures, and drastically increase

the confidence level. In Chapter 3, we formulate a zero-sum dynamic game model

to design protection mechanisms for large-scale interdependent CINs against cyber

and physical attacks. In Chapter 7, we model the adversarial lateral movement in

the enterprise network as a time-expanded network, where the additional temporal

links connect the isolated spatial service links across a long time to reveal persistent

attack paths explicitly.

Semi-Markov Decision Processs (SMDPs) are adopted explicitly or implicitly

in Chapters 8, 11, and 12 to model the stochastic state transition and sojourn

duration during the interactions of defenders, attackers, and users. Chapter 4

further considers a finite-horizon Semi-Markov Game (SMG) between the defender

(i.e., plant operator) and the attacker to obtain the time-sensitive attack response

strategy and the real-time risk assessment in nuclear power plants.

Dynamic Bayesian games are applied in Chapters 5 and 6 to model the attack-

defender interaction and robot interactions, respectively, under deception. We

further develop information design models in Chapters 9 and 10 to quantify insiders’

incentives and determine the optimal incentive control mechanisms.
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1.5.2 Theoretical Advances

Our works provide security guidance and insights based on a solid theoretical

foundation. We briefly list some of them here. In Chapter 6, we derive a set

of extended Riccati equations with cognitive coupling under the linear-quadratic

setting and extrinsic belief dynamics. Moreover, we propose metrics, such as

deceivability, reachability, and the price of deception, to evaluate the strategy

design and the system performance under deception. In Chapter 7, the analysis of

the long-term vulnerability under two heuristic honeypot policies illustrates that

without proper mitigation strategies, vulnerability never decreases over stages and

the target node is doom to be compromised given sufficient stages of adversarial

lateral movement. Moreover, even under the improved honeypot strategies, a

vulnerability residue exists; i.e., long-term vulnerability cannot be reduced to 0 and

perfect security does not exist.

In Chapter 9, we create a theoretical underpinning for understanding trust,

compliance, and satisfaction, which leads to scoring mechanisms of how compliant

and persuadable an employee is. In Chapter 10, we develop a separation principle

that decouples the reward design from the holistic design and an equivalence principle

that turns the joint design of information and trust into the single unconstrained

trust design. In Chapter 12, the integrated modeling and theoretical analysis lead

to the Product Principle of Attention (PPoA), fundamental limits, and the tradeoff

among crucial human and economic factors.
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1.5.3 Computationally Efficient Algorithms

Algorithms enable us to design implementable technologies. Chapter 3 develops

a scalable algorithm to approximate the optimal strategies for large-scale networks,

which reduces the growth of computation complexity from exponential to polynomial.

Analytical and Monte Carlo simulation-based algorithms in Chapter 4 enable the

derivation of the following three risk metrics: the probability of the first arrival

time at the undesirable states; the probability of arriving at the undesirable states

before or at a specified time; and the probability distribution of system states at

any time.

Chapter 5 and Chapter 6 propose offline and moving-horizon algorithms, respec-

tively, to compute the Perfect Bayesian Nash Equilibrium (PBNE). In Chapter 7,

to counter the curse of multiple attack paths, we propose an iterative algorithm and

approximate the long-term vulnerability with the union bound for computationally

efficient deployment of cognitive honeypots. In Chapter 9, we leverage the feedback

of insiders’ compliance status, the policy separability principle, and the set convexity

to develop efficient incentive learning algorithms that are provably convergent in

finite steps. Chapters 11 and 12 adopt adaptive algorithms to learn the optimal

visual aid and attention management strategies, respectively.

1.5.4 Applications

Our works contribute to a large number of critical CPS application fields,

including resilient interdependent CINs in Chapter 3, secure nuclear power plants in

Chapter 4, deception-resistant robotics in Chapter 6, network security in Chapter

5, honeypot-driven security in Part IV, insider threat mitigation in Part V, and
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human-machine interaction in Part VI.

1.6 Outline and Organization

The rest of this dissertation is organized as follows. In Section 1.6, we categorize

our works based on the following three types of vulnerabilities that DAISY aims to

mitigate, i.e., posture-related vulnerabilities in Section 1.6.1, information-related

vulnerabilities in Section 1.6.2, and human-related vulnerabilities in Section 1.6.3,

respectively. We summarize the hierarchical structure of the dissertation concerning

Chapters 3 to 12 in Table 1.2. Chapter 2 presents preliminaries on game theory

for security, information design, and RL. Chapter 13 concludes the dissertation,

proposes future directions, and provides broader insights.

1.6.1 Mitigation of Posture-Related Vulnerabilities

The class of posture-related vulnerabilities arises from the criteria asymmetry

between an attacker and a defender; i.e., an attacker only needs to compromise one

component at a single time to sabotage CPSs, while the criteria of security require

a defender to protect the entire attacker surface during continuous operation time.

Due to the disadvantage in security posture, the defender with limited resources

cannot afford to prepare for all possible attacks. Part II aims to mitigate posture-

related vulnerabilities in two CPS applications of large-scale interdependent CINs

in Chapter 3 and nuclear power plant in Chapter 4, respectively.

Chapter 3 is based on series of works that focus on natural disasters [82, 84]

and attackers [83, 85], respectively. The proposed defense policies strike a balance

between prevention of and response to cascading failures. Building on the factored



40

Vulnerability
of posture

Pt.2: mitigate the
defender’s time and
space disadvantage

Ch.3: protecting large-scale
interdependent CINs with expanded

attack surface [82, 83, 84, 85]
Ch.4: time-sensitive defense strategies
for timely attack response [233, 234]

Vulnerability
of information

Pt.3: deception
countermeasures

Ch.5: zero-trust defense against APTs
[87, 89, 90, 91, 232]

Ch.6: robot deception defense [97]

Pt.4: defensive
deception design

Ch.7: cognitive honeypots to reduce
vulnerability with high stealthiness, low
roaming cost, and little interference [92]
Ch.8: risk-averse, cost-effective, and
time-efficient honeypot policies to
gather threat intelligence [88]

Vulnerability
of human

Pt.5: acquired
vulnerability

Ch.9: improving insider compliance by
zero-trust audit and strategic

recommendations [99]
Ch.10: a joint design of information,

reward, and trust to elicit desirable user
behaviors [96]

Pt.6: innate
vulnerability

Ch.11: attention enhancement to
improve users’ phishing recognition [86]
Ch.12: alert and attention management

to combat IDoS attacks [94, 98]

Table 1.2: Hierarchical structure of the dissertation to mitigate posture-related,
information-related, and human-related vulnerabilities.

graph that exploits the interdependence structure of CINs, we further propose

a computationally tractable approximation to protect large-scale networks with

expanded attack surfaces. Chapter 4 is based on two works [233, 234], where the

proposed time-sensitive defense strategy enables a timely response to undermine

the attacker’s time advantage.
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1.6.2 Mitigation of Information-Related Vulnerabilities

The class of information-related vulnerabilities results from the information

asymmetry between a defender and an attacker, especially when that attacker is

deceptive and stealthy. The attacker has more information about the defender than

the defender has about the attacker. The defender cannot make a meticulous plan

to protect his assets if he cannot map out the attack paths. Part III and Part IV

aim to tilt the information asymmetry by undermining the attacker’s information

advantage (i.e., counteracting adversarial deception) and establishing information

advantage for the defender (i.e., designing defensive deception), respectively.

In Chapter 5 and Chapter 6, we develop dynamic Bayesian games to counteract

deception from APT attackers and intelligent robots, respectively. Both the

advanced attackers and AI-powered robots are modeled as rational decision-makers

who keep private information to deceive the defender or other robots. The private

information is modeled as a random variable and Bayesian learning is adopted to

counteract deception. The deception is persistent as each decision-maker’s private

type remains unknown to others during the entire interaction process. Chapter 5

consists of the following works [87, 89, 90, 91, 232], and Chapter 6 is based on [97].

Besides compensating for information disadvantage, the defender can proactively

create uncertainties and increase the attack cost by designing defensive deception.

Part IV focuses on honeypots, one of the widely applied defensive deception

technologies. Since advanced attackers, such as APTs, can identify the honeypots

located at fixed machines that are segregated from the production system, we

develop a cognitive honeypot strategy that reconfigures idle production nodes as

honeypots at different stages based on the probability of service links and successful

compromise in Chapter 7. Besides the main objective of reducing the target node’s
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long-term vulnerability, we also consider the level of stealthiness, the probability

of interference, and the cost of roaming as three tradeoffs. Chapters 7 and 8 are

based on [92] and [88], respectively.

In Chapter 8, we develop risk-averse, cost-effective, and time-efficient honeypot

engagement policies that lure the attacker into the target honeypot in the shortest

time. The engagement with attackers can reveal a large range of Indicators of

Compromise (IoCs) at a lower rate of false alarms and missed detection. However,

it also introduces the risks of attackers identifying the honeypot setting, penetrating

the production system, and a high implementation cost of persistent synthetic

traffic generations. The developed engagement policies strike a balance between

learning threat intelligence and reducing these risks.

1.6.3 Mitigation of Human-Related Vulnerabilities

The class of human-related vulnerabilities is the result of human misbehavior

and cognition limitation. The vulnerabilities of all human groups in the cyber

system can expose the system to cyber threats. Human users can unintentionally

fall victim to phishing attacks (as shown in Chapter 11), self-interested insiders can

intentionally break security rules for their convenience (as shown in Part V), and

human operators and network administrators in charge of real-time monitoring and

inspections of alerts and system status can suffer from alert fatigue (as shown in

Chapter 12). We characterize exemplary cyber-physical attacks in Fig. 1.7 based

on how much they exploit human vulnerabilities. A larger bubble size means a

more frequent or a higher exploitation level of human vulnerabilities. Following the

categorization of human vulnerability in Section 1.3.2, Part V and Part VI aim to

mitigate acquired vulnerability of incentive misalignment and innate vulnerability
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Figure 1.7: The threat landscape under different levels of human vulnerability
exploitation. The size of the bubble increases as the attack is more likely to
exploit human vulnerabilities. The x-axis has an increased sophistication in the
attackers’ Tactics, Techniques, and Procedures (TTPs). The y-axis has an increased
stealthiness or a delay of detection. The Informational Denial-of-Service (IDoS)
attack introduced in Chapter 12 receives a negative score of stealthiness as the
attack aims to intentionally draw human operators’ attention and increase their
cognitive loads.

of bounded attention, respectively.

In Chapter 9, we develop ZETAR, a zero-trust audit and recommendation

framework, to provide a quantitative approach to model incentives of the insiders

and design customized and strategic recommendation policies to improve their

compliance. In Chapter 10, we further complement the information design (e.g.,

the recommendation mechanism in Chapter 9) with the reward and trust designs

and propose the duplicity game as a unified design framework. To achieve the joint

design of information, reward structures, and trusts, the duplicity game consists

of an information generator, an incentive modulator, and a trust manipulator,
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respectively. Chapters 9 and 10 are based on [99] and [96], respectively.

Chapter 11 focuses on reactive attentional attacks where the attackers attempt

to evade the attention of defenders and users. Using phishing as a prototypical

scenario, we develop a socio-technical solution called ADVERT to guide the users’

attention to the right contents of the email and consequently improve their accuracy

in phishing recognition. Chapter 12 focuses on proactive attentional attacks where

attackers generate a large volume of feints to overload human operators and hide

real attacks among feints. Based on the system-scientific human attention and

alert response model, we have developed a Resilient and Adaptive Data-driven

alert and Attention Management Strategy (RADAMS) to assist human operators

in combating this new class of advanced attacks called the Informational Denial-of-

Service (IDoS) attacks.

Chapter 11 is based on [86], and Chapter 12 is based on [94, 98]. Both chapters

aim to develop human-assistive technologies as corrective compensation for attention-

related vulnerability. Existing works fall into two regions of either big model via

sophisticated modeling or big data via data analysis and learning. My works

in Part VI bridge the gap between the two regions and pioneer a new research

direction that uses system-scientific tools to distill deep intelligence (represented

by incisive laws and principles) from data of human behaviors and biometrics. I

have coined the terminology ‘ho-da-tology ’ for this new human-centric, data-driven,

and system-scientific approach in Part VI.
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Chapter 2

Modeling, Design, and Learning

Theories for High-Confidence

CPSs

In this chapter, we introduce the essential modeling, design, and learning tools

adopted by DAISY to defend high-confidence CPSs. Game theory in Section 2.1

provides a formal paradigm to model the strategic interactions among rational

players, predict the interaction outcomes, and design their equilibrium strategies.

Since each agent is self-interested, the game equilibrium may not be satisfactory from

the perspective of the defender or the entire system. Therefore, it is important for

the system designer, e.g., the organizational defense team, to design the equilibrium

and induce desirable behaviors. Such equilibrium design can be achieved by

controlling payoff and allocation rules as shown in mechanism design [156] or by

revising information available to other agents as shown in information design [18].

We focus on information design in Section 2.2. Finally, the payoff and information
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structures of attackers and users are usually not known exactly, especially in CPSs

that contain a large number of complex components. Thus, it is often challenging

or costly to characterize the exact attack model and the system model, which is

referred to as the curse of modeling. In Section 2.3, we introduce feedback and

Reinforcement Learning (RL) to address the challenges of incomplete information in

game modeling. Many extensions will be presented in later chapters to enrich these

baseline frameworks under different CPS applications, and we briefly introduce

some of them in Section 2.4.

2.1 Security Games

Security games can be used to model the strategic interactions among cross-

domain players in SoS. Fig. 2.1 presents the overall architecture of essential

components in security games applied in uncertain and dynamic cyber-physical

applications. In Section 2.1.1, we elaborate on these components, including players,

actions, uncertainty, utilities, information, dynamics, and objectives. We formally

define these components in Section 2.1.2, where we present three progressive classes

of security game models based on different information structures and system

dynamics.

2.1.1 Components of Security Games

We dissect security games into the following seven components and elaborate on

each one in the context of cybersecurity. The goal is to provide a multi-dimension

explanation of how these components characterize the strategic interaction between

agents.
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Figure 2.1: The overall architecture of essential components in security games. The
blue, green, and orange arrows represent the flows of actions, utilities, and informa-
tion. The state transition dynamics and player Pi’s observation are represented by
functions f and gi, respectively. On the one hand, type θi, i ∈ I, represents player
Pi’s internal uncertainty. On the other hand, ws and wo represent the external
uncertainty in the control and observation processes, respectively.

Players

Following Section 1.4.2, a security game usually involves attackers, defenders,

and users as players. We denote the number of players as N and index player

i ∈ I := {1, 2, · · · , N} as Pi.

Actions and Policies

Player Pi, i ∈ I, has a set of actions, denoted as Ai, where each action ai ∈ Ai
captures the behaviors of player Pi toward his/her attack or defense goal. We

provide some examples of attackers’, users’, and defenders’ actions as follows.
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• Attacker’s actions include adversarial reconnaissance, initial access, privilege

escalation, defense evasion, credential access, lateral movement, command

and control, and exfiltration, as shown in Fig. 1.3.

• User’s actions in the security game context are usually confined to the ones

that lead to insider threats, such as whether the user follows the security rules.

Actions related to their normal assignments can be considered to characterize

the security-usability tradeoff if the security measures negatively affect the

normal operation.

• A defender can take the following actions toward attackers.

– Prevention: data backup, sandbox, encryption, access control, and

network segmentation.

– Detection: audit, SSL/TLS inspection, antivirus, and exploit protection.

– Response: disabling features, patching software, and restricting file and

directory permissions.

– Proactive defense: penetration tests, MTD, and honeypots.

• A defender can take the following actions toward users.

– Reduce human-induced attack: password policies, multi-factor authenti-

cation, and behavior prevention on endpoint.

– Increase security awareness: security training.

– Increase compliance: penalty and reward.

We do not limit the agents’ policies to be pure, i.e., instead of deciding which

action to take, a player can decide the probability to take these actions. Intentionally
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introducing randomness can enlarge Pi’s policy space from Ai to ∆Ai to capture a

more general case of interaction. When a player applies such mixed strategies in a

CPS, the player can first roll a die according to the probability specified by the

policies and then choose the realization as the action to implement.

Uncertainty

External uncertainty results from nature and unconsidered factors. As the

system models and the attack models become increasingly complicated, we cannot

consider all contributing factors. Thus, the unconsidered factors will result in

randomness to the outcome of actions (represented by ws in Fig. 2.1) and the

observation of the current system state (represented by wo in Fig. 2.1).

Internal uncertainty results from strategic and intelligent players when each

player has different motivations, preferences, knowledge, capacities, and rationality.

A common approach is to introduce a random variable θi as the ‘type’ of player

Pi [75]. The support Θi and the prior distribution b0i of the random variable θi

are assumed to be common knowledge. Take insider threats as an example, player

Pi is a user yet its type can be malicious or legitimate. From the statistics, the

proportion of malicious users is public information. Thus, the prior distribution is

commonly known by other players such as the defenders and the attackers. A player

Pi’s types can affect the transition and the observation processes, represented by

the f and gi functions, respectively, in Fig. 2.1.

Utilities

A player’s utility is usually a function of all players’ actions and types, the current

system state, and the external uncertainty. The utility can be multi-dimensional
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and capture the following factors.

• Reward of threat intelligence, such as attack tools, TTP, and attack goals.

• Loss of money, information, and reputation.

• Cost of attack/defense actions, human resources, and insurance premium.

Information and Rationality

Due to the interaction of the multiple players, information structure in game

theory can be complicated. One essential concept is common knowledge which is a

special kind of knowledge for a group of agents. There is common knowledge of p

in a group of agents G when all the agents in G know p they all know that they

know p, they all know that they all know that they know p, and so on ad infinitum.

Information in a security game specifies what a player knows, what a player knows

that other players do not know, and what a player knows that other players are

uncertain of.

• Information about other players’ actions or policies: If the defender knows

that his action or policy will be known by the attacker, and he knows

that attackers will best respond to that action or policy, he can choose the

optimal action accordingly. In this two-player game, the solution concept

is Stackelberg equilibrium, and the defender as the leader usually has the

first-move advantage over the attacker who is the follower. If all agents have

to take actions or make policies without knowing others’, then the solution

concept is NE.

• Information about statistics of internal uncertainty: If the player knows the
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prior distribution of other players’ types, then we can use Bayesian games to

model it and obtain Bayesian Nash equilibrium.

• Information about external uncertainty: Players may obtain information or

signals from the environment or other players to estimate the external uncer-

tainty. If the signal is from other players, then deception can be introduced.

Signaling games and information design games are usually used to model

this scenario with the solution concept of Perfect Bayesian Nash Equilibrium

(PBNE) and Bayesian Correlated Equilibrium (BCE), respectively.

Rationality specifies how players obtain their utilities, perceive the risk resulting

from uncertainty, and react to signals and information. The benchmark security

game models assume that all players have perfect rationality. Such assumption has

been relaxed in game models with bounded rationality, such as level-k thinking,

non-Bayesian update, and cumulative prospect theory for human factors.

Multi-agent interaction brings unique features and paradoxes, including the

curse of resources (i.e., more resources reduces the player’s utility), the curse of

information (i.e., more information reduces the player’s utility), and the curse of

rationality (i.e., irrational actions brings the player a higher utility). The Braess’s

paradox [203], the winner’s curse [212], and the impacts of bounded computational

abilities [25] are three examples of these three curses.

Dynamic and Timing

Dynamic security games usually model the current system status (e.g., the

user’s privilege level and the location of the attack in the attack graph) as a vector

denoted by sk ∈ S in Fig. 2.1. The superscript k represents the time index that can
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be either discrete or continuous. The dynamic state transition function f can be

stochastic. The state can be either fully observable, fully unobservable, or partially

observable with uncertainty, as captured by function gi in Fig. 2.1.

Objective Functions

We can categorize players’ objective functions concerning the following three

differences.

• Time differences

– Players aim to maximize one-shot reward; e.g., an attacker aims to

directly compromise a computer and implement ransomware.

– Players aim to maximize long-term reward; e.g., a defender aims to

protect valuable assets in the long run.

• Space differences

– Players only consider local rewards or partial rewards of a complicated

process. For example, a defender applies segmentation and only aims to

protect its critical assets from attacks.

– Players consider the global rewards or the complete rewards of the entire

process. For example, APT attackers design their attack tools for the

entire hacking stage.

• Uncertainty differences

– Players aim to optimize the expected loss, which is applied if a player

cares about the average performance under attacks.
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– Players aim to mitigate the worst case, which is applied if a player wants

to estimate the worst-case loss.

2.1.2 Classes of Security Games

In Section 2.1.2, we introduce three progressive classes of security game models

to illustrate the basic game components in Section 2.1.1. First, we introduce static

games with complete information as the baseline game-theoretic models and define

the solution concept of NE. The baseline model is mainly used to model one-shot

attacks. It assumes that the defender has a well understanding of the target

system and the attacker’s goals. Second, we extend the baseline model to dynamic

models with complete information to capture multi-stage and multi-phase attacks.

We introduce stochastic state transition models over discrete stages of finite or

infinite horizons. The basic game elements are revised accordingly (e.g., the action

set becomes state-dependent) and the solution concept of NE is extended to be

Subgame Perfect Nash Equilibrium (SPNE), which requires sequential rationality

across the stages. Third, we incorporate incomplete information into the dynamic

game models to design responses when the attack is deceptive and stealthy. As the

information, knowledge, and beliefs of the players change over time, we consolidate

the belief consistency condition into SPNE and arrive at the solution concept of

PBNE.

Static Models with Complete Information

The most basic games are static games with complete information. Among two-

person complete-information static games, the most elementary type of zero-sum

and nonzero-sum games are matrix and bimatrix games, respectively, as shown in
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[14]. Following Section 2.1.1, we define a set of utility functions ui :
∏N

i=1Ai 7→ R

to quantify the revenue of player Pi, i ∈ I, upon the joint actions taken by all N

players. For example, if an attacker chooses to compromise the main computer

(i.e., a1 = acm1 ∈ A1) and the defender chooses to use the backup computer (i.e.,

a2 = aub2 ∈ A2), then the attacker spends costs to launch the attack yet does

not achieve the attack goal. Thus, the attacker’s utility u1(a
cm
1 , aub2 ) is given by a

negative value that quantifies the attack cost. The defender’s utility u2(a
cm
1 , aub2 ) is

a positive value that quantifies the operational gain under the backup computer.

Each player’s action ai ∈ Ai is unknown to other players before being implemented.

Due to the coupling effect of all players’ actions on the interaction outcome

measured by these utility functions, each player Pi needs to determine his/her

action ai ∈ Ai strategically. Due to the common knowledge assumption, a player

may predict other players’ actions based on the utility functions. Thus, each player

Pi adopts a mixed strategy σi ∈ ∆Ai to make his/her action less predictable.

Let σi(ai) ∈ [0, 1] be the probability of player Pi taking action ai ∈ Ai and∑
ai∈Ai

σi(ai) = 1. Define shorthand notations σ1:N ∈ ∆A1:N and a1:N ∈ A1:N as

the tuple of N players’ policies (σ1 ∈ ∆A1, σ2 ∈ ∆A2, · · · , σN ∈ ∆AN ) and actions

(a1 ∈ A1, a2 ∈ A2, · · · , aN ∈ AN), respectively. Then, his expected utility vi is

defined as

vi(σ1:N) :=
∑

a1:N∈A1:N

∏
j∈I

σj(aj)ui(a1:N). (2.1)

Each player Pi aims to choose the policy σ∗
i ∈ ∆Ai that maximizes vi, which leads

to the NE defined in Definition 1. Let the shorthand notations a−i and σ−i denote

the actions and strategies of players other than Pi, respectively.

Definition 1 (Nash Equilibrium (NE)). The set of N players’ policies σ∗
1:N ∈
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∆A1:N comprises a mixed-strategy NE if

vi(σ
∗
i , σ

∗
−i) ≥ vi(σi, σ

∗
−i),∀σi ∈ ∆Ai,∀i ∈ I. (2.2)

Based on the definition, no single player can benefit from deviating a NE when

other players follow it. Thus, NE provides a reliable prediction of the interaction

outcome and optimizes the design of response systems. By incorporating a random

generator in the response system, we can automate the implementation of the

defense action as a realization of the corresponding mixed strategy.

Dynamic Models with Complete Information

To incorporate system dynamics, we extend static game models to the following

discrete-stage Markov game model (also known as the stochastic games [193]). The

system status changes at discrete stages indexed by k ∈ K := {1, 2, · · · , K}, where

the final stage K can be infinity. We define S as the finite set of states, and state

sk ∈ S represents the system status, e.g., whether a valve has failed, at stage k ∈ K.

Each player Pi’s action set Asi at state s ∈ S is a subset of his/her pre-defined

action set Ai. For example, if the state s ∈ S indicates that a valve has failed,

then the action to control the valve is not feasible, i.e., it belongs to Ai but not

Asi . Analogously, the utility function of Pi also depends on the state s ∈ S and all

players’ actions ai ∈ Asi , i ∈ I, at state s, i.e., ui : S ×
∏N

i=1Asi 7→ R.

The state transition is stochastic and can depend on all players’ actions. For

example, when the attackers take no actions and the operators have set the improper

(resp. proper) control parameter fors the PLC, then there is a high (resp. low)

chance that the system will transit from the state of normal operation to the state



56

of the core meltdown. We define a transition kernel f : S × S ×∏N
i=1Asi . Then,

f(sk+1|sk, ak1:N) represents the probability of the state transition from sk ∈ S to

sk+1 ∈ S under action tuple aki ∈ As
k

i , i ∈ I.

Since the action at the current state can affect the transition kernel f and

the state in the future, we build upon the expected utility in (2.1) to form the

Cumulative Expected Utility (CEU) from any initial stage k0 ∈ K in (2.3) as the new

objective function for the dynamic games. Each player Pi’s policy σ
k
i : S 7→ ∆Asi

is a mapping from the current state space to the distribution of the current

action space. When K is infinite, we limit each player Pi to a stationary policy

σki = σi,∀k ∈ K. Analogously, the shorthand notations sk0:K and σk0:K1:N represent

the tuple (sk0 , · · · , sK) of states and the tuple (σk01:N , · · · , σK1:N ) of N players’ policies,

respectively, from stage k0 ∈ K to K. The discounted factor γk ∈ (0, 1) penalizes

the expected utility obtained in the future.

vi(s
k0 , σk0:K1:N ) := Esk0:K

[ K∑
k=k0

γk ·
∑

ak1:N∈Ask
1:N

∏
j∈I

σkj (a
k
j |sk)ui(sk, ak1:N)

]
,∀i ∈ I. (2.3)

As each player Pi aims to maximize his CEU vi(s
k0 , σk0:K1:N ) at any initial stage

k0 ∈ K, we define the solution concept of SPNE in Definition 2.

Definition 2 (Subgame Perfect Nash Equilibrium (SPNE)). The set of N

player’s policies σ∗,k0:K
1:N comprises a SPNE if for all k1 ∈ {k0, · · · , K}, we have

vi(s
k1 , σ∗,k1:K

i , σ∗,k1:K
−i ) ≥ vi(s

k1 , σk1:Ki , σ∗,k1:K
−i ),∀σk1:Ki , i ∈ I. (2.4)

Based on the definition, no players benefit from deviating the SPNE at any

future stage k1 ∈ {k0, · · · , K} when other players follow the equilibrium. Using
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dynamic programming, we can write out the expectation of the future states Esk0:K

explicitly in (2.5) to compute the equilibrium policy σ∗,k0
i at each stage k0 ∈ K.

vi(s
k0 , σ∗,k0:K

1:N ) =
∑

a
k0
1:N∈Ask0

1:N

[∏
j∈I

σ∗,k0
j (ak0j |sk0)ui(sk0 , ak01:N)

+γk
∑

sk0+1∈S

f(sk0+1|sk0 , ak01:N)vi(sk0+1, σk0+1:K
1:N )

]
,∀i ∈ I. (2.5)

We can solve the system of N equations in (2.5) by backward induction and

mathematical programming [14] if K is finite and infinite, respectively.

Dynamic Models with Incomplete Information

Following Section 2.1.1, we introduce dynamic Bayesian games to incorporate

incomplete information and players’ internal uncertainty in dynamic game models.

We classify each player into different types based on their capacities, knowledge, and

identities. Each player Pi’s type θi ∈ Θi is unknown to other players. The joint type

θ1:N := {θ1, · · · , θN} is assumed to be a random vector with distribution b. Then,

each player Pi observing his type θi knows with probability b0i (θ−i|θi) := b0(θ−i, θi)

that other players’ types are θ−i. Each player’s utility ui : S×
∏N

i=1Asi×
∏N

i=1 Θi 7→

R depends on the state sk, the joint action ak1:N , and the joint type θ1:N . For example,

it costs less for professionals than amateurish defenders to take the same defense

action and achieve the same protection level. Furthermore, the cost also depends

on the attacker’s sophistication level.

Each player gets access to the entire history of state (denoted as s1:k) until the

current stage k ∈ K. Based on the history and his own type θi ∈ Θ, player Pi

at stage k takes a behavioral strategy σki :
∏k

k′=1 S ×Θi 7→ ∆Aski . Each player Pi

can form a time-varying belief of other players’ types based on the observed state
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history. Define bki as Pi’s belief of other players’ types at stage k ∈ K. Then, we

have the following Bayesian belief update:

bk+1
i (θ−i|s1:k+1, θi) =

Pr(sk+1|θ−i, sk, θi)bki (θ−i|s1:k, θi)∑
θ̄−i

Pr(sk+1|θ̄−i, sk, θi)bki (θ̄−i|s1:k, θi)
, ∀i ∈ N , (2.6)

where the transition probability Pr(sk+1|θ−i, sk, θi) can be computed based on the

transition kernel f and σk1:N (i.e., the mixed strategies of N players at stage k).

Each player Pi’ CEU from stage k0 to K is defined as

vi(s
k0:K , σk0:K1:N ) =

K∑
k=k0

E{akj∼σk
j (·|s1:k,θj)}j∈N ,θ−i∼bki (·|s1:k,θi)

[
ui(s

k, ak1:N , θ1:N)

]
. (2.7)

Each player aims to maximize his CEU while satisfying a belief consistency con-

straint that makes the posterior beliefs consistent with the player policies and the

incomplete observations. The associated solution concept is called the PBNE in

Definition 3. We illustrate players’ private types and PBNE in Fig. 2.2 with two

players and binary types.

Definition 3 (Perfect Bayesian Nash Equilibrium (PBNE)). The set of

N player’s policies σ∗,k0:K
1:N constitutes a PBNE if for all k1 ∈ {k0, · · · , K}, the

following two conditions hold.

1. Sequential rationality:

vi(s
k1:K , σ∗,k1:K

i , σ∗,k1:K
−i ) ≥ vi(s

k1:K , σk1:Ki , σ∗,k1:K
−i ),∀σk1:Ki , i ∈ I. (2.8)

2. Belief consistency in (2.6).

Analogously, we can use dynamic programming to represent (2.7) iteratively
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Figure 2.2: Illustration of players’ private types and the solution concept of PBNE.

and then form mathematical programs to compute the PBNE strategy. The authors

in [95] provide constructive proof for the convergence of continuous-type Bayesian

games under a sequence of finer discretization schemes.

2.2 Information Design

Compared to the classical mechanism design [156] of payment and allocation

rules, information design provides an affordable, scalable, and complementary way

to change agents’ beliefs in favor of the designer. We consider the information

design framework that consists of N interacting agents and one designer [18]. When

N = 1, the framework degenerates to the Bayesian persuasion framework [109].

We model the system uncertainty as a finite random variable X with support



60

X . The distribution of X, i.e., ψ(x) := Pr(X = x),∀x ∈ X , is common knowledge

for all agents and the information designer, yet its realization is unknown to all.

Based on the system uncertainty, each agent i ∈ I has a finite random variable

θi ∈ Θi according to the allocation distribution π, i.e.,

π : X 7→ Θ :=
∏
i∈I

Θi. (2.9)

The allocation distribution π is common knowledge to all, yet the realization of each

θi is the private information of agent i ∈ I. We assume that each agent truthfully

reports his type θi to the designer. If not, the designer can incorporate mechanism

design methods to make the truth-reporting strategy incentive-compatible for each

agent. For example, the defender can send each agent some feedback based on their

reported types.

Each agent i chooses his action ai from a finite action set Ai and receives a

utility ui(a1, ..., aN , x) which is determined by all agents’ actions and the realization

x ∈ X of the system uncertainty X. On the other hand, the designer’s utility

u0(a1, ..., aN , x) usually represents the system utility, and is also determined by

all agents’ actions and the realization of the system uncertainty. Define the joint

action set A :=
∏N

i=1Ai. Then, the agents’ and the designer’s utilities are the

mappings ui, u0 : A×X 7→ R, respectively.

Without the information designer’s interference, the equilibrium concept we

consider for this incomplete information game is the BCE defined as follows. Note

that σ is contained implicitly in the conditional probability term Pr(a−i, x|ai, θi)

as shown in (2.13).

Definition 4 (Bayesian Correlated Equilibrium (BCE)). Decision rule σ :
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Θ 7→ ∆A is a BCE if ∀i ∈ I, θi ∈ Θi, ai ∈ Ai,

∑
x

∑
a−i

Pr(a−i, x|ai, θi)
[
ui(ai, a−i, x)− ui(a′i, a−i, x)

]
≥ 0,∀a′i ∈ Ai. (2.10)

From Definition 4, we know that BCE is a mixed strategy. Equation (2.10)

shows that when the BCE decision rule σ is revealed to all agents, and agent i

obtains his action ai as the realization of the mixed-strategy σ, any other deviation

action a′i does not bring any benefit to him on average.

Since BCE may not be unique, we define Σ as the set of all BCEs and the

designer may be able to choose a proper σ∗ in his favor from all the feasible BCEs in

Σ. One way to choose the policy σ∗ is by designing a signal m ∈M and revealing

it to all agents to affect their behaviors. Basically, we assume the designer has the

freedom to pick any signal structure χ based on the reported types of all agents,

i.e., χ : Θ 7→ M. If χ is common knowledge to all, then the agent can update

their posterior belief from Pr(a−i, x|ai, θi) to Pr(a−i, x|ai, θi,m) based on the signal

realization m ∈M.

The authors in [18] proves a version of revelation principle in the information

design as an analogy to the revelation principle in mechanism design. That is, we

can limit our attention to information structures where the signal space is set equal

to the action space without loss of generality1. Then the signals can be interpreted

as the designer’s action recommendations to the agents. Define the designer’s

1The term ‘without loss of generality’ means that the designer cannot further improve his
expected utility for any other feasible signal structures.
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objective function as his expected utility under the recommended policy σ; i.e.,

J(σ) :=Ea∼σ,x∼ψ[u0(a1, ..., aN , x)]

=
∑
x∈X

∑
θ∈Θ

∑
a∈A

[ψ(x)π(θ|x)σ(a1, ..., aN |θ)u0(a1, ..., aN , x)]. (2.11)

Then, the information design problem can be formulated as the following linear

program maxσ∈Σ J(σ), i.e., the designer picks the optimal BCE

σ∗ = argmax
σ∈Σ

J(σ) (2.12)

from the BCE set Σ to maximize the social utility J∗ = J(σ∗).

To simplify (2.10), we use Bayesian rule on the conditional probability, i.e.,

Pr(a−i, x|ai, θi) =
∑
θ−i

Pr(a−i, θ−i, x|ai, θi)

=
∑
θ−i

Pr(a−i, θ−i, x, ai, θi)∑
a−i,θ−i,x

Pr(a−i, θ−i, x, ai, θi)

=
∑
θ−i

Pr(x) Pr(θ|x)σ(a1, ..., aN |θ)∑
a−i,θ−i,x

Pr(a−i, θ−i, x, ai, θi)
. (2.13)

The denominator
∑

a−i,θ−i,x
Pr(a−i, θ−i, x, ai, θi) in (2.13) cancels out in (2.10),

which makes all constraints linear in the decision variable σ. The information

design problem can be formulated as the following Linear Program (LP):

max
σ

∑
x

∑
θ

∑
a

ψ(x)π(θ|x)σ(a1, ..., aN |θ)u0(a1, ..., aN , x)

s.t.
∑
x

∑
a−i

∑
θ−i

ψ(x)π(θ|x)σ(a1, ..., aN |θ)
[
ui(ai, a−i, x)

− ui(a′i, a−i, x)
]
≥ 0,∀i ∈ {1, · · · , N}, θi ∈ Θi, ai, a

′
i ∈ Ai. (2.14)
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2.3 Reinforcement Learning

In Section 2.3, we introduce efficient learning methods for adaptive and au-

tonomous cyber-physical defense. Due to the adversarial deception, external noises,

and the absent knowledge of the other players’ behaviors and goals, defense schemes

can possess three progressive levels of information restrictions, i.e., the parame-

ter uncertainty, the payoff uncertainty, and the environmental uncertainty [93].

Different learning schemes can be adopted for varied information restrictions and

application scenarios. As shown in Section 2.3.1, these learning schemes share the

same feedback structure. RL is an important gathering of algorithms that epitomize

the feedback architecture. In Section 2.3.2, we introduce Markov Decision Process

(MDP) and the associated Q-learning as a representative RL scheme.

2.3.1 Feedback Structure

The feedback structure in the CPS context contains four stages of system oper-

ation, monitoring, decision-making, and response, as shown in Fig. 2.3. Monitoring

aims to acquire information about the system as well as the footprints of the

attacker. Decision-making builds on the acquired information to infer the attack

behaviors and design the optimal resilience strategies. Response reconfigures the

system according to the optimal strategy by adapting the system parameters and

attributes to unknown threats.

The feedback loop of monitoring, decision-making, and response establishes

an adaptive and dynamic system architecture for high-confidence CPSs. RL is

an important gathering of algorithms that epitomize the feedback architecture

to provide dynamic and sequential responses to attacks with limited or without
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Figure 2.3: Feedback structure contains four stages of system operation, monitoring,
decision-making, and response. During the online operation of a CPS, information
is persistently collected through monitoring and analyzed to formulate the defense
decisions. Then, actions are taken to adjust the CPS operation.

prior knowledge of the environment and the attacker. We provide a sketch of the

Q-learning algorithm in Section 2.3.2 to illustrate the essence of RL.

2.3.2 MDP and Q-learning

An MDP is denoted by a 5-tuple ⟨S,A, u, f, γ⟩, where S is the state space

containing all possible states of the cyber system. The action space A denotes the

actions available for the defender to protect the cyber system, recover from the

damage caused by attacks, or mitigate the effect of attacks. The reward u depends

on the current and/or the next security states, and the current action, which is

usually denoted by a function that maps S ×A× S → R+. The transition kernel

f defines the rule of how the system state evolves based on the actions taken by

the defender. The discount factor γ ∈ [0, 1] is a weighting factor that assigns more
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weight to current rewards than future rewards. The goal of an MDP problem is to

find a policy π : S → A to maximize a certain form of the accumulative rewards∑∞
k=0(γ)

kuk over time.

MDPs are generic modeling tools that can model the dynamic and feedback na-

ture of various types of CPSs. Conventional MDP approaches require the knowledge

of the transition probability and the explicit definition of the reward function to

find an appropriate strategy. Since such information is usually prohibitive to obtain

in practice, RL is introduced to solve the MDP problem without the knowledge of

the transition kernel f and the reward function u. Instead of utilizing a prior known

transition kernel and reward function, RL agent interacts with the environment,

obtains sequences of states {sk}k∈Z and rewards {uk}k∈Z, and learns to take the

optimal sequence of actions {ak}k∈Z, as shown in Fig. 2.3.

Q-learning is one of the most common value-based RL methods. It employs a

value-action function Q : S ×A → R+, which is also referred to as the Q function.

The goal is to find the optimal Q-values that satisfy the Bellman equation [19]

Q(s, a) = u(s, a) + γ
∑
s′

f(s, s′, a)min
a′

Q(s′, a′), for s ∈ S, a ∈ A, (2.15)

where f(s, s′, a) is the probability that the state of the cyber system at the next

step is s′ given the current state s and the current action a. Without the knowledge

of the transition probability f and the reward function u, the RL agent can update

its Q-values by interacting with the environment:

Qk+1(sk, ak) = Qk(sk, ak) + αk ·
[
γmin

a′
Qk(sk+1, a′) + uk −Qk(sk, ak)

]
, (2.16)

where the sequences of states {sk}k∈Z, rewards {uk}k∈Z are from the environment,
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while the sequence of actions {ak}k∈Z are chosen by the agent.

We briefly discuss the challenges and the related future directions about RL

in defending high-confidence CPSs as follows. First, it is important to deal with

system and performance constraints in the learning process. On the one hand, cyber

systems have many system constraints that need to be taken into account explicitly.

For example, certain addresses or functions that are not allowed or undesirable

when configuring the MTD. On the other hand, the performance of the cyber

systems can impact the performance of the physical systems that they serve. Hence,

the requirement on the physical system performance naturally imposes a constraint

on the performance of the cyber systems. A second challenge is to improve the

learning speed. Fast learning would enable a speedier and more resilient response

to the attack to restore the CPSs after an attack. To achieve it, we would need

to resort to control-theoretic ideas, such as optimal control [116] and adaptive

control theory [9], and leverage recent advances in RL to speed up the convergence

rate or improve the finite-time learning performances. A third challenge is to

deal with the nonstationarity of the CPSs. The classical RL algorithms assume

that the environment is stationary and ergodic, which may not hold in many

CPS applications. For example, the attack surface may grow when the system

is connected with other nodes or used by new users. There is a need to develop

nonstationary RL schemes to guarantee performance in a finite horizon.

2.4 Extensions and Applications

In Sections 2.1, 2.2, and 2.3, we review the basic tools for modeling, design, and

learning, respectively. Many extensions will be presented in later chapters to enrich
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these baseline frameworks under different CPS applications. We briefly introduce

some of them as follows.

In Section 2.1.1, while players optimize their objective functions, they also need

to consider the constraints of time, resources, and stealthiness. For example, in

Chapter 7, since the vulnerability may only exist for certain time, attacks exploiting

the time window undergo time constraints. In Chapter 12, the human operators

have limited attention capacities and are under cognition constraints. In Chapters

5 and 8, APT attackers and honeypots are restricted to be stealthy, respectively.

Following Section 2.1.2, other widely used security game models include differ-

ential games [56], signaling games [34] (a variant of two-stage dynamic Bayesian

games), evolutionary games [76], and consolidated games that incorporate the

above games as components. We select 14 works2 and position them in Fig. 2.4

based on the sophistication levels of attacks and defense methods considered in

the game model. We evaluate the attacks’ sophistication levels based on their

adaptiveness, stealthiness, and persistence. We evaluate the defense’s sophistica-

tion levels based on the defenders’ strategic level, proactiveness, and adaptiveness.

We further characterize these game models based on whether they incorporate

Deception Technologies (DT) and Human Factors (HF).

Section 2.2 focuses on designing information. On the one hand, we can extend

the information design of one random variable into a chain of random variables, as

shown in ZETAR framework in Chapter 9. On the other hand, as shown in the

duplicity game framework in Chapter 10, the players (or the information receivers)

2These 14 works are the Flipit Game [215], the consolidated game [166], the signaling game
with evidence [167], the signaling game for compliance [23], the time-sensitive stochastic game
[233], the incomplete-information stochastic game [78], the information design game [96], the
dynamic Bayesian game [91], the differential game [226], the Bayesian Stackelberg game [219],
the matrix game [1], the evolutionary game [79], the hyper game [220], and the matrix game [3].
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Figure 2.4: The landscape of security games concerning the sophistication levels of
attacks and defense methods in x-axis and y-axis, respectively. We use triangles
and circles to distinguish whether Deception Technologies (DT) are incorporated or
not, respectively. We use blue and orange to distinguish whether Human Factors
(HF) are incorporated or not, respectively.

can be of multiple types, and the designer can jointly design information, reward

structure, and players’ trust.

In Section 2.3.1, we present the standard feedback architecture. This architecture

can be enriched and extended to several more sophisticated ones. One is the nested

feedback loops, where one feedback loop is coupled to another feedback loop. This

architecture is useful to separate and then fuse the learning of distinct system

components of a CPS. For example, one feedback loop is used to acquire the attack

footprint and learn its intent and capabilities. In contrast, the other feedback

loop is used to acquire information regarding its system state. The two feedback
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loops can be fused for making online defense decisions in response to an unknown

threat. Another architecture is a mixture of feedback and open-loop structures.

Leveraging the ideas from moving-horizon control and estimation, we can make a

moving-horizon plan by looking W stages into the future and optimizing for the W

stages-to-go. This approach would require an open-loop prediction of the system

under the attack, feedback-driven sensing of the environment, and a reasoning of

the optimal moving-horizon strategies.

In Section 2.3.2, MDPs can be extended to many other frameworks. If the state

is not fully observable but through an observation kernel g as shown in Fig. 2.1, then

an MDP extends to a Partially Observable Markov Decision Process (POMDP). If

there are multiple decision-makers, then a MDP extends to a stochastic game or a

Markov game. If the transition happens at a random time that depends on the

current and next state and the action, the MDP and the Markov game are extended

to the Semi-Markov Decision Process (SMDP) and the Semi-Markov Game (SMG),

respectively. We explore more about SMG in Chapter 4 and SMDP in Chapters 8

and 12, respectively.

Having been actively studied for decades, RL has a rich universe of algorithms

that help the agent find a satisfactory policy. They can be classified as the model-

based and the model-free RL based on whether the agent attempts to predict

the environment parameters. The model-free RL also has two main categories for

optimizing the policy: value-based methods and policy-based methods. Q-learning

in Section 2.3.2 is a representative value-based model-free RL method.
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Part II

Dynamic Protection of Critical

Infrastructures
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Chapter 3

Prevention and Response of

Cascading Failures in Large-Scale

Interdependent CINs

Following Section 1.3.2, the complex and large-scale interconnections between

various critical infrastructure sectors illustrated in Fig. 1.2 make the System of

Systems (SoS) vulnerable to natural disasters and cyber-physical attacks. As a

result, the failure of one component can lead to a cascading failure over multiple

infrastructures. To mitigate such cyber-physical threats, it is essential to design

effective defense mechanisms to harden both the cyber and physical security at

the nodes of the infrastructure to protect them from failures. To this end, we

capture the system behaviors of the Critical Infrastructure Networks (CINs) under

malicious attacks and the protection strategies by a zero-sum game. We further

propose a computationally tractable approximation for large-scale networks which

builds on the factored graph that exploits the dependency structure of the nodes of
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CINs and the approximate dynamic programming tools for stochastic games. This

work focuses on a localized information structure and the single-controller game

solvable by linear programming. Numerical results illustrate the proper tradeoff

of the approximation accuracy and computation complexity in the new design

paradigm and show the proactive security at the time of unanticipated attacks.

3.1 Mathematical Model

This section introduces in Subsection 3.1.1 a zero-sum Markov game model over

interdependent CINs to understand the interactions between an attacker and a

defender at the nodes of infrastructures. The solution concept of the saddle-point

equilibrium strategies is presented in Subsection 3.1.2 and the computational issues

of the equilibrium is discussed in 3.1.3.

3.1.1 Network Game Model

The dynamic and complex CINs can be represented by nodes and links. For

example, in an electric power system, a node can be a load bus or a generator

and the links represent the transmission lines. Similarly, in a water distribution

system, a node represents a source of water supply, storage or users, and the links

can represent pipes for water delivery. Consider a system of I interdependent

infrastructures. Let Gi = (N i, E i) be the graph representation of infrastructure

i ∈ I := {1, 2, · · · , I}, where N i = {ni1, ni2, · · · , nimi
} is the set of mi nodes in

the infrastructure and E i = {eij,k} is the set of directed links connecting nodes nij

and nik. The directed link between two nodes indicates either physical, cyber or

logical influences from one node to the other. For example, the state of node nij in
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the electric power system can influence the state of node nik through the physical

connection or the market pricing. The dependencies across the infrastructures can

be captured by adding interlinks. Let E i,j be the set of directed interlinks between

nodes in infrastructure i and infrastructure j. In particular, let εni
k,n

j
l
∈ E i,j denote

the interlink between nik and njl . Hence, the composed network can be represented

by the graph G = (N , E), where N = ∪Ii=1N i and E =
(
∪Ii=1E i

)⋃
(∪i ̸=jE i,j).

Denote by X i
j ∈ X i

j the state of node nij that can take values in the state

space X i
j . We let X i

j = {0, 1} be binary random variables for all i = 1, 2, · · · , I

and j ∈ N i. Here, X i
j = 1 means that node nij is functional in a normal mode;

X i
j = 0 indicates that node nij is in a failure mode. The state of infrastructure i

can be thus denoted by X i = (X i
1, X

i
2, · · · , X i

mi
) ∈ X i :=

∏mi

j=1X i
j and the state

of the whole system is denoted by X = (X1, X2, · · · , XI) ∈ ∏I
i=1X i. The state

transition of a node nij from state xij
′ ∈ X i

j to state xij ∈ X i
j is governed by a

stochastic kernel Pri,j(x
i
j
′|x, dij, aij) := Pr(X i

j = xij
′|X = x, dij, a

i
j), which depends

on the protection policy dij ∈ Dij adopted at node nij as well as the adversarial

behavior aij ∈ Aij, where Dij,Aij are feasible sets for the infrastructure protection

and the adversary, respectively. The state transition of a node depends on the

entire system state of the interdependent infrastructure. It, in fact, captures the

interdependencies between nodes in one infrastructure and across infrastructures.

The infrastructure protection team or defender determine the protection policy with

the goal of hardening the security and improving the resilience of the interdependent

infrastructure. On the other hand, an adversary aims to create damage on the nodes

that he can compromise and inflict maximum damage on the infrastructure in a

stealthy manner, e.g., creating cascading and wide-area failures. LetMi
a ⊆ N i and

Mi
d ⊆ N i be the set of nodes that an adversary can control and the system action
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vector of the adversary is a = (aij)j∈Mi
a,i∈I ∈ A :=

∏
i∈I

∏
j∈N i Aij with |Mi

a| = m̄a,i.

The system action vector for infrastructure protection is d = (dij)j∈Mi
d,i∈I ∈ D :=∏

i∈I
∏

j∈N i Di
j with |Mi

d| = m̄d,i. At every time t = 1, 2, · · · , the pair of action

profiles (dt, at) taken at t and the kernel Pr defined later determine the evolution of

the system state trajectory. Here, we use add subscript t to denote the action taken

time t. The conflicting objective of both players can be captured by a long-term

cost J over an infinite horizon:

J :=
∑

i∈I,j∈N i

∞∑
t=1

γtcij(Xt, d
i
j,t, a

i
j,t), (3.1)

where γ ∈ (0, 1) is a discount factor; Xt ∈ X is the system state at time t;

cij : X ×Dij ×Aij → R+ is the stage cost function of the node nij . Let U ij ,V ij be the

sets of admissible strategies for the infrastructure and the adversary, respectively.

Here, we consider a feedback protection policy µij ∈ U ij as a function of the

information structure F i
j,t, i.e., d

i
j,t = µij(F

i
j,t). Likewise, we consider the same class

of policies for the adversary, i.e., aij,t = νij(F
i
j,t), ν

i
j ∈ V ij.

The policy can take different forms depending on the information structure.

For example, if F i
j,t = Xt, i.e., each node can observe the whole state across

infrastructures, then the policy is a global stationary policy, denoted by µi,GS
j ∈

U i,GS
j , where U i,GS

j is the set of all admissible global stationary policies.. If F i
j,t = X i

j,t,

i.e., each node can only observe its local state, then the policy is a local stationary

policy, denoted by µi,LSj ∈ U i,LSj , where U i,LSj is the set of all admissible local

stationary policies. If F i
j,t = X i

t , i.e., each node can observe the infrastructure-wide

state, then the policy is an infrastructure-dependent stationary policy, denoted

by µi,IDj ∈ U i,IDj , where U i,IDj is the set of all admissible infrastructure-dependent
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stationary policies. Similarly, an adversary chooses a policy νij,t, i.e., a
i
j,t = νij(F

i
j,t).

Denote by µi = (µi1, µ
i
2, · · · , µimi

), νi = (νi1, ν
i
2, · · · , νimi

) the protection and attack

policies for infrastructure i, respectively, and let µµµ = (µ1, µ2, · · · , µI) and ννν =

(ν1, ν2, · · · , νI). Note that although both policies are determined only by the

information structure and are independent of each other, the total cost function J

depends on them both because of the coupling of the system stage cost c(Xt,d, a) :=∑
i,j c

i
j(Xt, d

i
j,t, a

i
j,t) and the system state transition probability Pr(X ′ = x′|X =

x,d,a) :=
∏

i∈I,j∈N i Pri,j(x
i
j
′|x, dij, aij). Therefore, with U =

∏
i∈I,j∈Ni

U ij and

V =
∏

i∈I,j∈Ni
V ij, the total cost function J : X × U × V → R+ starting at initial

state x0 can be written as the expectation of the system stage cost regarding the

system state transition probability, i.e.,

J(x0,µ, νµ, νµ, ν) :=
∞∑
t=0

γtEµ,νµ,νµ,ν,x0 [c(Xt,d, a)]. (3.2)

Remark 1. Notice that there is a difference between policy µ, νµ, νµ, ν and action d, a. A

policy or strategy is a mapping and an action is the outcome of the mapping. Besides,

since the information structure is the state information available to attackers or

defenders, we can abstract it from the entire state information Xt at time t. Given

a policy and an information structure, we can uniquely determine the action.

Therefore, we write d, a instead of µ, νµ, νµ, ν in the Right-Hand Side (RHS) of (3.2). We

use the same terminology in the following equations such as (3.6) where the solution

provides us the optimal action pair d∗, a∗ at every state x. With the knowledge of

the mapping outcome and corresponding information structure as the input of the

mapping, the policy functions µµµ∗, ν∗ν∗ν∗ are uniquely defined.

Hence a security strategy for the infrastructure protection achieves the optimal
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solution J∗(x0) to the following minimax problem, which endeavors to minimize

the system cost under the worst attacking situation maxννν∈V J(x
0,µ, νµ, νµ, ν), i.e.,

J∗(x0) = min
µµµ∈U

max
ννν∈V

J(x0,µ, νµ, νµ, ν). (3.3)

3.1.2 Zero-Sum Markov Games

The non-cooperative objective function (3.3) leads to the solution concept of

Saddle-Point Equilibrium in game theory.

Definition 5. A Saddle-Point Equilibrium (SPE) (µ∗, ν∗µ∗, ν∗µ∗, ν∗) ∈ U×V of the discounted

zero-sum Markov games with two players satisfies the following inequalities:

J(x0,µ, ν∗µ, ν∗µ, ν∗) ≥ J(x0,µ∗, ν∗µ∗, ν∗µ∗, ν∗) ≥ J(x0,µ∗, νµ∗, νµ∗, ν),∀ννν ∈ V ,µµµ ∈ U ,∀x0 ∈
I∏
i=1

X i. (3.4)

The value J∗(x0) achieved under the saddle-point equilibrium of the game (3.3)

for a given initial condition x0 is called the value function of a two-player zero-sum

game, i.e.,

J∗(x0) := J(x0,µµµ∗, ννν∗) = min
µµµ∈U

max
ννν∈V

J(x0,µ, νµ, νµ, ν) = max
ννν∈V

min
µµµ∈U

J(x0,µ, νµ, νµ, ν). (3.5)

By focusing on the class of global stationary policies, i.e., µi,GS
j ∈ U i,GS

j and

νi,GS
j ∈ V i,GS

j , the value function J∗(x0) can be characterized using dynamic pro-

gramming principles. The action pairs d∗, a∗ with di∗j = µi∗,GS
j (x) and ai∗j = νi∗,GS

j (x)

satisfy the following Bellman equation:

J∗(x) = c(x,d∗, a∗) + γ
∑

x′∈
∏I

i=1 X i

Pr(x′|x, a∗,d∗)J∗(x′),∀x. (3.6)
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The first term is the reward of current stage x and the second term is the expectation

of the value function over all the possible next stage x′. The optimal action pairs

(d∗,a∗) guarantee that the value function starting from x equals the the current

stage cost plus the expectation starting at the next stage x′. By solving the Bellman

equation (3.6) for every state x, we can obtain the saddle-point equilibrium strategy

pairs (µµµ∗, ννν∗) in global stationary policies.

The global stationary saddle-point policies in pure strategies may not always

exist. The Bellman equation (3.7) can be solved under mixed-strategy action spaces.

Let the mixed-strategy actions for the attacker and the defender be ϕa(x, a) and

ϕd(x,d), where ϕd(x,d) (resp. ϕa(x, a)) denotes the probability of taking action d

(resp. a) at the global state x for a defender (or an attacker). The saddle-point

mixed-strategy action pair (ϕa∗(x, a), ϕd∗(x,d)) satisfies the following generalized

Bellman equation, i.e., ∀x,

J∗(x) =
∑
a∈A

ϕa∗(x, a)
∑
d∈D

c(x,d, a) + γ
∑

x′∈
∏I

i=1 X i

Pr(x′|x, a,d)J∗(x′)

ϕd∗(x,d).
(3.7)

The existence of the mixed-strategy action pair is guaranteed when the action

spaces A and D are finite. Hence solving (3.7) for every state x, we can obtain the

mixed-strategy saddle-point equilibrium strategy pairs (µ̂µµ∗, ν̂νν∗) in global stationary

policies, where µ̂µµ, ν̂νν are the mixed strategy extension of µµµ,ννν, respectively.

3.1.3 Mathematical Programming Perspective

One way to compute the mixed-strategy equilibrium solutions for zero-sum

games is to use a mathematical programming approach. Given a defender policy
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ϕd(x,d), the attacker solves the following maximization problem for every state x:

J∗(x) = max
ϕa(x,a)

∑
a∈A

ϕa(x, a)
∑
d∈D

[
c(x,d, a) + γ

∑
x′

Pr(x′|x, a,d)J∗(x′)

]
ϕd(x,d),∀x.

(3.8)

Define f(x, a) :=
∑

d∈D

[
c(x,d, a) + γ

∑
x′∈

∏I
i=1 X i Pr(x′|x, a,d)J∗(x′)

]
ϕd(x,d)

and f ∗(x, a) when the defender policy is optimal. We have the following lemma:

Lemma 1. The optimal attack’s policy ϕa∗(x, a) of (3.8) is a pure policy, denoted

as ϕa(x, a)1{a=a∗}, when the defender’s policy is given, where a∗ ∈ argmaxa f(x, a).

Proof. There exists an optimal action a∗ ∈ argmaxa f(x,a). As a probability

measure, all elements of ϕa(x, a) are positive and
∑

a∈A ϕ
a(x, a) = 1,∀x. Multiply

both sides of the equation f(x, a∗) ≥ f(x, a) by ϕa(x, a) and sum over all possible

a, we arrive at

∑
a∈A

ϕa(x, a)f(x, a) ≤
∑
a∈A

ϕa(x, a)f(x, a∗) = 1 · f(x, a∗)

=
∑
a∈A

ϕa(x, a)1{a=a∗}f(x, a), ∀a.

Therefore, the optimal attacker policy is deterministic, i.e., ϕa(x, a)1(a=a∗).

Lemma 1 is true for arbitrary defender policy, thus true for the optimal one.
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Therefore, J∗(x) = f ∗(x, a∗) ≥ f ∗(x, a),∀a. Now, we can form a bi-linear program:

min
J∗(x),ϕd(x,d)

∑
x∈

∏I
i=1 X i

α(x)J∗(x)

subject to :

(a) J∗(x) ≥
∑
d∈D

c(x,d, a) + γ
∑

x′∈
∏I

i=1 X i

Pr(x′|x, a,d)J∗(x′)

ϕd(x,d), ∀x, a
(b)

∑
d∈D

ϕd(x,d) = 1, ∀x

(c) ϕd(x,d) ≥ 0, ∀x,d
(3.9)

Constraints (b)(c) reflect ϕd(x,d) as a probability measure. Constraint (a) guaran-

tees that (3.8) is achieved under the optimal defender’s policy. State-dependent

weights α(x) are positive and satisfy
∑

x α(x) = 1. Solutions of this program

provide us the value function J∗(x) and the optimal defender policy ϕd∗(x,d).

3.1.4 Single-Controller Markov Game

In the single-controller game, one player’s action entirely determines transition

probabilities. This structure captures the fact that the failure probability of a node

in the infrastructure depends on the action taken by the attacker once the node is

attacked.

The single-controller assumption fits the infrastructure protection application

because of the deficiency in real-time attack countermeasure after CINs are designed.

Thus, defenders may not be capable of decreasing the probability of node failures

under attacks once the network is established. However, the protection term can

positively enhance the system security by mitigating the attack loss or increase

the cost of an attacker. For example, defenders can apply for the cyber-insurance



80

for high-risk nodes or setup ‘honeypot’ to increase the cost of the adversaries once

trapped.

We focus on an attacker-controlled game Γa where the stochastic kernel for each

node possesses Pri,j(x
i
j
′|x, dij, aij) = Pri,j(x

i
j
′|x, aij),∀xij

′
, x, dij, a

i
j and the system

transition probability Pr(X ′ = x′|X = x,d,a) = Pr(X ′ = x′|X = x,a). Because

the system transition probability is independent of d and
∑

d ϕ
d∗(x,d) ≡ 1, the

bi-linear program (3.9) can be reduced into a Linear Program (LP) where the

primal LP is described as follows:

min
J∗(x),ϕd(x,d)

∑
x′∈

∏I
i=1 X i

α(x′)J∗(x′)

subject to :

(a) J∗(x) ≥
∑
d∈D

c(x,d, a)ϕd(x,d) + γ
∑

x′∈
∏I

i=1 X i

Pr(x′|x, a)J∗(x′) ∀x, a

(b)
∑
d∈D

ϕd(x,d) = 1, ∀x

(c) ϕd(x,d) ≥ 0, ∀x,d

(3.10)

After solving (3.10), we obtain the value functions J∗(x′), the optimal defender’s

policy ϕd∗(x,d), and we resort to the dual LP for the attacker’s policy:

max
z(x),ϕa(x,a)

∑
x∈

∏I
i=1 X i

z(x)

subject to :

(d)
∑
a∈A

ϕa(x′, a)−
∑

x∈
∏I

i=1 X i

∑
a∈A

γ Pr(x′|x, a)ϕa(x, a) = α(x′), ∀x′

(e) z(x) ≤
∑
a∈A

ϕa(x, a)c(x,d, a) ∀x,d

(f) ϕa(x, a) ≥ 0, ∀x, a

(3.11)



81

We normalize ϕa∗(x,a) = ϕa(x,a)∑
a ϕ

a(x,a)
to obtain the optimal policy for attacker.

Analogous to the optimality principle of the value function (3.6), constraint (d) in

the dual LP can be interpreted as the occupancy equality. The total occupancy

frequency of state x′,
∑

a∈A ϕ
a(x′, a), is equal to the initial probability distribution

of state x′, α(x′), plus the discounted expected visit from any other state x to state

x′, i.e.,
∑

x∈
∏I

i=1 X i

∑
a∈A γ Pr(x

′|x, a)ϕa(x, a) .

Theorem 1. The optimal policy of attacker ϕa(x,a) solved by (3.11) is a pure

policy, i.e., for each system state x, ϕa(x, a∗) > 0 and ϕa(x, a) = 0,∀a ̸= a∗. The

explicit form is

a∗ = argmax
a∈A

[∑
d∈D

c(x,d, a)ϕd∗(x,d) + γ
∑
x′

Pr(x′|x, a)J∗(x′)

]
.

Proof. Lemma 1 has shown that the optimal policy is deterministic, and thus

here we only need to show that ϕa∗(x, a) = ϕa(x,a)∑
a ϕ

a(x,a)
is the optimal policy for the

attacker. Following the proof of [50], we show that ϕa∗(x, a) is the saddle point of

the zero-sum game (3.4).

First, ϕa∗(x, a) is well defined since the constraint (d) shows that
∑

a ϕ
a(x, a) ≥

α(x′),∀x′. By the complementary slackness of the dual LP, we require J∗(x)

strictly equal to
∑
d∈D

c(x,d,a)ϕd∗(x,d) + γ
∑
x′

Pr(x′|x,a)J∗(x′) for all state x and

the corresponding action a such that ϕa(x, a) is strictly positive, which is equivalent

to ϕa∗(x,a) > 0. Then, by multiplying both side by ϕa∗(x,a) and summing over

a ∈ A, we obtain the vector equation J∗ = J(x0,µµµ∗, ννν∗). Next, we multiply

an arbitrary ϕa(x,a) to both sides of constraints (a), sum over a, and obtain a

vector inequality J∗ ≥ J(x0,µµµ∗, ννν). Therefore, we arrive at the RHS of saddle-point

condition J(x0,µµµ∗, ννν) ≤ J(x0,µµµ∗, ννν∗). Similarly, the complementary slackness of the
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primal LP together with constraints (e) leads to c(x, a∗,d∗) ≤ c(x, a∗,d). Because

the transition probability is independent of defender policy, we can obtain the

Left-Hand Side (LHS) of the saddle-point condition by computing (3.1).

The major challenge to solve the LP is the large-scale nature of the CINs,

which is known as the curse of dimension. Take (3.10) for an instance, we have

|∏I
i=1X i| variables in the LP objective and a constraints number of |∏I

i=1X i| ×

|A|+ |∏I
i=1X i|+ |∏I

i=1X i|× |D|. If we have n nodes in the CIN and all nodes can

be attacked and defended, then we will have N := 2n variables and N2 +N +N2

constraints, which both grow exponentially with the number of nodes. The high

computation cost prohibits the direct computation using the LP with a large number

of nodes.

3.2 Factored Markov Game

To address the issue of the combinatorial explosion of the state size or the

curse of dimensionality, we develop a factored Markov game framework in this

section by leveraging the sparsity of the transition kernel. We first use factor graphs

to represent the sparse structure of the probability transition matrix. Next, we

introduce an approximation method for the value function and then reorganize

terms and eliminate variables by exploiting the factored structure. We focus on

the LP formulation of the attacker-controlled game. However, the technique can be

extended to a bilinear form for the general zero-sum game to reduce computational

complexity. Finally, we refer our reader to an overall structure diagram of this work

in Fig. 3.1.
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Figure 3.1: In this overall structural diagram, blue squares show a sequence of
techniques used in the problem formulation. The LP technique yields the exact
value functions and the optimal defender’s policy. The factored ALP yields an
approximate value function and distributed sub-optimal defender’s policy. The
greedy search method solves for the attacker’s policy.

3.2.1 Factored Structure

Define Ωl as the set that contains all the parent nodes of node l. Parent nodes

refer to the nodes that affect node l’s state at the following time step through

physical, cyber or logic interactions. The network example in Fig. 3.2 is a bi-

directed graph that represent a 3-layer interdependent CIN. Then, Ωl contains

node l itself and all its neighbors, e.g., Ω1,1 = {n1
1, n

1
2, n

2
1, n

3
7}. Node l can affect

itself because if, for instance, node l fails at time t, then it remains faulty in

probability one without proper actions at next time step t+ 1. Note that we do

not distinguish the dependence within (links in black) and across (links in blue)
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layers when considering the stochastic kernel. Recall mi as the total number of

nodes in layer i. We use a global index l to unify the 2D index of {i, j}, e.g.,

l :=
i∑

i′=1

i′mi′ + j, which transforms the multi-layer network into a larger single

network with n =
∑

i∈I mi nodes. In this way, we can write Ω1,1 = {n1
1, n

1
2, n

2
1, n

3
7}

as Ω1 = {n1, n2, n6, n17} and Pri,j(x
i
j
′|x, dij, aij),∀i ∈ I, j ∈ N i equivalently as

Prl(xl
′|x, dl, al),∀l = 1, 2, · · · , n. Define xΩl

:= (xl)l∈Ωl
as the state vector of the

nodes inside set Ωl, e.g., xΩ1 = (x1, x2, x6, x17). Then, each node’s kernel will be

Pri,j(x
i
j
′|x, dij, aij) = Pri,j(x

i
j
′|xij, xΩi,j

, dij, a
i
j) due to the sparsity, or in the global

index Prl(xl
′|x, dl, al) = Prl(x

′
l|xl, xΩl

, dl, al).

Figure 3.2: The left network shows a 3-layer CIN with blue lines representing
the interdependencies across layers. The right bipartite graph shows a factor
graph representation of the sparse transition probability. The total node number
n =

∑
i=1,2,3mi = 5 + 5 + 7 = 17.

3.2.2 Linear Function Approximation

We first approximate the high dimensional space spanned by the cost function

vector J = (J∗(x′))x′∈∏I
i=1 X i through a weighted sum of basis functions hl(x

′), l =

0, 1, · · · , k, where k is the number of ‘features’ and h0(x
′) ≡ 1,∀x′. Take CINs as

an example. We choose a set of basis which serves as an indicator function of each

node nij’s working state, e.g., hi,j(x
′) = xij

′
,∀i ∈ I, j ∈ N i

j . We unify the index

with l :=
i∑

i′=1

i′mi′ + j and k equal to n, the total node number in the network.
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To this end, we can substitute J∗(x′) =
∑k

l=0wlhl(x
′) into (3.10) to obtain an

Approximate Linear Program (ALP) with k variables wl, l = 0, 1, · · · , k.

min
w,ϕd(x,d)

∑
x′∈

∏I
i=1 X i

α(x′)
k∑
l=0

wlhl(x
′)

subject to :

(a)

k∑
l=0

wlhl(x) ≥
∑
d∈D

c(x,d,a)ϕd(x,d) + γ
∑

x′∈
∏I

i=1 X i

Pr(x′|x,a)
k∑
l=0

wlhl(x
′), ∀x,a

(b)
∑
d∈D

ϕd(x,d) = 1, ∀x

(c) ϕd(x,d) ≥ 0, ∀x,d
(3.12)

The feature number k is often much smaller than the system state number 2n.

Hence the ALP reduces the involving variables in the LP objective. However,

the exponentially growing number of constraints still makes the computation

prohibitive. To address this issue, we further reduce the computational complexity

in the following sections with similar techniques in [82].

Remark 2. The ALP approximates minµµµ∈U maxννν∈V J(x
0,µ, νµ, νµ, ν). The minimax

strategy yields the optimal defensive strategy for the worst-case attacks. The strategy

is achieved by searching the entire feasible attackers’ actions of all possible system

states in constraint (a) of (3.12). Thus, the approximate solution
∑k

l=0wlhl(x
′) is

an upper bound to J∗(x′).

3.2.3 Term Reorganization

The system transition matrix Pr(x′|x,a) has the dimension of N × N × |A|

in constraint (a) of (3.10). Here, we choose indicator functions of each node

hl(x
′) = xl,∀x′, l = {1, 2, · · · , n} as the set of basis functions, which yields a good
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trade off between the accuracy and computation complexity as shown in Section 3.3.

We observe that the right-most term of constraint (a) of (3.10) can be rewritten as

follows:

∑
x′∈

∏I
i=1 X i

Pr(x′|x, a)
n∑
l=0

wlhl(x
′)

(1)
= w0 +

n∑
l=1

wl

 ∑
x′1,··· ,x′n

n∏
k=1

Pr
k
(x′k|xk, ak)xl


(2)
= w0 +

n∑
l=1

wl

∑
x′l

Pr
l
(xl

′|xl, xΩl
, al)xl

∑
{x′1,··· ,x′n}\{x′l}

n∏
k=1,k ̸=l

Pr
k
(x′k|xk, ak)


(3)
= w0 +

n∑
l=1

wl

∑
x′l

Pr
l
(xl

′|xl, xΩl
, al)xl

n∏
k=1,k ̸=l

∑
x′k

Pr
k
(x′k|xk, ak)


(4)
= w0 +

n∑
l=1

wl

∑
x′l

Pr
l
(xl

′|xl, xΩl
, al)xl


= w0 +

n∑
l=1

wl

[
Pr
l
(xl

′ = 1|xl, xΩl
, al) · 1 + Pr

l
(xl

′ = 0|xl, xΩl
, al) · 0

]
= w0 +

n∑
l=1

wl

[
Pr
l
(xl

′ = 1|xl, xΩl
, al)

]
:= w0 +

n∑
l=1

wlgl(xl, xΩl
, al),

where gl(xl, xΩl
, al) := Prl(xl

′ = 1|xl, xΩl
, al).

Equation (1) represents the vector x′ with the set of its elements {x′i}, writes the

system transition probability in its factored form, and separates the first constant

item w0. The symbol
∑

{x1,··· ,xn}\{xl} in equation (2) means the summation over

all variables except xl. Equation (3) exchanges the summation and multiplication,

and equation (4) is true because
∑

x′k
Prk(x

′
k|xk, ak) ≡ 1. To this end, we reduce

N = 2n summations over the huge dimension system transition matrix into n+ 1

summations over the local stochastic kernel.
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3.2.4 Restricted Information Structure

The second step is to deal with
∑

d c(x,d, a)ϕ
d(x,d) in constraint (a) of (3.10).

The saddle-point strategies studied in Section 3.1.2 belong to a class of global

stationary policies in which the actions taken by the players are dependent on the

global state information. The implementation of the policies is often restricted

to the local information that is specific to the type of the infrastructure. For

example, the Metropolitan Transportation Authority (MTA) may not be able to

know the state of nodes in the power grid operated by Con Edison. Thus, MTA

cannot make its policy based on the states of power nodes. Therefore, one way to

approximate the optimal solution is to restrict the class of policies to stationary

policies with local observations. We consider a time-invariant information structure

of the defender F i
j,t ≡ F i

j . By unifying with the global index in Section 3.2.1, we

let l :=
∑i

i′=1 i
′mi′ + j and Fl := F i

j . Define ϕ
d
l (x, dl) as the probability of node l

choosing dl at state x. Therefore, ϕ
d(x,d) =

∏n
l=1 ϕ

d
l (x, dl) =

∏n
l=1 ϕ

d
l (Fl, dl) and

Fl = (xΩ̄l
), where Ω̄l is the set of nodes which node l can observe. Note that not all

nodes can be protected, i.e., |D| ≤ N . We let dl ≡ 0 if node l cannot be defended.

∑
d∈D

c(x,d, a)ϕd(x,d) =
∑
d∈D

n∑
k=1

ck(xk, dk, ak)
n∏
l=1

ϕdl (Fl, dl)

=
n∑
k=1

 ∑
dw,w=1,··· ,|D|

ck(xk, dk, ak)ϕ
d
k(Fk, dk)

n∏
l=1,l ̸=k

ϕdl (Fl, dl)


=

n∑
k=1

[∑
dk

ck(xk, dk, ak)ϕ
d
k(Fk, dk)

n∏
l=1,l ̸=k

∑
dl

ϕdl (Fl, dl)

]

=
n∑
k=1

 ∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d
k(Fk, dk)

 . (3.13)
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Therefore, the ALP with the restricted information structure can be further

rewritten as follows to form the factored ALP:

min
w,ϕdl (Fl,dl)

n∑
l=0

αlwlhl(x)

subject to :

(a) 0 ≥
n∑
k=1

∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d
k(Fk, dk) +

n∑
l=0

wl[γgl(xl, xΩl
, al)− hl(x)], ∀x, al

(b)
∑

di∈{0,1}

ϕdl (Fl, dl) = 1, ∀l, Fl

(c) 0 ≤ ϕdl (Fl, dl) ≤ 1, ∀l, Fl, dl
(3.14)

To this end, the number of constraints (b) n× |Fl| and (c) n× |Fl| × 2 relates

only to the node number n and the domain of each node’s information structure.

Remark 3. For a general zero-sum game with bi-linear programming formulation

(3.9), we can extend constraint (a) as follows with the same factored technique:

0 ≥
n∑
k=1

∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d
k(Fk, dk)

+
n∑
l=0

wl[γ
∑

dl∈{0,1}

gl(xl, xΩl
, al)ϕ

d
l (Fl, dl)− hl(x)], ∀x, al,

where the second term is bi-linear in the variables of wl and ϕ
d
l (Fl, dl).



89

3.2.5 Variable Elimination

Constraint (a) of (3.14) can be further rewritten as one nonlinear constraint

using the variable elimination method (see Section 4.2.2 of [69]) as follows:

0 ≥ max
a1,··· ,an

max
x1,··· ,xn

n∑
k=1

∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d
k(Fk, dk)+

n∑
l=0

wl[γgl(xl, xΩl
, al)−hl(x)].

(3.15)

For simplicity, we have provided above an inequality for the case of a local informa-

tion structure ϕdl (Fl, dl) = ϕdl (xl, xΩl
, dl) and |Fl| = 2|Ωl|+1.

First, we eliminate the variables of the attackers’ action. Define fl(xl, xΩl
, al) :=

wl[γgl(xl, xΩl
, al)− hl(xl)] +

∑
dl
cl(xl, dl, al)ϕ

d
l (xl, dl), l = 1, 2, · · · , n. We separate

w0, the weight of the constant basis, to the LHS and (3.15) becomes

(1− γ)w0 ≥ max
x1,··· ,xn

max
a1,··· ,an

n∑
l=1

fl(xl, xΩl
, al)

= max
x1,··· ,xn

n∑
l=1

max
al

fl(xl, xΩl
, al)

:= max
x1,··· ,xn

n∑
l=1

el(xl, xΩl
). (3.16)

To achieve the global optimal solution of (3.14), we impose the following constraints

for each l:

el(xl, xΩl
) ≥ fl(xl, xΩl

, al), ∀xl, xΩl
, al. (3.17)

Note that if node nl cannot be attacked, we take al ≡ 0 and arrive at a simplified

form:

el(xl, xΩl
) = fl(xl, xΩl

, 1), ∀xl, xΩl
. (3.18)

The second step is to eliminate the variable of each node’s state following a
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given order of O = {p1, p2, · · · , pn}, where O is a permutation of {1, 2, · · · , n}. The

RHS of (3.16) is rewritten as:

max
x1,··· ,xn

n∑
l=1

el(xl, xΩl
)

= max
xp2 ,··· ,xpn

∑
l={1,··· ,n}\K

ek(xk, xΩk
) + max

xp1

∑
k∈K

ek(xk, xΩk
)

= max
p2,··· ,pn

∑
l={1,··· ,n}\K

ek(xk, xΩk
) + E1(E), (3.19)

where the set K := {k : p1 ∈ {Ωk ∪ {k}}} and E1’s domain E := {xj : j ∈

{{∪k∈KΩk}∪{k}\{p1}}}. The variable xp1 is eliminated and similar new constrains

are generated to form the new LP, i.e., E1(E) ≥
∑

k∈K ek(xk, xΩk
) for all variables

included in E .

We repeat the above procedure of variable eliminations and constraints genera-

tion for n times following the order O and finally reach the equation (1−γ)w0 ≥ En,

where En is a parameter independent of state and action variables. This method is

suitable for a sparse network where each el has a domain involving a small set of

node variables.

Example 1. Consider a four-node example in Fig. 3.3 for the illustration of the

variable elimination. With node 2 being immune to attacks, (3.18) can be reduced

to e2(x1, x2) = f1(x1, x2, 0),∀x1, x2. For node 1, (3.17) leads to four new inequality

constraints e1(x1) ≥ f1(x1, a1), ∀x1, a1. Similarly, we have 24 = 16 inequalities for

node 3, i.e., e3(x2, x3, x4) ≥ f3(x2, x3, x4, a3),∀x2, x3, x4, a3 and 23 = 8 for node

4, i.e., e4(x3, x4) ≥ f3(x3, x4, a4),∀x3, x4, a4. After that, we eliminate all action
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variables and (3.16) becomes

(1− γ)w0 ≥ max
x1,x2,x3,x4

e1(x1) + e2(x1, x2) + e3(x2, x3, x4) + e4(x3, x4). (3.20)

With an elimination order O = {3, 2, 4, 1}, the RHS of (3.20) can be rewritten

as

max
x1,x2,x4

e1(x1) + e2(x1, x2) + max
x3

e3(x2, x3, x4) + e4(x3, x4)

= max
x1,x2,x4

e1(x1) + e2(x1, x2) + E1(x2, x4).

The new constraints are generated, i.e., E1(x2, x4) ≥ e3(x2, x3, x4) + e4(x3, x4) for

all x2, x3, x4. Then, we can repeat the above process and eliminate x2, x4, x1 in

sequence, i.e.,

max
x1,x2,x4

e1(x1) + e2(x1, x2) + E1(x2, x4)

= max
x1,x4

e1(x1) + max
x2

E1(x2, x4) + e2(x1, x2)

= max
x1,x4

e1(x1) + E2(x1, x4)

= max
x1

max
x4

e1(x1) + E2(x1, x4)

= max
x1

E3(x1) = E4.

Along with the above process, new constraints appear E2(x1, x4) ≥ E1(x2, x4) +

e2(x1, x2),∀x1, x2, x4; E3(x1) ≥ e1(x1) + E2(x1, x4),∀x1, x4 and E4 ≥ E3(x1),∀x1.

Finally, (3.20) becomes (1− γ)w0 ≥ E4.

The new LP in this example contains 51 constraints while the original constraint

(a) includes 2(4+3) = 128 inequalities. With the increase of the node number
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21 3 4

Unattackable a2 ≡ 0

xΩ1 = ∅ xΩ2 = [x1] xΩ2 = [x2, x4] xΩ2 = [x3]

Figure 3.3: A four node example with node 2 unattackable. Assume a local
information structure for each node Fl = xl, l = 1, 2, 3, 4.

and a sparse topology, our factored framework greatly reduces the exponential

computation complexity. Note that the order of {1, 2, 3, 4} introduces the least

number of constraints in this case yet choosing the optimal order is shown to be

NP-hard.

3.2.6 Distributed Policy of Attacker

Similar to Lemma 1, we search for the approximate saddle-point policy of the

attacker as follows:

a∗ ∈ arg max
a1,··· ,an

n∑
k=1

∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d∗
k (Fk, dk) +

n∑
l=0

wlγgl(xl, xΩl
, al),∀x1, · · · , xn.

Separate w0 in the second term and we obtain

a∗ ∈ γw0 + arg max
a1,··· ,an

n∑
k=1

∑
dk

ck(xk, dk, ak)ϕ
d∗
k (Fk, dk) +wkγgk(xk, xΩk

, ak),∀x1, · · · , xn.

Exchanging the argmax and the summation, we arrive at

a∗ ∈ γw0 +
n∑
k=1

argmax
ak

∑
dk

ck(xk, dk, ak)ϕ
d∗
k (Fk, dk) + wkγgk(xk, xΩk

, ak), ∀x1, · · · , xn.
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Therefore, we can obtain a distributed attack policy of node k which is fully

determined by the state of itself and its parent nodes xk, xΩk
and the state of nodes

observable for the defender Fk, i.e.,

ak = argmax
ak

∑
dk∈{0,1}

ck(xk, dk, ak)ϕ
d∗
k (Fk, dk) + wkγgk(xk, xΩk

, ak),∀xk, xΩk
, Fk.

Note that the approximate policy can be different from the optimal policy in Theo-

rem 1. However, as long as the computation reduction surpasses the approximation

error of the value function, it is worthwhile to equip with this sub-optimal policy.

Remark 4. Under a local information structure with Fl = xl, the defender decides

its action at node l based on xl and yet the attacker requires the state information of

xl and xΩl
. The difference in the structures of the policies is caused by the distinct

factored structures of the cost function and the attacker-controlled transition proba-

bility matrix. The former ck(xk, dk, ak) contains only xk and the latter gl(xl, xΩl
, al)

contains both xl and xΩl
.

3.2.7 Approximate Dual LP

We compute the dual of the ALP (3.12) by the Lagrange function. Our objective

is to find a function l(w, ϕa(x, a), z(x)) such that l(w, ϕa(x, a), z(x)) = 0 when the

constraints of (3.12) is satisfied and unbounded otherwise. Then, the following

equation is equivalent to (3.12) :

L(w, ϕa(x,a), z(x)) = min
w

[∑
x′

α(x′)
k∑
l=1

wlhl(x
′) + max

ϕa(x,a),z(x)
l(w, ϕa(x,a), z(x))

]
.
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Let ϕa(x, a) ≥ 0,∀x, a are multipliers for the inequality constraint (a), then

l(w, ϕa(x, a), z(x)) =
∑
x

z(x)(1−
∑
d∈D

ϕd(x,d))+

∑
x

∑
a

ϕa(x, a)

[∑
d∈D

c(x,d, a)ϕd(x,d)

+
∑
x′

γ Pr(x′|x, a)]
k∑
l=1

wlhl(x
′)−

n∑
l=1

wlhl(x)

]
. (3.21)

Next, we reorganize the term and follow the minimax theorem to obtain:

L(w, ϕa(x, a), z(x)) = max
z(x)

∑
x

z(x)

+ max
ϕa(x,a),z(x)

{
∑
x

∑
d

ϕd(x,d)[
∑
a

ϕa(x, a)c(x,d, a)− z(x)]

+ min
w

∑
l

wl[
∑
x′

α(x′)hl(x
′)

+ γ
∑
x

∑
a

ϕa(x, a)
∑
x′

Pr(x′|x, a)hl(x′)−
∑
x

∑
a

ϕa(x, a)hl(x)]}. (3.22)

Finally, we can obtain the dual of (3.12) as follows:

max
z(x),ϕa(x,a)

∑
x∈

∏I
i=1 X i

z(x)

subject to :

(a)
∑
x

α(x)hl(x) + γ
∑
x

∑
a

ϕa(x, a)
∑
x′

Pr(x′|x, a)hl(x′)

=
∑

x

∑
a ϕ

a(x, a)hl(x), ∀l

(b) z(x) ≤
∑
a

ϕa(x, a)c(x,d, a), ∀x,d

(c) ϕa(x, a) ≥ 0, ∀x, a

(3.23)

The dual of the ALP reveals the fact that constraint (a) approximates constraint
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(d) of (3.10) while the objective and other constraints remain the same. The term

γ
∑

x

∑
a ϕ

a(x, a)
∑

x′ Pr(x
′|x, a)hl(x′) sums over both x and x′ in the same domain

of
∏I

i=1X i, and thus we can exchange x and x′ in this term. Let x(i), i = 1, · · · , N

be N = 2n possible values of the system state and hl = (hl(x
(i)))i=1,··· ,N . Define

qi(x(i)) := α(x(i)) + γ
∑

a ϕ
a(x(i),a)

∑
x′ Pr(x

(i)|x′,a) −∑
a ϕ

a(x(i),a) and q :=

(q1(x(1)), · · · , qN(x(N)))T .

Then, constraint (a) can be rewritten in matrix form as Hq = 0, where

H = (h1,h2, · · · ,hk)T ∈ Rk×N and we can regard (3.23) as a relaxation of (3.11).

If we select k = N basis functions hl(x), l = {1, 2, · · · , |
∏I

i=1X i|}, to be an indicator

function of each possible value of the system state x(l), i.e., hl(x) = 1{x=x(l)}, l =

1, · · · , N , matrix H turns out to be an N × N identity matrix. Then, we arrive

at q = 0, i.e., N constraints qi(x(i)) = 0,∀i = 1, · · · , N , which is the same as

constraint (a) in (3.11). Actually, as long as k = N and H is of full rank, we

have q = 0. However, we obtain k constraints if we choose k less than N in the

approximation form (3.23) with a reduced number of constraints. For each equation,

according to the basis function selection, the corresponding elements in q sum up

to 0.

Remark 5. Analogous to the explanation in (3.11), the constraint (a) in (3.23)

achieves the occupancy equality for each feature rather than at each system state.

For example, with the choice of the basis functions as hl(x
′) = xl for all x′, l =

{1, 2, · · · , n}, the lth equation of constraint (a) in (3.11) is equivalent to the equation∑
x(i)∈X q

i(x(i)) = 0.
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3.3 Numerical Experiments

We implement our framework of the factored single-controller game and inves-

tigate the LP objective function as well as the policy of the attack and defender.

Besides, we compare the approximation accuracy and the computation time. The

LP objective shows in average the accuracy of the value functions starting at

different initial states, which reflects the security level of the system. This risk

analysis can have applications in areas such as cyber-insurance where risky systems

have high premium rates. We use the pseudocode in Algorithm 1 to compute the

saddle-point equilibrium policies for the factored single-controller game framework

as follows.

3.3.1 Transition Probability and Cost

To illustrate the algorithm, we take one node’s failure probability proportional to

the failure number of its neighboring nodes. After one node is attacked, it can infect

the connecting nodes and increase their failing risks. Besides, a node has a larger

failure probability if it is targeted directly by attackers. In an attacker-controlled

game, the defender cannot change the failure probability yet can positively affect

the cost function.

The system stage cost is the sum of the local stage cost of each node c(x, a,d) =∑n
l=1 cl(xl, al, dl), where cl(xl, al, dl) = ξ1(1− xl)− ξ2al+ ξ3dl− ξ4aldl. The explicit

form consists of four terms: the loss for faulty nodes, a cost of applying attacks,

protection costs, and a reward of protecting a node which is being attacked.

Since cl is the cost function of node l in the defender’s perspective and weights

ξi > 0, i = 1, 2, 3, 4, the second and fourth terms are negative. The ordering of
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Algorithm 1: Algorithm for computing the saddle-point equilibrium poli-
cies for the factored single-controller game framework as follows.

1 Initialize Initialize topology G, elimination order O, vector aflag (and dflag)
to indicate whether a node is controllable by attackers (and defenders);

// Note that ϕdi (xi, di) is a LP variable whose value depends on the

value of xi, di. Thus, we set up a n× n matrix to list all

possible values for each ϕdi (xi, di).

2 Define ALP variables w = {w0, w1, · · · , wn}, ϕd = {ϕdi (xi, di)}i=1,··· ,n;
3 Determine the domain of g = {gi(xi, xΩi , ai)}, i = 1, · · · , n, based on the

topology G;
4 Set up an n-dimensional cell for functions fi(xi, xΩi , ai), i = 1, · · · , n;
5 foreach cell i← 1 to n do
6 Create a table of fi’s value based on the value of variables involved in fi’s

domain, i.e., xi, xΩi , ai;
7 Compute the value of functions gi, hi, ci according to

fi(xi, xΩi , ai) = wl[γgl(xl, xΩl
, al)− hl(xl)] +

∑
dl
cl(xl, dl, al)ϕ

d
l (xl, dl) in

Section 3.2.5;
8 if aflag(i) = 0 (or dflag(i) = 0) then ai ← 0 (or di ← 0) ;

9 end
10 Eliminate action variables ai;
11 Generate n new LP variables ei, i = 1, · · · , n and set up a table based on the

value of variables in its domain. Add constraints (3.17) or (3.18) according to
aflag ;

12 Eliminate state variables xi according to the elimination order O;
13 Generate another n new LP variables Ei, i = 1, · · · , n, and setup a table

based on the value of variables in its domain. Add constraints (3.19);
14 Solve the new ALP (3.14) to get the value function and the optimal defender

policy;
15 Use greedy search for the distributed attacker policy (3.2.6);

ξ1 > ξ4 > ξ3 > ξ2 is assumed because the functionality of nodes serves as our

primary goal. Protections are more costly than attacks, however, once an adversary

attacks the node that possesses defensive strategies, e.g., a honeypot, which will

create a significant loss for the attacker.
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Figure 3.4: Approximation accuracy for a directed ring topology. The red and green
lines are the value of the objective function of the LP and ALP, obj(exact) and
obj(ALP ) respectively. The black arrow shows the value of the absolute error while
the blue number is the percentage of the relative error. The ALP achieves the upper
bound for the exact LP as the size of network grows, i.e., obj(ALP ) ≥ obj(exact)
for the same network size.

3.3.2 Approximation Accuracy

We use a directed ring topology as shown in Fig. 3.5 to show the accuracy of

the linear function approximation under the local information structure assumption.

The comparison is limited to a network with 7 or fewer number of nodes due to the

state explosion of the exact LP as shown in Table 3.1. The computational time is

recorded by tic and toc function in MATLAB and indicates the efficiency of the

approximate algorithm as node number increases.

Fig. 3.4 illustrates the fact that the growth of the network size causes an

increase of the absolute error obj(ALP )− obj(exact) ≥ 0. This increasing absolute
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Figure 3.5: Directed ring topology of six nodes with index 1 to 6.

Table 3.1: Time cost (units: seconds) for the directed ring with an increasing node
number.

Network Size 2 3 4 5 6 7
LP 0.21 0.63 3.33 34.52 178.68 1549.02
ALP 2.67 2.6 2.75 2.77 3.24 3.53

error is inevitable due to the growth of difference 2n − n as n grows. In particular,

the linear growth of the ALP variables wi, i ∈ {0, 1, ..., n} may not catch up with

the exponential growth of the exact LP variables v(x), x ∈ X .

However, the linear function approximation remains suitable when we take

a look at the relative error (obj(ALP ) − obj(exact))/obj(exact). We observe a

decrease in the value of the objective function when the number of nodes in the

network is larger than 3. Therefore, the error becomes negligible with a massive

node number, which serves well for our large-scale CINs.

Besides accuracy, we see that for the ring topology, increasing the network size

brings a higher cost to the attacker. Exponential function f(x) = 18.25e0.6178x

provides a good fitting to the green line with the Root Mean Squared Error (RMSE)

of 10.64.
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Figure 3.6: Value functions of different initial states in a four-node directed ring
topology. State 0, 1, · · · , 15 is a decimalization of 24 different states from (0, 0, 0, 0)
to (1, 1, 1, 1). Because the topology is symmetric, the number of working nodes
determines the value. For example, state 1, 2, 4, 9 share the same value in either
global or local information structure because they all just have one working node.
Besides, a better initial state (1, 1, 1, 1) with all nodes working causes less loss of
the system.

3.3.3 Various Information Structure

In Fig. 3.6, we compare the influence of global and local information structure

of the defender to the exact LP. Recall that the y-axis shows the optimal cost of

the system and a smaller value introduces a more secure system. Then, a local

information structure in red brings a higher system cost than a global information

structure in green for all initial states.

It shows that more knowledge can help defender better respond to the threat

from the attacker. We can understand this with an example of the information

structure of its neighboring nodes. Since the failure of its neighboring nodes

increases its risk of being attacked, it tends to defend itself even when it is still

working yet all his neighbors fail. Apparently, a defender with local information

structure cannot achieve that. Besides, with the increasing of node number, the
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difference grows between global and local information structures.

3.3.4 Network Effect
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Figure 3.7: Value function J∗(x0) and the number of defending nodes at the
optimal policy for different initial states x0 in a 6-node ring example. From the
value function (the blue line), the size of failures (the number of failure nodes) as
well as the location of the failures affect the security level of the system. At the
equilibrium policy, the size of defenses (the red line) is proportional to the number
of the working nodes in the network. The attacker (the green line) decreases the
number of nodes to attack as more nodes have been taken down but the green
line is not aligned with the top two figures. The initial states between dotted lines
share the same number of working nodes.

We reorganize the value-initial state pair (J∗(x0), x0) of a 6-node ring topology

in the top of Fig. 3.7 in an increasing order. Then, we see that the number of

faulty nodes dominates the order of value. However, when the number of failures

is the same, the location of the failure has an impact on J∗(x0), and a high

degree of the failure aggregation results in a less secure system. For example,

J∗(x0 = (1, 1, 1, 0, 0, 0)) > J∗(x0 = (1, 1, 0, 0, 1, 0)) > J∗(x0 = (1, 0, 1, 0, 1, 0))

because the dense pattern of the state vector (1, 1, 1, 0, 0, 0) is more likely to cause

a cascading failure in the network than a sparse one (1, 0, 1, 0, 1, 0). These results

suggest an alternating node protection if we cannot consolidate every node due to
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a limited budget. Specifically as shown in Fig. 3.5, we choose to consolidate every

other connecting node in the 6-node ring network, i.e., node 1,3,5.

3.3.5 Optimal Policy

The global stationary policies of defenders and attackers for a 6-node ring

topology is shown in Fig. 3.7 in red and green respectively. We observe that the

size of defense is proportional to the number of working nodes in the network while

the attacker compromises fewer nodes when the failure size increases.

Remark 6. Since the defender can only affect the system through the reward

function, the defense’s policy follows an opposite pattern of the value function.

The attacker, on the other hand, has a more irregular pattern because it can also

influence the transition of the system.

Other results of the approximated policy are summarized below. The local

stationary defender policy is to defend a normal node with a higher probability.

The defender does not defend the faulty nodes since the recovery of a failed node

cannot mitigate the loss. Furthermore, if we reduce the cost of state failure ξ1 or

increase the defense cost ξ3, we observe that the defender is less likely to defend.

The sub-optimal distributed attacker policy avoids attacking node l when nodes in

Ωl are working. With an increase in ξ4, the total number of attacks decreases to

avoid attacking protected nodes. Thus, the presence of the defender results in fewer

attacks. Besides, if node k cannot be attacked, then, naturally node k will not be

defended, and attacker tends to decrease attack levels at the parent nodes of k.



103

Chapter 4

Time-Sensitive Attack Response in

Nuclear Power Plants

As an example Industrial Control System (ICS) illustrated in Fig. 1.1, nuclear

power plants play an essential role in energy supply and are under threat of

sophisticated attacks. Once a cyber attack is detected, plant operators need to take

actions to mitigate the consequences of the attack. However, this is a challenging

task for the operators. First, the operators need to respond promptly. The high

system complexity, the operators’ knowledge limitations, and their increased stress

during the incident may delay the response. Second, the dynamics of the system

under a cyber attack depend on the actions of both system operators and the

attacker. Therefore, the operators need not only to consider the effect of their own

actions but also take into account the effect of the attacker’s possible actions. Third,

the operators are required to take actions to maximize long-term benefit rather

than just take myopic actions that maximize the short-term benefit. Therefore, it

is necessary to develop an attack response plan to support the plant operators. The
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importance of such a plan has also been emphasized in cyber-security regulation

and guideline documents from the U.S. Nuclear Regulatory Commission [160], the

Nuclear Energy Institute [153], the National Institute of Standards and Technology

[28, 205], and the Department of Homeland Security [39]. For example, the U.S.

Nuclear Regulatory Commission states [160]: “The cyber security plan must include

measures for incident response and recovery for cyber attacks. The cyber security

plan must describe how the licensee will: (i) Maintain the capability for timely

detection and response to cyber attacks; (ii) Mitigate the consequences of cyber

attacks.” Motivated by these needs, we propose a game-theoretic framework to

determine the optimal actions for plant operators in responding to a cyber attack.

In addition to obtaining the optimal cyber-attack response strategy, we also

focus on real-time assessment of the risk to nuclear power plants resulting from a

cyber attack. This allows us to have a quantitative and objective estimate of the

cyber-security risk to the plants, and to identify the gaps where improvements can

be made.

4.1 Modeling of Defender-Attacker Interactions

Section 4.1.1 provides the modeling of the defender-attacker interaction as a

finite-horizon Semi-Markov Game (SMG), and Section 4.1.2 introduces a systematic

method for identifying feasible system states and transitions between the states

under different action pairs in the game model. We integrate Probabilistic Risk

Assessment (PRA) techniques into the modeling framework to quantify state

transition probabilities in Section 4.1.3.
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4.1.1 Finite-Horizon General-Sum Semi-Markov Game

Accompanied by the wider deployment of Information and Communication

Technologies (ICTs) in nuclear power plants (e.g. smart sensors, wireless networks,

PLC, SCADA) are the vulnerabilities embedded in these components. Such vulner-

abilities can be potentially exploited by malicious attackers to cause damages to the

physical components through attacks on cyber components. Such examples include

the attack on Iran’s nuclear facilities with Stuxnet [48] and the cyber event that

occurred in the Davis-Besse nuclear power plant [133], where zero-day and n-day

vulnerabilities in Windows systems were exploited. Zero-day vulnerabilities are

particularly dangerous since no patches for the vulnerabilities have been developed.

Even if a vulnerability has been identified, there is usually a time gap between

patch release and patch installation [133], which provides n-day attackers with a

time window to exploit the vulnerability. Besides, the patching process itself can be

used as an attack vector. To improve the cyber-security posture of nuclear power

plants, in addition to taking precautions to prevent cyber attacks from happening,

it is also necessary to develop resilient attack response strategies in case certain

components have been compromised.

In this research, we aim to develop a method for determining the optimal attack

response strategy and for PRA. Suppose that a cyber attack is detected, then

the reactor operator or the defender needs to respond to the attack to minimize

its consequence. To develop an appropriate model for this problem and solve the

problem, we need to take the following three aspects into consideration. First,

because of the existence of the attacker, this is no longer a single-player decision-

making optimization problem. One defender action paired with different attacker

actions may lead to different consequences, and hence different payoffs for the
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defender. Therefore, in the modeling we need to consider both the defender’s and

the attacker’s actions, as well as the effect of their interactive behavior on the

system. Second, under a pair of defender and attacker actions, the system may

transition from the current state to other states with certain probabilities, and

the probabilities may vary with different defender-attacker action pairs. Besides, a

system state transition is also stochastic with respect to time. Different system

state trajectories correspond to different consequences and hence different payoffs

for the defender. Therefore, the stochastic nature of state transitions needs to be

considered in the modeling. Third, an attack normally will not last forever and

the plant emergency support team should be able to terminate the attack after

a certain amount of time. Therefore, it is preferable to model the problem as a

finite-horizon process rather than an infinite-horizon process. Accordingly, this

leads to a time-sensitive strategy for the defender, since the defender’s optimal

response may vary at different times in the finite horizon. To account for all the

above aspects in one single modeling framework, we model the defender-attacker

interaction as a SMG with a finite time horizon.

Specifically, the SMG has a finite time horizon H ∈ (0,∞) and a finite system

state set Se. In the context of nuclear power plants, a state can be reactor core

damage. We use i ∈ {1, 2} in superscript to denote the defender and the attacker,

respectively. The game can start from an arbitrary time point denoted as T0 = 0.

Both players take their first actions at T0 = 0, and the initial time point corresponds

to decision epoch j = 0. When the next state transition is detected at time point

T1 > T0, both players take their second actions and T1 corresponds to decision

epoch j = 1. Since both players are not capable of observing the other player’s

actions, they are considered to take actions simultaneously at these discrete decision
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epochs. At each decision epoch j, player i ∈ {1, 2} under system state sj ∈ Se can

take action aij ∈ Ai(sj),∀sj ∈ Se, from a state-dependent action set Ai(sj) which

is discrete, finite, and commonly known by both players. In reality, one player

may not possess the full information about his/her opposite’s action set. But the

assumption of complete information is the starting point of our research. As an

example of action pairs in the context of nuclear power plants, the defender can

switch to a backup component and the attacker can compromise a component in

use. The action pair (a1j , a
2
j) results in the next state sj+1 ∈ Se with transition

probability p(sj+1|sj, a1j , a2j). The transition can take place after sojourn time tj,

which is a random variable with support [0,∞) and distribution q(·|sj, a1j , a2j , sj+1).

Note that after taking the action pair (a1j , a
2
j) at the current decision epoch j, the

players need to wait for the sojourn time tj until the next decision epoch j + 1 to

take a new pair of actions (a1j+1, a
2
j+1). With a slight abuse of notation, we use

q(tj|sj, a1j , a2j , sj+1) to denote the probability density that the system remains in sj

at time tj prior to the transition from sj to sj+1 under the action pair (a1j , a
2
j). From

a simple chain rule of conditional probability, we have the conditional probability

of tj and sj+1 as

Pr

(
tj, sj+1|sj, a1j , a2j

)
= q

(
tj|sj, a1j , a2j , sj+1

)
p

(
sj+1|sj, a1j , a2j

)
. (4.1)

The process introduced above is a multi-agent SMDP, i.e., a SMG, because

both the state transition and the sojourn time follow the Markov property only

at decision epochs and the sojourn time distribution q(·|sj, a1j , a2j , sj+1) can be

arbitrary. If q is an exponential distribution, then the SMG reduces to a continuous-

time Markov game which satisfies the Markov property at arbitrary time points.
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If Pr(tj, sj+1|sj, a1j , a2j) is independent of j, then the game process is said to be

homogeneous and the probability becomes Pr(t, s′|s, a1, a2) where s, a1, a2, s′ and

t denote the current state, the defender action, the attacker action, the next state,

and the sojourn time at the current state, respectively.

In real-world applications, the stochastic sojourn time and the semi-Markov

assumption that players only take actions at discrete decision epochs can be

explained from the following perspectives. Anytime the players observe a state

transition, they take actions. For example, if a control computer is compromised,

the defender may switch to a backup computer and the attacker may compromise

another component in the system. However, it may take them a random amount of

time to complete the actions. Besides, even if the actions are completed immediately,

the observation of the state transition can experience a random amount of time

delay. Therefore, the players would not change their actions between two decision

epochs.

Semi-Markov decision processes where there is only one player or decision-maker

have found wide applications in areas such as queuing control [174] and maintenance

optimization [26]. In this work, we focus on SMGs of finite horizon, which can be

represented as

(T0 = 0, s0, a
1
0, a

2
0, T1, s1, a

1
1, a

2
1, . . . , Tj, sj, a

1
j , a

2
j , . . . , Tm, sm, a

1
m, a

2
m). (4.2)

The continuous-time state transition terminates when horizon H is reached and

m is the number of state transitions. In (4.2), m is a random variable with support

{0, 1, 2, . . . } and its instantiation depends on both horizon H and the stochastic

sojourn time at each decision epoch. Two samples of the process are shown in
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Figure 4.1 for illustration.
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Sample 1

Sample 2

Figure 4.1: Two sample path realizations of the finite-horizon SMG. Tj: the time
of the jth decision epoch; tj: the sojourn time before the (j + 1)th decision epoch,
tj=Tj+1−Tj ; H: predetermined finite time horizon; a1j : the defender’s action at the
jth decision epoch (solid circle), which corresponds to time Tj; a

2
j : the attacker’s

action at the jth decision epoch.

Player i’s action at each decision epoch is a realization of the mixed strategy

σi ∈ Σi, which is defined in (4.3) and (4.4). A mixed strategy determines the

probability (the probability is what makes it a mixed strategy) of an action which

the player takes at any system state and any time of the game. As an example,

a mixed strategy may determine that a player takes action 1 with probability 0.2

and action 2 with probability 0.8 at system state 3 and 10 min into the game. As

a special case of a mixed strategy, a pure strategy determines the exact action

(action 1 or action 2 with probability 1 in the aforementioned example). The finite

time horizon renders the effect of both players’ strategies time-dependent and the
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strategies should be adaptive to the amount of time that remains in the finite

horizon. For example, as the amount of time remaining decreases, the player should

reduce the probability of taking costly actions that produce benefits beyond the

finite horizon of the game (therefore not counted). Formally, the mixed strategy

for each player i ∈ {1, 2} depends on both the system state and the time at the

current decision epoch, i.e.,

σi ∈ Σi : Se × [0, H] 7→ ∆Ai(s), (4.3)

∆Ai(s) :=

{
f : Ai(s) 7→ R+

∣∣∣∣∣ ∑
ai∈Ai(s)

f(ai) = 1

}
,∀s ∈ Se. (4.4)

Since actions are applied at discrete decision epochs, each player i ∈ {1, 2}

receives an equivalent payoff ri(sj, a
i
j, tj, sj+1) at decision epoch j ∈ {0, 1, 2, . . . ,m},

which is decomposed into the following three terms to capture the payoff of the

discrete decision, state transition, and the continuous sojourn time, respectively.

ri(sj, a
i
j, tj, sj+1) = ri,1(sj, a

i
j) + ri,2(sj, sj+1) + ri,3(sj, tj), i ∈ {1, 2}. (4.5)

Here, ri,1(sj, a
i
j) denotes the lump-sum payoff for taking action aij at state sj;

ri,2(sj, sj+1) denotes the lump-sum payoff for system transition from sj to sj+1;

ri,3(sj, tj) denotes the duration payoff for staying in state sj for time tj. Each

player i ∈ {1, 2} aims to determine a mixed strategy σi
∗ ∈ Σi to maximize the

cumulative payoff ui(s0, H, σ
1, σ2) in (4.6) expected (denoted by E) over a1j ∼ σ1

(i.e., ∼ means that a1j is chosen according to the mixed strategy σ1), a2j ∼ σ2, tj,

and sj for all j ∈ {0, 1, . . . ,m}. Since there is no state transition after the last

decision epoch, the lump-sum payoff for state transition is not considered in (4.6),
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as indicated by the last two terms.

ui(s0, H, σ
1, σ2) = E

[m−1∑
j=0

(
ri(sj, a

i
j, tj, sj+1)

)
+ ri,1(sm, a

i
m) + ri,3(sm, H − Tm)

]

= E
[m−1∑
j=0

(
ri,1(sj, a

i
j) + ri,2(sj, sj+1) + ri,3(sj, tj)

)
+ ri,1(sm, a

i
m) + ri,3(sm, H − Tm)

]
, i ∈ {1, 2}.

(4.6)

Here, each player can only control his/her own strategy, which leads to the

solution concept of NE. This will be introduced in Section 4.2.1.

4.1.2 Identification of System States and State Transitions

Suppose the system under study consists of M components. Each component

o ∈ {1, . . . ,M} has a finite set of possible state values, denoted as Eo and the

system state space Se := E1 × E2 × · · · × EM can be represented by the Cartesian

product of M sets, i.e., Eo, o = 1, 2, . . . ,M . We use eo ∈ Eo to denote the

instantiation of the component o’s state. Then, each system state s ∈ Se can be

represented by the instantiation vector, i.e., s = (e1, e2, . . . , eM). Let | · | denote

the cardinality of the set. It is clear that the size of the potential state space

|Se| = ∏
o∈{1,2,...,M}

|Eo| ≥
(
min
o
|Eo|

)M

increases at least exponentially with the

number of components in a system. Thus, it is favorable to reduce the system

state space and only consider the states that are of interest in the modeling and

analysis of the game. For example, for a control system consisting of one main

control computer and one backup control computer, we do not need to consider the
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state where both computers are used for control. However, it is not straightforward

to identify these infeasible states for a system that consists of a large number of

components.

Figure 4.2 presents the analysis for an example system to illustrate the algorithm.

The example system consists of two components used for normal operation and

backup, respectively. For simplicity, we have made the following assumptions.

The defender can only switch from the first component for normal operation to

the second one for backup, and hence A1 = {a1,1, a1,2} as shown in Figure 4.2.

The attacker can only compromise a component in use. We also assume that the

defender’s action is always effective, that is when the defender takes action a1,2,

the switch is always successful. However, the attacker’s action may not always be

effective. For example, when the attacker takes action a2,2, component 1 is only

compromised with a probability less than one. In Figure 4.2, a solid circle means

that the analysis continues at the corresponding state, a solid square means that

the analysis ends at the corresponding state, and an arrow denotes an action pair at

the corresponding state. The analysis starts with the initial state q0 = (e11, e21). At

this state, the defender can take actions from A1((e11, e21)) = {a1,1, a1,2}, and the

attacker can take actions from A2((e11, e21)) = {a2,1, a2,2}. Based on our assumption,

action a2,3 is not available to the attacker at this state because component 2 is

not in use. Therefore, there are four possible action pairs and we can identify four

successor states resulting from these four action pairs. Correspondingly, Q and S

are updated. Note that one of the four successor states is exactly the initial state,

and will not be analyzed again in the next step. This process continues and Q

and S are updated until the end of the analysis, which is indicated by Q = ∅. For

this illustrative example, at the end of the analysis we have identified six system
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states, as shown in the rectangular box at the bottom of Figure 4.2. Once we have

the tree-structure graph on the left side of Figure 4.2, the state transitions are

readily identified. For example, we can see from Figure 4.2 that given start state

(e11, e21) and under action pair (a1,1, a2,2), the system can remain in the same state

or transition to (e12, e21).

Set 

Set to be each state in 

Set to be each state in 

Set to be each state in 

End of analysis

Initial state

Action pair

Successor state

Action pair

Successor state

Action pair

Successor state

Figure 4.2: Illustration of the algorithm for identifying system states and state
transitions.

For complex systems that have a large number of states, we still need to

apply our knowledge of the system (e.g. the components comprising the system,

the components states, the effect of defender-attacker actions on system state

transitions) to manually perform the analysis following the proposed algorithm and

identify system states and state transitions. Such analysis based on the analyst’s
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knowledge is not unique to our method, but is commonly used in tasks related to

the identification of system states and state transitions. However, the advantage of

the proposed algorithm is that it provides us with a systematic way of exploring

the system state space and identifying feasible system states and state transitions.

Therefore, it can potentially reduce the system state space significantly. Taking

this simple two-component system as an example, if we simply set the system state

space as all the combinations of the components states, there would be 16 (i.e.

4×4) system states. However, we note that among the 16 system states, the state

where the component for normal operation is “normal in use” and the component

for backup is “normal in use” is not feasible in real-world applications, because

normally only one of the two components is used at one single time point. By

following the proposed algorithm, this system state is automatically eliminated.

Besides, the proposed algorithm also helps us to avoid the situation where certain

system states are ignored (considering the large number of system states, this is

likely to happen if the analysis is not systematic).

4.1.3 Using PRA to Determine Transition Probabilities

Besides identifying system states and feasible state transitions, another task

in developing the SMG model is to determine the probability for each feasible

transition. Under certain conditions, the system may transition to states that

correspond to physical damage. In this subsection, we introduce a method by

integrating PRA techniques to determine such transition probabilities.

PRA [114] has found extensive applications in risk assessment for complex

industrial systems, e.g., nuclear power plants, aerospace shuttles, and oil and gas

systems. A PRA analysis combines two main elements: event tree analysis and
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fault tree analysis. Event tree analysis starts with an initiating event, generates

sequences depending on whether safety functions succeed or not, and determines

the consequence for each sequence. Based on the likelihood of the initiating event

and safety functions failures, event tree analysis helps determine the likelihood of

consequences of concern, e.g., reactor core damage. The probability of each safety

function failure in an event tree can be obtained based on fault tree analysis. A

fault tree analysis handles the safety function failure as a top event, decomposes it

into a number of basic events, and links the top event and the basic events through

logic gates, e.g., AND/OR gates. Based on the probabilities of the basic events,

the probability of the top event, i.e., the safety function failure, can be obtained.

In a fault tree, the states of the basic events, i.e., TRUE or FALSE, can be

determined by the states of the components that constitute the system under study.

In the SMG model, as introduced in Section 4.1.2, the state of the system can

also be represented by the states of these components. Therefore, the states of

these components can be used to connect a PRA model to the SMG. Based on

the identified components states, we can then assign TRUE or FALSE to the basic

events in the fault tree and derive the probability that the system will transition

to states that correspond to physical damage modeled in the PRA model. The

connection of the PRA model and the SMG can be defined formally as follows.

We divide the identified state set S ⊆ Se into two new sub-sets S := Sb × Sc.

The first sub-set Sb := Eb1 × · · · × Ebg is used to represent the states of the

basic components, bob , ob = 1, . . . , g. Examples of basic components are control

computers, and sensors, which can be actually attacked by the attacker or controlled

by the defender. The compromise of the basic components usually does not

directly lead to the consequences of concern. Thus, we define the second sub-set
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Sc := Ec1 × · · · × Ecz to represent the states of consequential components, coc ,

oc = 1, . . . , z. Consequential components are related to the consequences of concern.

For instance, in the application of nuclear power plants, such a consequential

component can be the reactor core, which has two states (core damage or core

OK). These consequential components usually cannot be damaged directly but the

damage can be realized through compromising the basic components, as described

in a PRA model. We use s and s′ to represent the value of identified state at

the current and subsequent decision epochs, respectively. The same notation rule

applies to sb, s
′
b, sc, s

′
c, a

1, a1
′
, a2, and a2

′
. We have s = (sb, sc) and s

′ = (s′b, s
′
c).

The causal relationship between the states of the components is shown in Figure

4.3, which implies that states of basic components and the action pair at the current

decision epoch will influence states of basic components at the next decision epoch.

The states of basic components and the consequential components at the current

decision epoch influence the state of consequential components at the next decision

epoch.

     

  

  

   
    

  
 

  
 

Figure 4.3: The causal relationship between the basic components states, conse-
quential components states, and player actions.

By separating s into sb and sc, and s
′ into s′b and s

′
c, we can express the transition
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probability as:

Pr(s′|s, a1, a2) = Pr

(
(s′b, s

′
c)|(sb, sc), a1, a2

)
. (4.7)

Based on the causal relationships in Figure 4.3 and the chain rule of probability,

(4.7) can be simplified as

Pr(s′|s, a1, a2) = Pr(s′b|sb, a1, a2)× Pr(s′c|sc, sb). (4.8)

The first term on the right side of (4.8) quantifies the interaction between

the defender and the attacker. This transition probability can be obtained based

on expert judgments, statistics, simulations [134], or the Common Vulnerability

Scoring System (CVSS) scores [170]. The second term on the right side of (4.8)

quantifies the relationship between the states of basic components and consequential

components, which can be obtained through a PRA model.

The method for integrating PRA to obtain transition probabilities is illustrated

in Figure 4.4 through a simple example based on the main feedwater system and

the reactor core. The state space can be represented by the states of the four

components, i.e., main computer, backup computer, sensor, and reactor core. In this

example, we would like to determine the transition probability from state s to state

s′ under action pair (a1 = no action, a2 = no action). The first three components

(i.e., main computer, backup computer, sensor) are the basic components and the

fourth one (i.e., reactor core) is the consequential component. The first term in

(4.8), i.e., Pr(s′b|sb, a1, a2), is equal to unity because state s′b represents the universe

and includes any possible state of the basic components, i.e., sb, no matter which

defender and attacker actions are taken. To derive the second term in (4.8), i.e.,
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Pr(s′c|sc, sb), we first assign “TRUE” or “FALSE” to the basic events in the fault

tree based on the states of basic components for state s in the SMG model. For

instance, as the sensor is “compromised and used” in state s, we can assign “TRUE”

to the basic event “sensor is used but compromised.” In the second step, based on

the states of the basic events, the probability of the top event (i.e., main feedwater

system failure) can be obtained as one. In the third step, we obtain the probability

of core damage using the event tree. Consider a transient caused by a cyber attack

(i.e., the initiating event in the event tree) occurs, reactor shutdown succeeds, and

the auxiliary feedwater system fails with a probability of 0.001, then the probability

of core damage can be obtained as 0.001. In the fourth step, by multiplying the

two terms (i.e., Pr(s′b|sb, a1, a2) and Pr(s′c|sc, sb)), we finally obtain the transition

probability as 0.001.

4.2 Solution Concept and Technique

In this section, we first introduce the solution concept of the Nash Equilibrium

(NE) for the game formalized in Section 4.1. Then, we introduce the dynamic

programming technique to obtain the NE.

4.2.1 Nash Equilibrium

A mixed-strategy profile (σ1∗ ∈ Σ1, σ2∗ ∈ Σ2) is a NE if for both the defender

(i = 1) and the attacker (i = 2),

v1(s,H − T ) := u1(s,H − T, σ1∗, σ2∗) ≥ u1(s,H − T, σ1, σ2∗),

∀s ∈ S,∀σ1 ∈ Σ1,∀T ∈ [0, H], (4.9)
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System state s

Sensor: compromised and used
Main computer: normal and used
Backup computer: normal and not used
Reactor core: OK

System state s’

Sensor: any state
Main computer: any state

Backup computer: any state
Reactor core: damaged

Semi-Markov game

Main 
computer is 

used but 
compromised

Backup 
computer is 

used but 
compromised

Control computer compromised

Main feedwater system 
failure

TRUE FALSE FALSE

Fault tree

Sensor is used 
but 

compromised

Transient Reactor 
shutdown

Main feedwater 
system

Success

Failed

Core condition

OK

Damage

OK

OK

Transition probability
0.001

Event tree

Auxiliary 
feedwater system

OK

Damage

Defender: no action
Attacker: no action

Pr(core OK)=0.999

Pr(core damage)=0.001

Step 1

Step 2

Step 3

Step 4

Figure 4.4: Illustration of the method for obtaining state transition probabilities.

v2(s,H − T ) := u2(s,H − T, σ1∗, σ2∗) ≥ u2(s,H − T, σ1∗, σ2),

∀s ∈ S, ∀σ2 ∈ Σ2, ∀T ∈ [0, H], (4.10)

where vi(s,H−T ) is the value function for player i at state s and time T . Specifically,

vi(s0, H) describes the maximum payoff for player i if the system starts with s0 at

time 0 and the finite horizon is H. Since the SMG terminates at a finite horizon

H, the boundary conditions are vi(s, 0) = max
ai∈Ai(s)

ri,1(s, ai), ∀s ∈ S,∀i ∈ {1, 2}.

At a mixed-strategy NE, no player can gain by unilateral deviations. For the

SMG with a finite horizon used in this research, a mixed strategy is defined as a

function of both system states and time in the process. The optimal cyber-attack
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response strategy σ1∗ maximizes the payoff for the defender while considering the

potential actions of the attacker at any state and any time.

4.2.2 Dynamic Programming

In dynamic programming, the cumulative payoff for player i in (4.6) can be

written in the form in (4.11). In (4.11), ri(s0, a
i
0, t0, s1) is the immediate payoff

and ui(s1, H − t0, σ1, σ2) is the payoff-to-go with remaining time H − t0. Since the

first system transition can occur at any time between 0 and H, according to the

sojourn time distribution q, we integrate ri(s0, a
i
0, t0, s1) + ui(s1, H − t0, σ1, σ2) in

(4.11) in t0 over [0, H]. The expectation is over the defender action a10 ∼ σ1, the

attacker action a20 ∼ σ2, and state s1 where the system arrives at decision epoch

1. We use µi(·|s0, 0) to denote the probability distribution σi(s0, 0) and therefore

µi(ai0|s0, 0) is the probability that player i takes action ai0 at state s0 and time 0.

In (4.12), ui(sj, H − Tj, σ1, σ2) at any decision epoch j are of the similar form as

ui(s0, H, σ
1, σ2) which equals.

E
a10,a

2
0,s1

[ ∫ H

0

(
ri(s0, a

i
0, t0, s1) + ui(s1, H − t0, σ

1, σ2)

)
q(t0|s0, a10, a20, s1)dt0

]
=

∑
a10∈A1(s0)

µ1(a10|s0, 0)
∑

a20∈A2(s0)

µ2(a20|s0, 0)
∑
s1∈S

p(s1|s0, a10, a20)
[ ∫ H

0

(
ri(s0, a

i
0, t0, s1)

+ ui(s1, H − t0, σ
1, σ2)

)
q(t0|s0, a10, a20, s1)dt0

]
, i ∈ {1, 2}.

(4.11)
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ui(sj , H − Tj , σ
1, σ2) = E

a1j ,a
2
j ,sj

[ ∫ H−Tj

0

(
ri(sj , a

i
j , tj , sj+1)

+ ui(sj+1, H − Tj − tj , σ
1, σ2)

)
q(tj |sj , a1j , a2j , sj+1)dtj

]
=

∑
a1j∈A1(sj)

µ1(a1j |sj , Tj)
∑

a2j∈A2(sj)

µ2(a2j |sj , Tj)
∑

sj+1∈S
p(sj+1|sj , a1j , a2j )

∫ H−Tj

0
(ri(sj , a

i
j , tj , sj+1) + ui(sj+1, H − Tj − tj , σ

1, σ2))q(tj |sj , a1j , a2j , sj+1)dtj ,

j = 0, 1, 2, . . . , i ∈ {1, 2}.

(4.12)

To obtain the value functions defined in (4.9) and (4.10) and then the mixed-

strategy NE, one way is to find a contraction mapping. Contraction mapping is a

commonly used property of an operator Γ to prove that a unique fixed point exists.

With this property, equation v = Γv has the unique solution v0 that can be found

via value iteration. That is, independent of the initial value set for v, after applying

Γ for an infinite number of times, v∞ converges to v0. Finite horizon semi-Markov

decision processes (with only one player) possess the contraction property defined in

[135], thus function approximation can be applied iteratively and is guaranteed to

converge to the unique value of concern under any initial condition. However, the

general-sum SMG with arbitrary distributions q(·|sj, a1j , a2j , sj+1) and p(·|sj, a1j , a2j)

considered in this research does not satisfy this contraction property, and the

integration in (4.12) makes it challenging to obtain an analytic solution.

To solve this problem, we discretize the continuous-time SMG of horizon H into

N time steps with a constant time interval H/N and approximate the integration

in (4.12) as in (4.13). Therefore, the accuracy of the analysis may depend on the

number of time steps. Using a smaller time interval and hence more time steps

increases the accuracy of the result, but also is more computationally expensive.
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Therefore, we need to balance these two aspects. In a specific application, a range

of time intervals can be tested, and the one that achieves high accuracy and is also

computationally efficient can be identified. To avoid confusion, we have dropped

index j which denotes the jth decision epoch. Instead, we use s to denote the state

at the current decision epoch and s′ the state at the subsequent decision epoch.

In (4.13), h denotes the time step corresponding to the current decision epoch,

N − h denotes the number of remaining time steps, k denotes the sojourn time

(represented by the number of time steps) at the current state, and N − h− k is

the number of remaining time steps at the subsequent decision epoch. In (4.13),

q̃(k|s, a1, a2, s′) =
∫ H

N
k

H
N
(k−1)

q(τ |s, a1, a2, s′)dτ is the probability that the sojourn time

at the current state is k.

ui(s,N − h, σ1, σ2)

=
∑

a1∈A1(s)

µ1(a1|s, h)
∑

a2∈A2(s)

µ2(a2|s, h)
∑
s′∈S

p(s′|s, a1, a2)
N−h∑
k=1

q̃(k|s, a1, a2, s′)
(
ri(s, ai, k, s′) + ui(s′, N − h− k, σ1, σ2)

)
, h = 0, 1, . . . , N, i ∈ {1, 2}.

(4.13)

Theorem 2. A pair

(
σ1∗(s, h), σ2∗(s, h)

)
constitutes a mixed-strategy NE solution

to the bi-matrix game (R1
h,s, R

2
h,s) if, and only if, there exists a pair (w1∗, w2∗) such

that (σ1∗(s, h), σ2∗(s, h), w1∗, w2∗) is a solution of the following bilinear program:

max
σ1(s,h),σ2(s,h),w1,w2

∑
a1∈A1(s)

µ1(a1|s, h)
∑

a2∈A2(s)

µ2(a2|s, h)
∑
i∈{1,2}

Ri
h,s(a

1, a2) +
∑
i∈{1,2}

wi

(4.14)
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such that

∑
a2∈A2(s)

µ2(a2|s, h)R1
h,s(a

1, a2) ≤ −w1(s, h),∀a1 ∈ A1(s),∀σ2(s, h) ∈ ∆A2(s)

(4.15)

∑
a1∈A1(s)

µ1(a1|s, h)R2
h,s(a

1, a2) ≤ −w2(s, h),∀a2 ∈ A2(s),∀σ1(s, h) ∈ ∆A1(s)

(4.16)

In (4.14), µ1(·|s, h) = σ1(s, h), µ2(·|s, h) = σ2(s, h). R1
h,s and R

2
h,s are the payoff

matrices for the defender and the attacker, respectively. Matrix Ri
h,s depends on h

and s, and has a dimension of |A1(s)| × |A2(s)| where Ri
h,s(a

1, a2) is the element of

row a1 and column a2. Notations w1 and w2 are decision variables in the bilinear

program and w1∗ and w2∗ are solutions to the bilinear program. After solving the

bilinear program, we can also obtain the value at state s and time step h for player

i, i.e. vi(s,N − h) = −wi∗.

In the case of multiple mixed-strategy Nash equilibria, we choose the equilibrium

that maximizes the information entropy of both players’ strategies. The strategy

with a large entropy possesses a significant amount of uncertainties, and hence it is

harder for the other player to learn the strategy. The extreme case of a pure strategy

(the action in a pure strategy is deterministic, in contrast with the uncertain actions

in a mixed strategy) has the minimal entropy of 0. Then, the observation of the

action directly reveals the strategy.
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4.3 Risk Assessment

In this section, we focus on the analysis of system evolution under the equilibrium

strategies and the resulting risk to the system over the finite horizon H. This

analysis is important as it provides us with direct information on the likelihood

of the system surviving a cyber attack and the timing of system failures. The

PRA model described in Section 4.1.3 is used to determine the state transition

probabilities which constitute one essential element of the SMG model, while the

risk assessment introduced in this section is based on the developed SMG model.

4.3.1 Risk Metrics

In this research, we focus on three risk metrics. Suppose that at the current

decision epoch, there are N − h∗ remaining steps and the system is in state s∗,

both of which are known to the players. The first metric is the probability that the

system reaches a set of undesirable states (e.g., core damage) for the first time at a

particular time step from the current step. The second metric is the probability

that the system reaches the set of undesirable states before or at a particular time

step from the current step. The third metric is the probability distribution of

system states at each time step.

We denote the sets of desirable states and undesirable states by D ⊆ S and

U ⊆ S, respectively. We denote the first time step when the system reaches U by

TU . We also assume that at h∗, the system is at a desirable state in D. The first

risk metric can be expressed as Pr(TU = h|Sh∗ = s∗), where Sh∗ = s∗ means that

at time step h∗ the system state is s∗. Since we have discretized the continuous

time horizon H into N discrete time steps, Pr(TU = h|Sh∗ = s∗) actually denotes
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the probability that the system reaches a set of undesirable states for the first

time in the time interval between H
N
(h− 1) and H

N
h. The second risk metric can

be expressed as Pr(TU ≤ h|Sh∗ = s∗). The third risk metric can be expressed as

Pr(s|h, Sh∗ = s∗). We provide two methods for risk assessment: one is the exact

analytical method and the other one is based on Monte Carlo simulation.

4.3.2 Exact Analytical Method

With fixed strategies of the defender and the attacker, the discrete time SMG

formalized in Section 4.2 can be converted to a discrete-time semi-Markov chain

[13]. Similar to Pr(s′, k|s, a1, a2) = p(s′|s, a1, a2)q̃(k|s, a1, a2, s′) in a discrete-time

SMG, Pr(s′, k|s, h) in a discrete-time semi-Markov chain is used to describe system

transitions, which can be obtained as in (4.17).

Pr(s′, k|s, h) =
∑

a1∈A1(s),a2∈A2(s)

µ1∗(a1|s, h)µ2∗(a2|s, h)p(s′|s, a1, a2)q̃(k|s, a1, a2, s′),

∀s ∈ S,∀h ∈ {0, . . . , N},∀k ∈ {1, . . . , N − h}.

(4.17)

In (4.17), µ1∗(·|s, h) = σ1∗(s, h) and µ2∗(·|s, h) = σ2∗(s, h). Note that h is

included in Pr(s′, k|s, h) because the strategies of the defender and attacker are

both functions of time over the finite horizon N . This means that the transition is

non-stationary. Also, because of the finite horizon,

∑
s′,k≤N−h

Pr(s′, k|s, h) ≤ 1, (4.18)
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where 1− ∑
s′,k≤N−h

Pr(s′, k|s, h) is the probability that no transition happens before

N − h steps.

The sojourn time distribution also relies on h:

Pr(k|s, h) =
∑
s′

Pr(s′, k|s, h). (4.19)

In contrast to the way of deriving the mixed-strategy NE in a backward fashion,

Pr(TU = h|Sh∗ = s∗) can be obtained recursively in the forward fashion as presented

in Algorithm 2. In the algorithm, Pr(s′, h∗ + j|Sh∗ = s∗) is the probability that

a state jump occurs at h∗ + j and the system arrives at s′ given that at h∗ the

system state is s∗ and the system has never reached a state in U before h∗ + j.

The algorithm takes into account the fact that the system may jump several times

between states in D before the first time arriving at a state in U at h∗ + j which is

subsequent to h∗. As the algorithm is implemented recursively, it is computationally

efficient for arbitrarily large horizon N .

The second risk metric Pr(TU ≤ h|Sh∗ = s∗) can be obtained simply by

Pr(TU ≤ h|Sh∗ = s∗) =
h∑

l=h∗

Pr(TU = l|Sh∗ = s∗), ∀h ∈ {h∗, . . . , N}, (4.20)

where h∗ is the current decision epoch and s∗ is the system state at h∗. The

derivation of the third risk metric, the probability distribution of system states at

each time step, i.e., Pr(s|h, Sh∗ = s∗), is less straightforward than the above two

metrics. The algorithm for obtaining this risk metric is presented in Algorithm

3. In the algorithm, Tr(s′, h∗ + j|Sh∗ = s∗) represents the probability that a state

jump occurs at h∗ + j and the system enters state s′, given that at h∗ the system

state is s∗. It takes into account all the possible state jump trajectories from h∗.



127

Algorithm 2: The algorithm for obtaining the probability mass function
of the first arrival time.

16 Input:
17 h∗,∀h∗ ∈ {0, 1, . . . , N} // the current time step with N − h∗

remaining time steps in the game

18 s∗, s∗ ∈ D // the current system state and is assumed to be in D
19 D ⊆ S, U ⊆ S // the sets of desirable states and undesirable

states, respectively

20 Pr(s′, k|s, h), h ∈ {h∗, . . . , N}, s, s′ ∈ S // transition function in the

semi-Markov chain

21 First arrival time:
22 set Pr(s∗, h∗|Sh∗ = s∗) = 1 // the state at the time step h∗ is

s∗ ∈ D
23 for j = 1 to N − h∗ do

24 Pr(s′, h∗ + j|Sh∗ = s∗) =
j−1∑
l=0

∑
s∈D

Pr(s, h∗ + l|Sh∗ =

s∗) Pr(s′, j − l|s, h∗ + l),∀s′ ∈ S
25 Pr(TU = h∗ + j|Sh∗ = s∗) =

∑
s′∈U

Pr(s′, h∗ + j|Sh∗ = s∗)

26 Output:
27 Pr(TU = h|Sh∗ = s∗),∀h ∈ {h∗, . . . , N}

In contrast, Nr(s′, h∗ + j|Sh∗ = s∗) represents the probability that the system stays

in state s′ at a previous time step and no state jump has occurred by h∗ + j, given

that at h∗ the system state is s∗. It also takes into account all the possibilities; i.e.,

the system can stay in state s′ at any of the previous time steps and no state jump

has occurred.

4.3.3 Monte Carlo Simulation-Based Method

The Monte Carlo simulation results in a total number of Ms samples, each of

which represents a possible system state trajectory starting from state s∗ at time

h∗.

Based on the samples, we can obtain three groups of values, i.e., O1(h|Sh∗ = s∗),
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Algorithm 3: The algorithm for obtaining the probability distribution of
system states.

28 Input:
29 h∗,∀h∗ ∈ {0, 1, . . . , N} // the current time step with N − h∗

remaining time steps in the game

30 s∗ // the current system state

31 Pr(s′, k|s, h), h ∈ {h∗, . . . , N}, s, s′ ∈ S // transition function in the

semi-Markov chain

32 System state probability distribution:
33 set Pr(s∗|h∗, Sh∗ = s∗) = Tr(s∗, h∗|Sh∗ = s∗) = 1 // the state at h∗ is

s∗

34 for j = 1 to N − h∗ do

35 Tr(s′, h∗ + j|Sh∗ = s∗) =
j−1∑
l=0

∑
s∈S

Tr(s, h∗ + l|Sh∗ =

s∗) Pr(s′, j − l|s, h∗ + l),∀s′ ∈ S

36 Nr(s′, h∗ + j|Sh∗ = s∗) =
j−1∑
l=0

Tr(s′, h∗ + l|Sh∗ =

s∗)

(
1−

j−l∑
k=1

∑
s′′∈S

Pr(s′′, k|s′, h∗ + l)

)
,∀s′ ∈ S

37 Pr(s′|h∗ + j, Sh∗ = s∗) = Tr(s′, h∗ + j|Sh∗ = s∗) + Nr(s′, h∗ + j|Sh∗ = s∗)

38 Output:
39 Pr(s|h, Sh∗ = s∗),∀s ∈ S,∀h ∈ {h∗, . . . , N}

O2(h|Sh∗ = s∗), and O3(s|h, Sh∗ = s∗):

O1(h|Sh∗ = s∗) =
Ms∑
i=1

1{TU = h in sample i},∀h ∈ {h∗, . . . , N}, (4.21)

O2(h|Sh∗ = s∗) =
Ms∑
i=1

1{TU ≤ h in sample i},∀h ∈ {h∗, . . . , N}, (4.22)

O3(s|h, Sh∗ = s∗) =
Ms∑
i=1

1{Sh = s in sample i},∀s ∈ S,∀h ∈ {h∗, . . . , N}, (4.23)

where O1(h|Sh∗ = s∗) is the number of samples where the first arrival time is h
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given that at h∗ the system state is s∗, O2(h|Sh∗ = s∗) is the number of samples

where the first arrival time is before or at h given that at h∗ the system state is

s∗, and O3(s|h, Sh∗ = s∗) is the number of samples where the system is at state s

at time step h given that at h∗ the system state is s∗. Note that in determining

O3(s|h, Sh∗ = s∗), for any time step between two adjacent decision epochs, the

system is at the same state as the first of the two decision epochs since no state

transition occurs before the second of the two decision epochs. As an example,

assume two adjacent decision epochs are at time steps 10 and 20, respectively, and

the system is in s and s′ at the two decision epochs, respectively. Then for any

time step between 10 and 20, the system is in state s. Based on O1(h|Sh∗ = s∗),

O2(h|Sh∗ = s∗), and O3(s|h, Sh∗ = s∗), the three risk metrics can be obtained as

follows:

Pr(TU = h|Sh∗ = s∗) =
O1(h|Sh∗ = s∗)

Ms

,∀h ∈ {h∗, . . . , N}, (4.24)

Pr(TU ≤ h|Sh∗ = s∗) =
O2(h|Sh∗ = s∗)

Ms

,∀h ∈ {h∗, . . . , N}, (4.25)

Pr(s|h, Sh∗ = s∗) =
O3(s|h, Sh∗ = s∗)

Ms

,∀s ∈ S,∀h ∈ {h∗, . . . , N}. (4.26)

4.4 Case Study

In the case study, we focus on a simplified digital feedwater control system of a

generic pressurized water reactor. During the normal operation or transients caused

by abnormal events, this control system controls components in the main feedwater

system (e.g., feedwater pump, feedwater flow regulating valves) to maintain sufficient

water flow for the steam generator to cool the reactor core. Failures or compromises
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of this control system may lead to a dry-out of the steam generator and core damage.

The system in this case study is taken from the U.S. NRC report NUREG/CR-6942

[7], which was originally used as a benchmark system for dynamic reliability analysis

of digital systems in nuclear power plants. Simplifications and modifications have

been made to the original system to simplify the analysis.

Sensors

Actuators

Control computers

Main 
computer

Backup 
computer

Measurement Control 
signal

Approximate 
model Operator manual control

Note: dash lines indicate backup systems

Figure 4.5: The digital feedwater control system.

The function of the system is similar to the one of a PLC. It consists of three

main components as shown in Figure 4.5. The sensors provide the information on

the state of the plant (e.g., water level in the steam generator, feedwater flow, steam

flow). The information is then sent to the computer that implements the control

algorithm. There are two computers that can be used. During the normal operation,

the main computer is used. In the case of main computer failures or compromises,

the backup computer takes over the control. In certain cases, the operators will

take over the control, so the control transitions from the mode of automatic control

to manual control. The control signal calculated in either the main or the backup

computer, or obtained from the operators is then sent to field actuators (e.g.,

feedwater pump actuator, feedwater flow regulating valves actuators). In this

research, we focus on cyber attacks on sensors, the main computer, and the backup

computer. A potential type of attack on sensors is a false data injection attack

[130]. The two computers can be attacked by installing malware, as in the attack
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on Iran’s nuclear facilities [48]. Note that the proposed method is not limited

to these attacks. The exact type of attack launched on a component may not

matter because the objective of an attack is to compromise the function of the

component and we only need to focus on whether the function of the component is

compromised or not.

The benchmark system was originally used for reliability analysis, rather than

cyber-security analysis, so there was no particular consideration of countermeasures

against cyber attacks. In our research, an approximate linear model is considered as

such a countermeasure to attacks on sensors [22], which approximates the dynamics

of the plant and serves as a backup to the sensors. However, as discussed in [22],

such an approximate model is a temporary solution because the adoption of the

approximate model may cause disturbances to the plant due to the inaccuracy of

the model output. In this case study, we assume the objective of the attacker is to

damage the reactor core (as what will happen in a terrorist attack) and the defender

aims to minimize the damage. Similarly, it is worth noting that the proposed

approach is not limited to these assumptions and can be extended to other types

of attack and defense objectives.

In this case study, we focus on a time horizon of H = 1440 min (i.e. 24 h). This

time horizon is adopted for two reasons. First, in a typical PRA analysis, 24 h is

usually considered as the mission time, because normally after 24 h the reactor

core is either damaged or should have been maintained at a steady state. Second,

we believe that the plant emergency support team should be able to terminate

the attacker’s attacks within 24 h, and hence the potential actions of the attacker

beyond 24 h do not need to be considered. In other applications, the time horizon

may be determined based on the specifics of the problem. We discretized H into



132

1440 time steps by using a time interval of 1 min. In this case study, we have also

tested time intervals of 0.5 min and 0.1 min. The difference between the results is

small, but using a smaller time interval requires more computation. Therefore, in

this case study we used a time interval of 1 min in the discretization.

4.4.1 State Space and Action Space

Table 4.1 presents the elements that are used for defining system states in the

case study. In this case study, we do not explicitly include the main feedwater

system because its states can be defined by its components. Besides, in this research

we have focused on the impact of the attacker’s actions on the system. Therefore,

we have focused on the normal and compromised states of each component, and the

states of a component related to hardware failure, maintenance, test, etc., are not

fully considered. The actions available to the defender and attacker are presented

in Table 4.2 and Table 4.3, respectively.

All the possible combinations of states of the elements will lead to |Se| =

4× 4× 4× 2× 2× 2 = 512 system states. We followed the systematic investigation

method introduced in Section 4.1.2 to reduce the system state space. For this

system, the initial state is the normal system state, where all the elements in Table

4.1 are in their normal states, the sensors provide the measurements of the plant

status and the main computer is used for automatic control. Based on this method,

we finally identified sixteen system states, i.e., |S| = 16. The identified system

states are presented in Table 4.4, along with the states of the six elements that are

used to define the system states. The actions available to the defender and attacker

at each system state are presented in Table 4.5.

As discussed in Section 4.1.2, the analysis also leads to the information on the
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Table 4.1: Elements considered for the system and the states of the elements.

Element No. Element name Element states

1 (SENS) Sensors 1. Normal, used;
2. Normal, not used;
3. Compromised, used;
4. Compromised, not used.

2 (MC) Main computer 1. Normal, used;
2. Normal, not used;
3. Compromised, used;
4. Compromised, not used.

3 (BC) Backup computer 1. Normal, used;
2. Normal; not used;
3. Compromised, used;
4. Compromised, not used.

4 (CM) Control mode 1. Automatic control;
2. Manual control.

5 (AM) Approximate model 1. Not used;
2. Used.

6 (RC) Reactor core 1. OK;
2. Damaged.

state transitions at each state under different action pairs. The transitions are

presented in Figure 4.6. The nodes denote the system states and the directed links

between the nodes denote the feasible transitions between states. Note that to make

the figure readable, only one directed link is shown between two states. Actually,

there might be multiple links between two states that correspond to different action

pairs. In solving the SMG, all the state transitions (i.e. directed links) are used.

To explain the process of identifying the system states and state transitions,

take the first step of the analysis in the case study as an example. In the first step,

we start with the initial normal state, which is system state 1 in Table 4.4, and

hence q here is system state 1. In this state, the sensor (SENS) is in a normal

state and used in control, the main computer (MC) is in a normal state and used,
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Table 4.2: The actions available to the defender.

No. Action Description

1 Use the output of the ap-
proximate model instead of
the sensor measurements in
automatic or manual con-
trol

The approximate model is able to provide in-
formation about the status of the plant, with
a similar function as the sensors. However, the
information is approximate, so the use of the
model may cause disturbances and even lead to
core damage. This model is specifically designed
to defend against cyber-attacks, so in this re-
search we assume it cannot be compromised by
the attacker. Again, the proposed approach is
not limited to this assumption.

2 Use the backup computer
to implement the control al-
gorithm

The backup computer will provide the same func-
tion as the main computer.

3 Control the system manu-
ally

Manual control is immune to cyber-attacks, but
may cause disturbances to the system.

4 No action This option is included to reflect the fact that
the defender may not take any action.

the backup computer (BC) is in a normal state but not used, the control (CM) is

in an automatic control mode, the approximate model (AM) is not used, and the

reactor core (RC) is OK. In this state q, the feasible action set for the defender is

A1(q) = {1, 2, 4}, and the feasible action set for the attacker is A2(q) = {1, 2, 4},

as shown in the row corresponding to system state 1 in Table 4.5. For a detailed

explanation of each action, please refer to Tables 4.2 and 4.3. Assume that the

action pair being considered is (a1 = 4, a2 = 1), where action 4 by the defender is

“no action” and action 1 by the attacker is “compromise sensors” as shown in Tables

4.2 and 4.3, respectively. The attacker’s action may not be effective, and in this

case the system stays in the initial state, which is system state 1. If the attacker’s

action is effective, then the sensors are compromised and used. This corresponds to

system state 2 in Table 4.4. There is also a negligible probability that the reactor

core will be damaged due to other component failures not considered in this model,
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Table 4.3: The actions available to the attacker.

No. Action Description

1 Compromise sensors False data can be injected into the sensors, which
results in false inputs to the computers or the
operator. Control signals generated or decisions
made based on these false inputs will lead to
inadequate feedwater flow to the steam generator
which may lead to core damage.

2 Compromise main com-
puter

A compromised computer will lead to inappropri-
ate control signals sent to field actuators, even if
the inputs from the sensors or the approximate
model are correct.

3 Compromise backup com-
puter

The same reasoning holds as for an attack on
the main computer.

4 No action The attacker may not take any action.

and this corresponds to system state 16 in Table 4.4. Therefore, in the case of

q = 1 and (a1 = 4, a2 = 1), we have identified three successor states q′ = 1, q′ = 2,

or q′ = 16. The analyses for any other action pairs are similar. Having identified

all the successor states q′, we can now set each of the q′ as q and perform a similar

analysis to identify all the successor states that can be reached from the new q.

In identifying the 16 system states in Table 4.4, we also group some of the states.

For example, if the reactor core is damaged, which indicates the end of the game,

the states of the other elements (e.g. sensors) no longer matter. Therefore, we can

group these states into one state, as shown in system state 16 in Table 4.4.

As will be expected, the state-space size of the SMG model is affected by the

number of components (e.g. the number of sensors in the case study) that comprise

the system under study. As the number of components in the system increases,

the size of the state space does increase significantly, which is a common problem

for discrete-state Markov models identified as the curse of dimensionality. This

problem may be partially circumvented in three ways. First, by using the algorithm
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Table 4.4: Sixteen system states identified for the case study.

System State of the six elements

state No. 1 (SENS) 2 (MC) 3 (BC) 4 (CM) 5 (AM) 6 (RC)

1 1 1 2 1 1 1
2 3 1 2 1 1 1
3 1 3 2 1 2 1
4 1 ✓* 1 1 1 1
5 3 3 2 1 1 1
6 3 ✓ 1 1 1 1
7 ✓ 1 2 1 2 1
8 1 ✓ 3 1 1 1
9 ✓ 3 2 1 2 1
10 3 ✓ 3 1 1 1
11 1 ✓ ✓ 2 1 1
12 ✓ ✓ 1 1 2 1
13 3 ✓ ✓ 2 1 1
14 ✓ ✓ 3 1 2 1
15 ✓ ✓ ✓ 2 2 1
16 ×** × × × × 2

* ✓ means that for the system state (row), the element (column) is not
used and can be in any of the corresponding states (normal or compro-
mised).
** × means that for the system state (row), the element (column) can
be in any of its states.

introduced in Section 4.1.2, we are able to restrict the state space to a small subset

of feasible states. As illustrated in the case study, we have reduced the system state

space from 512 possible states to only 16 feasible states. Second, depending on the

specific problem in consideration, the state-space size may be reduced by grouping

components. For example, multiple sensors that provide redundant functions may

be grouped and considered in the modeling as one single component. Third, the

analysis for NE strategy and risk assessment can be performed in an offline fashion,

and therefore the impact of state-space size increase is reduced.
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Table 4.5: The actions available to the defender and attacker at each system state.

System Defender action Attacker action
state No. 1 2 3 4 1 2 3 4

1 ✓* ✓ ×** ✓ ✓ ✓ × ✓
2 ✓ ✓ × ✓ × ✓ × ✓
3 ✓ ✓ × ✓ ✓ × × ✓
4 ✓ × ✓ ✓ ✓ × ✓ ✓
5 ✓ ✓ × ✓ × × × ✓
6 ✓ × ✓ ✓ × × ✓ ✓
7 × ✓ × ✓ × ✓ × ✓
8 ✓ × ✓ ✓ ✓ × × ✓
9 × ✓ × ✓ × × × ✓
10 ✓ × ✓ ✓ × × × ✓
11 ✓ × × ✓ ✓ × × ✓
12 × × ✓ ✓ × × ✓ ✓
13 ✓ × × ✓ × × × ✓
14 × × ✓ ✓ × × × ✓
15 × × × ✓ × × × ✓
16 × × × ✓ × × × ✓

* ✓ means that the action (column) for the defender
or attacker is available at the system state (row).
** × means that the action (column) for the defender
or attacker is not available at the system state (row).

4.4.2 State Transition Function and Payoffs

The transition probabilities are computed following the method introduced in

Section 4.1.3. When the defender has taken an action, we assume that the action

is always effective. However, it is worth noting that the proposed framework is not

limited to this assumption. In the case where the system has been compromised

to a significant extent, which is captured in the system state, we should consider

the situation where the defender’s action may not be effective even if the action

has been executed. In this case, sensitivity analysis can be performed to assess the

effect of this assumption on the results (i.e., cyber-attack response strategy and

risk metrics) of the study, and this will be part of our future research. When the
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Figure 4.6: State transitions identified by systematic state investigation. Between
two states, multiple directed links may exist under different action pairs, yet only
one directed link between two states is shown to make the figure readable.

attacker takes an action, we compute the probability of success as follows [170]:

p = 2× SAV × SAC × SAU , (4.27)

where SAV , SAC , and SAU represent the access vector, the access complexity, and

the authentication that constitutes the exploitability subscore of the base group of

metrics in the CVSS [139]. In this case study, we take the lowest values of the three

factors (0.395, 0.35, and 0.45, respectively) to obtain a success probability of 0.12

for the attacker’s action. As discussed before, sensitivity analysis can be performed

for this model parameter. When the defender and attacker take actions on the

same element (e.g., sensors, main computer, and backup computer), we assume

that the defender’s action dominates the attacker’s action. For example, when the

defender’s action is to switch from sensors to the approximate model, the system
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will transition to the state where the approximate model is used with probability

one regardless of the attacker’s action on the sensors. Again, sensitivity analysis

can be performed for this model parameter and will be part of our future research.

For the sojourn time, we refer to the study in [29], where cyber-attack scenarios

were studied based on modeling and simulation. Based on the timings in the sample

scenarios in [29], we assume that the sojourn time for the transition between two

states without core damage follows a uniform distribution between 0 and 10 min.

However, as noted in [29], the timing of the scenarios vary significantly. Therefore,

sensitivity analysis can be performed to assess the effect of the uncertainty in

this model parameter on the results (i.e., cyber-attack response strategy and risk

metrics) of this study.

The probability of transition from a state without core damage to a state with

core damage is calculated based on the PRA model shown in Figure 4.7. The event

tree in the PRA model refers to FIGURE I 4-11 in Appendix i of WASH-1400

[158]. In WASH-1400, the probabilities of “reactor shutdown failure” and “auxiliary

feedwater system failure” are both 0.0001. To reflect the fact that these two systems

may also be affected by the cyber attack, the probabilities of their failures are

increased by one order of magnitude to 0.001 in this case study. This value is

used in this paper for demonstration. In real-world applications, this value can be

determined by subject matter experts or engineers based on the specific system

configuration. The basic event “disturbance” in the PRA model reflects the fact

that the main feedwater system can fail when the approximate model is adopted and

does not capture the system dynamics. This basic event is assigned a probability of

0.01. This value is for demonstration in this paper and can be further determined

by domain experts or engineers. The basic event “human error” reflects the fact
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that during the manual control, human error can cause the failure of the main

feedwater system. The baseline human error probability, i.e., 0.011, from SPAR-H

[59] is used in this case study. The probability of the basic event “hardware failure,

maintenance, test” and the probabilities in the event tree are both taken from

WASH-1400 [158]. These probabilities in gray are fixed values in this case study

as they are not considered in the game. To determine the sojourn time for the

transition from a state without core damage to the state with core damage, we refer

to the accident analysis in WASH-1400 [159]. For transients, the time at which

core damage begins ranges from 120 to 720 min following the accident. Therefore,

we assume the sojourn time follows a uniform distribution between 120 and 720

min. For the state with core damage, as the reactor core is already damaged, the

system state will no longer change.

As an example to illustrate the above computation, consider that the system

state under study is state 1 in Table 4.4 and we aim to obtain the probabilities and

sojourn time distributions for the system transitioning from state 1 to other states.

According to the definition of state 1, we can assign the basic events in the PRA

model as follows: “sensor used and compromised”-“FALSE”; “approximate model

used”-“FALSE”; “main computer used and compromised”-“FALSE”; “backup

computer used and compromised”-“FALSE”; and “manual operation”-“FALSE.”

The probabilities of main feedwater system failure and core damage can then be

obtained as 0.01 and 10−5, respectively. Therefore, the probability of the system

state transition from state 1 to state 16, in which the core is damaged, can be

determined as 10−5. As discussed beforehand, the sojourn time follows a uniform

distribution between 120 and 720 min. The remaining probability (i.e., 1− 10−5)

is split according to the defender’s and the attacker’s actions. For example, if the
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Figure 4.7: The PRA model, i.e., event tree [158] and fault tree, used in this case
study.

defender takes action 1 (i.e., switch to the approximate model) and the attacker

takes action 1 (i.e., compromise sensors), the system will transition to state 7

with probability 1− 10−5. The sojourn time for this transition follows a uniform

distribution between 0 and 10 min as discussed earlier.

For the defender, we assume that the lump-sum payoff for taking actions,

r1,1(sj, a
1
j), in (4.5) is zero. When the state transition does not involve core damage,

the lump-sum payoff for system transition, r1,2(sj, sj+1), in (4.5) is zero. If the
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system state transition from a state without core damage to the state with core

damage occurs, the lump-sum payoff for system transition, r1,2(sj, sj+1), in (4.5)

is assumed to be minus ten billion dollars. The payoff value refers to the studies

on societal risk for nuclear power plants in [36, 150], which take into account both

the onsite cost and the offsite cost due to nuclear accidents. Compared with these

two types of payoffs, the duration payoff, r1,3(sj, tj), in (4.5) is negligible in our

application and is assumed to be zero.

For the attacker, we assume that the lump-sum payoff for taking actions,

r2,1(sj, a
2
j) is minus ten thousand dollars for any action except the fourth one “no

action.” This value reflects the fact that any action during a cyber-attack may help

the defender attribute the individual attacker or the group launching the attack [43],

therefore inducing costs to the attacker. This value is assumed to be one hundredth

of the lower bound of the statistical estimate of human life value [36, 230]. As

for other model parameters, the effect of the uncertainty in this parameter on the

results can be studied based on sensitivity analysis. For state transition payoffs, if

the system state transition from a state without core damage to a state with core

damage occurs, the attacker earns a payoff of ten billion dollars. Otherwise, the

payoff for state transition is zero. In our application, the duration payoff, r2,3(sj, tj),

in (4.5) is negligible and is assumed to be zero.

4.5 Results and Discussion

Section 4.5.1 presents the NE and the value of the game for the defender at

each state. The real-time risk under the mixed-strategy equilibrium is calculated

in Section 4.5.2. The comparison between the optimal strategy at the equilibrium
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and a baseline strategy is presented in Section 4.5.3.

4.5.1 Nash Equilibrium and State Value

The defender’s equilibrium strategy at each system state is presented in Figure

4.8. The strategy can be analyzed as follows. Taking the strategy at state 1 as an

example, based on this strategy, the defender’s optimal response is to take action 1

(use approximate model) and action 2 (use backup computer) with probabilities of

0.52 and 0.48, respectively, for most time of the horizon from 0 to about 1280 min.

Action 4 (no action) is preferable for a short time period at the late stage of the

horizon. From 1320 min to the end of the game, the defender’s optimal response

is to choose from the three alternative actions randomly. There is no difference

between the three actions in the very late stage of the game because each of them

will lead to the same payoff. This can also be used to explain the indifference

between available actions in the very late stage of the game for any other system

state in Figure 4.8. Taking state 7 as another example, the optimal response is to

take action 2 at the beginning. As the game approaches the end, the probability of

taking action 4 (no action) increases. The defender’s strategy at any other state

can be explained in a similar way.

Note that in a finite-horizon game, the strategy is a function of state and time.

From the result, we can see that the preferable action changes with states. For

instance, at the beginning of the game, at state 2, action 1 is favorable compared

to actions 2 and 4, while at state 3, action 2 is favorable compared to actions 1

and 4. Besides, we can see that for certain states the strategy is nondeterministic

and the preferable action can change significantly as time evolves in the game.

For instance, at states 11 and 12, action 4 is not preferable at the beginning but
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Figure 4.8: The defender’s strategy over the entire horizon H = 1440 (in min).

becomes preferable as the game approaches the end. We also observe that we can

completely ignore certain actions at certain states. For instance, at states 3 and 8,

action 1 is never a better choice during the entire process of the game.

In real-world applications, the best way of using the defense strategy obtained

from the game-theoretic analysis is to first determine the current system state and

the time from the beginning of the game, and then to sample from the corresponding

probability distribution described in the optimal defense strategy. For example,

if the system is in state 1 and the game has just begun, then the defender (i.e.

operator) has three optional actions, that is action 1 (i.e. “use approximate model”),

action 2 (i.e. “use backup computer”), and action 4 (i.e. “no action”). According

to the optimal strategy, the probabilities for the three options are about 0.52, 0.48,

and 0, respectively. Then the defender should sample from this distribution to

determine which action to take. In certain cases (e.g. system state 1), there are

uncertainties in the strategy with respect to the actions, while in other cases (e.g.

system state 2), the strategy is almost deterministic. By introducing uncertainty
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on purpose, the defender makes his/her defense less predictable and more effective

against attacks. This kind of strategy is different from (deterministic) guidelines

currently used in nuclear power plants.

The attacker’s strategy is presented in Figure 4.9 and can be explained in a

similar way as in the case of the defender’s strategy. For instance, at state 1, the

attacker’s optimal strategy is to take action 1 (compromise sensors) and action 2

(compromise main computer) with probabilities of 0.28 and 0.72 respectively at the

early stage of the game. As the game approaches the end, the probability of taking

action 1 increases. From 1311 min, the optimal strategy is to take action 4 (no

action). For simplicity, in this case study we have assumed that if a component is

not being used, then the attacker can not compromise the component. Therefore,

in states 5 and 9, the only action that is available to the attacker is action 4,

i.e. “no action.” For states 10, 13, 14, and 15, the only action that is available to

the attacker is also “no action” because in these states all the digital components

being used (i.e. sensors, main computer, and backup computer) have already been

compromised.

The defender’s value v1(s,N − h) at each state s as a function of time step h

from the beginning of the game is presented in Figure 4.10. We can see that for

states from 1 to 15, where there is no core damage, the defender’s value increases

from around −7× 107 USD as time elapses. This is reasonable because when there

is less time for the attacker to take actions, it is less likely that the attacker can

compromise the system and cause damage to the core. The defender’s value is

constant at 0 for state 16 because at this state the core has already been damaged

and there is no further reward or cost to the defender.

As a comparison of the values at different states, the values at states 1, 8,
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Figure 4.9: The attacker’s strategy over the entire horizon H = 1440 (in min).

and 10 are plotted in Figure 4.11. The three states represent the cases where all

the components being used are normal (state 1), one component being used is

compromised (state 8), and two components being used are compromised (state

10). The result is reasonable as the value at state 1 is always greater than the value

at state 8, which is always greater than the value at state 10, for the time period

between 0 and 1319 min. From 1320 min, the values at the three states all become

0.

4.5.2 Risk Metrics

We performed two scenarios for risk assessment. In the first scenario, the game

starts with state s∗ = 1 at time step h∗ = 0 (i.e. 0 min). In the second scenario,

we assume the game has progressed to time step h∗ = 1200 (i.e. 1200 min) and the

system is at state s∗ = 1.

The results for the three risk metrics, i.e., Pr(TU = h|Sh∗ = s∗), Pr(TU ≤
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Figure 4.10: The defender’s value at each state over the entire horizon H = 1440
(in min).

h|Sh∗ = s∗), and Pr(s|h, Sh∗ = s∗), obtained based on the exact analytical method

for the first scenario (where h∗ = 0 and s∗ = 1) are presented in Figure 4.12,

Figure 4.13, and Figure 4.14, respectively. As a comparison and verification, the

result for the second risk metric obtained based on Monte Carlo simulation with

500000 samples is also plotted in Figure 4.13. From Figure 4.12, we can see that

the probability that the system arrives at the core damage state for the first time

remains at 0 at the beginning of the game, increases as time evolves from 121 min

to 740 min, and remains at an almost constant level of 5.6× 10−6 from 741 min.

From Figure 4.13, we can see that the probability that the system reaches the

core damage state before or at a time point increases slowly at the beginning and

then almost linearly in the late stage of the game. Given the assumption that the

system starts with state 1 at time 0, we can see that the core will be damaged

with probability of 0.0057 before or at the end of the game. The results obtained

based on the exact method and Monte Carlo simulation are very close to each



148

0 240 480 720 960 1200 1440

Time (in min)

-8

-7

-6

-5

-4

-3

-2

-1

0

V
al

ue
 (

in
 U

S
D

)

107

state 1
state 8
state 10

Figure 4.11: Comparison of the defender’s values at states 1, 8, and 10.

other, which provides verification to each method.

From Figure 4.14, we can see that the probability of state 1 drops quickly to 0

at the beginning of the game. This is because at state 1, the defender’s optimal

strategy is to switch from the sensors to the approximate model or to switch

from the main computer to the backup computer as shown in Figure 4.8, and the

attacker’s optimal strategy is to compromise the sensors or to compromise the main

computer as shown in Figure 4.9. Correspondingly, the probabilities of states 4,

6, 7 and 9, which are the states resulting from the actions of the players, increase

quickly at the beginning of the game. From these four states and based on the

strategies of the players, the successor states can be analyzed to explain the state

distribution versus time in Figure 4.14. From Figure 4.14, we can observe that

after leaving state 1, it is very likely that the system will shortly visit states 4, 6 7,

9, 11, and 12, and will spend most of the time in state 15. It is also easy to observe

that the system will never visit certain states according to the strategies of the

players, for instance state 5.
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Figure 4.12: The result for the first risk metric, i.e., Pr(TU = h|Sh∗ = s∗), obtained
based on the exact method.

As introduced in Section 4.3.2, we can analyze the risk metrics starting at any

time in the game and the risk metrics update persistently according to the amount

of time remaining. In the analysis presented above, we assume that the game has

just started at time 0 and the initial state is 1. As a comparison, in the second

scenario, we assume the game has progressed to the time 1200 min (i.e. time step

1200) and the current state is 1. The result for state distribution is presented in

Figure 4.15. We can see that now the probability of core damage at the end of the

game is 1.22× 10−6, in contrast to 0.0057 in the first scenario. This capability of

real-time risk assessment is important because as we have moved to a time point in

the middle of the game and we observe the state of the system, we would like to

predict the state distribution starting from the current time and with the current

state.
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Figure 4.13: The result for the second risk metric, i.e., Pr(TU ≤ h|Sh∗ = s∗),
obtained based on the exact method and Monte Carlo simulation.

4.5.3 Comparison between the Equilibrium Strategy and a

Baseline Strategy

In this subsection, we compare the equilibrium strategy and a baseline strategy

of the defender to illustrate the benefit gained from the game-theoretic analysis.

The equilibrium strategy is the one presented in Figure 4.8 and the baseline strategy

is presented in Table 4.6. This baseline strategy is stationary, meaning that it does

not vary with time in the game. It can be summarized as the following decision

rules: 1) in the cases where no component in use is compromised, the defender takes

action 4 (no action); 2) in the cases where either sensors, the main computer, or

the backup computer is used but compromised, the defender takes action 1 (switch

to the approximate model), action 2 (switch to the backup computer), or action 3

(switch to manual control), respectively; 3) in the cases where the sensors and the

main computer are used but compromised, or the sensors and backup computer

are used but compromised, the defender takes action 2 or action 3, respectively; 4)
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Figure 4.14: The result for the third risk metric, i.e., Pr(s|h, Sh∗ = s∗), obtained
based on the exact method.

in all other cases, the defender takes action 4. This baseline strategy is similar to

procedures used in current practices in cyber-attack response.

Table 4.6: The baseline strategy of the defender.

System Defender action System Defender action
state No. 1 2 3 4 state No. 1 2 3 4

1 ✓ 9 ✓
2 ✓ 10 ✓
3 ✓ 11 ✓
4 ✓ 12 ✓
5 ✓ 13 ✓
6 ✓ 14 ✓
7 ✓ 15 ✓
8 ✓ 16 ✓

Note that in this comparison study, no matter what strategy the defender takes,

the attacker always takes the mixed strategy at the NE presented in Figure 4.9.

This can be explained and justified as follows. First, the focus in this comparison

study is on the defender’s strategy instead of the formulation of the game. This is
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Figure 4.15: State distribution assuming the current time is 1200 min from the
beginning of the game and the current state is 1.

part of the reason we fix the attacker’s strategy at the NE in both cases. Second,

each player actually does not know how the opposite is thinking of the game and

what actions the opposite is going to take. Instead, each player just assumes how

the opposite thinks of the game and what actions the opposite is going to take to

maximize his/her payoff. If either player makes decisions by taking the opposite’s

thinking and decision-making into consideration, then the solution concept of NE

is followed, which is the case in this research. It is also possible that the attacker

makes decisions by taking the defender’s thinking and decision-making (based on

the attacker’s assumption) into consideration, while the defender makes decisions

without such considerations, which is the case of the baseline defender strategy.

In this comparison study, the game starts at time 0 and state 1. We compare

the optimal strategy and the baseline strategy based on two measures. The first

measure is the expected cumulative payoff of the defender over the 24 h finite

horizon that can be calculated following (4.13). The results with the two strategies
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are presented in Figure 4.16. The results can be interpreted as follows. For example,

if the defender adopts the optimal strategy at time 0 and state 1, the expected

cumulative payoff that can be obtained after 1440 min (24 h) is −5.74× 107 USD,

in contrast with −7.19× 107 USD if the baseline strategy is adopted, as marked by

the circles in Figure 4.16. If the game has evolved to 240 min and the system is in

state 1, the expected cumulative payoff that can be obtained after 1200 min (i.e.,

1440-240) is −4.41× 107 USD if the optimal strategy is adopted, and is −5.87× 107

USD if the baseline strategy is adopted, as marked by the stars in Figure 4.16.
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Figure 4.16: The expected cumulative payoffs of the defender with the optimal
strategy and the baseline strategy.
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Figure 4.17: The comparison between Pr(TU ≤ h|Sh∗ = s∗) with the equilibrium
strategy and the baseline strategy.

The second measure in the comparison is the second risk metric, i.e., Pr(TU ≤

h|Sh∗ = s∗), where h∗ = 0 and s∗ is state 1. The results for the optimal strategy
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and the baseline strategy are presented in Figure 4.17. It is easy to see that the

equilibrium strategy obtained based on the proposed method reduces the probability

of core damage in the finite horizon of 24 h from 0.0066 when the baseline strategy

is used to 0.0057. The results illustrate the capability of the proposed method in

reducing the impact and the risk and improving the resilience of nuclear power

plants against malicious cyber attacks.
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Part III

Counter-Deception Technologies
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Chapter 5

Zero-Trust Defense against

Advanced Persistent Threats

Following Section 1.3.2, Advanced Persistent Threats (APTs) are emerging

security challenges for CPSs as the attacker can stealthily enter, persistently

stay in, and strategically interact with the system. The multi-phase feature of

APTs illustrated in Fig. 1.3 results in the concept of Defense in Depth (DiD),

i.e., multi-stage cross-layer defense policies. A system defender should adopt

defensive countermeasures across the phases of APTs and holistically consider

interconnections and interdependencies among these layers. To formally describe

the interaction between an APT attacker and a defender with the DiD strategy,

we map the sequential phases of APTs into a game of multiple stages. Each stage

describes a local interaction between the attacker and the defender where the

outcome leads to the next stage of interactions. The goal of the attacker is to

stealthily reach the targeted physical or informational assets, while the defender

aims to take defensive actions at multiple phases to thwart the attack or reduce its
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impact.

Detecting APTs timely (i.e., before attackers have reached the final stage) and

effectively (i.e., with a low rate of false alarms and missed detections) is still an

open problem due to their stealthy and deceptive characteristics. Stuxnet-like APT

attacks can conceal themselves in a ICS for years and inconspicuously increase the

failure probability of physical components. Due to the insufficiency of timely and

effective detection systems for APTs, the defender remains uncertain about the

user’s type, i.e., either legitimate or adversarial, throughout stages. In this work,

we adopt a zero-trust framework [181], where the defender does not trust any user

and adopts precautions and proactive defense measures for all users. By observing

these users’ behaviors, the defender updates his trust (or belief of the user’s type)

and revises the defense measures accordingly. Since these defense measures may

impair the user experience and reduce the utility of a legitimate user. Therefore, the

defender needs to strategically balance the tradeoff between security and usability

when the user’s type remains private.

5.1 Dynamic Game Modelling of APT Attacks

There are two players in the game, player 1 is the user and player 2 is the

defender. The stealthy, persistent, and deceptive features of APTs result in

incomplete information of the user’s type to the defender. We use a finite set

Θ2 to accommodate all possible types of the user. For example, we consider a

binary type set for the case study in Sections 5.4 and 5.5 where the user’s type θ2

is either adversarial θb2 or legitimate θg2. The APT attacker, i.e., the adversarial

user, disguises himself as the legitimate user, thus the defender does not know the
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type of the user. The set of the user’s type can also be non-binary and incorporate

different APT groups when their attack tools and targeted assets are different [51].

The defender can also be classified into different levels of sophistication based

on various factors such as her level of security awareness, detection techniques

she adopted, and the completeness of her virus signature database. The discrete

type θ1 distinguishes defenders of different sophistication levels and all the possible

type values constitute the defender’s type set Θ1. For example, in our case study,

the defender’s type θ1 is either sophisticated θH1 or primitive θL1 . The defender

can apply defensive deception techniques and keep her type private to the user.

We assume that both players’ type sets are commonly known. Each player knows

his/her own type, yet not the other player’s type. Thus, each player i should treat

the other player’s type as a random variable with an initial distribution b0i and

update the distribution to bki when obtaining new information at each stage k. We

present the above belief update formally in Section 5.1.3.

5.1.1 Multi-Stage Transition

We formulate the interaction between the multi-stage APT attack and the

cross-stage proactive defense into K stages of sequential games with incomplete

information, as shown in Fig. 5.1. At each stage k ∈ {0, 1, · · · , K}, player i ∈ {1, 2}

takes an action aki ∈ Aki from a finite and discrete set Aki . An Intrusion Detection

System (IDS) generates alerts based on the user’s actions. However, since legitimate

users can also trigger these alerts, each alert itself does not reveal the user’s type.

For example, an APT attacker uses the Tor network connection for data exfiltration,

yet a legitimate user can also use it legally for the traffic confidentiality as shown in

[141]. Another example is that code obfuscation can be either used legitimately to
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Figure 5.1: A block diagram of applying the defense-in-depth approach against
multi-stage APT attacks. We denote the user, the defender, and the system states
in red, blue, and black, respectively. The defender interacts with the user from
stage 0 to stage K in sequence where the output state of stage k − 1 becomes the
input state of stage k. At each stage k, the user observes the defender’s actions
at previous stages, forms a belief on the defender’s type, and takes an action. At
the same time, the defender makes decisions based on the output of an imperfect
detection system. The dotted line means that the observation is not in real time,
i.e., both players can only observe the previous-stage actions of the other player.

prevent reverse engineering or illegally to conceal malicious JavaScript code from

being recognized by signature-based detectors or human analysts as shown in [157].

We assume that the user can observe the defender’s stage-k action at stage k + 1.

The observation of the defender’s action at a single stage also does not reveal the

defender’s type.

In this paper, each player obtains a one-stage delayed observation of the other

player’s actions, i.e., at each stage k, the action history available to both players is

hk = {a01, · · · , ak−1
1 , a02, · · · , ak−1

2 } ∈ Hk :=
∏2

i=1

∏k−1
k̄=0A

k̄
i . Given history hk at the
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current stage k, players at stage k+1 obtain an updated history hk+1 = hk∪{ak1, ak2}

after the observation of both players’ actions at stage k. At each stage k, we

further define a state xk ∈ Xk which summarizes information about both players’

actions in previous stages so that the initial state x0 ∈ X0 and the history at

stage k uniquely determine xk through a known state transition function fk, i.e.,

xk+1 = fk(xk, ak1, a
k
2), ∀k ∈ {0, 1, · · · , K − 1}. States at different stages can have

different meanings such as the reconnaissance outcome, the user’s location, the

privilege level, and the sensor status.

5.1.2 Behavioral Strategy

A defender should behave differently when interacting with adversarial users

and legitimate ones. The defensive measure should also vary for attackers who

adopt different code families and tools. However, since the defender is uncertain

about the user’s type throughout the entire stages of games, she has to make

judicious decisions at each stage to balance usability versus security. The user’s

action should also adapt to the type of the defender. For example, if the defender

is primitive, an attacker prefers to take aggressive adversarial actions to achieve a

quicker and low-cost compromise. However, if the defender is sophisticated and

can detect the malware with better accuracy, an attacker has to take conservative

actions to remain stealthy. Since the proactive defense actions across the entire

stages can affect legitimate users, they also need to be designed to avoid collateral

damage.

Thus, the decision-making problem of the defender or the user boils down to the

determination of a behavioral strategy σki ∈ Σki : L
k
i 7→ ∆(Aki ), i.e., player i at each

stage k needs to decide which action to take or take an action with what probability
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based on the information lki ∈ Lki available to him/her at stage k. We present

two different information structures in Sections 5.1.3 and 5.1.3. The strategy is

called ‘behavioral’ as the strategy depends on the information available at the time

the players make their decisions. In this work, players are allowed to take mixed

strategies, thus the co-domain of the strategy function σki is ∆(Aki ), a probability

distribution over the action space Aki . With a slight abuse of notation, we denote

σki (a
k
i |lki ) as the probability of player i taking action aki ∈ Aki given the available

information lki ∈ Lki . The actual action of player i taken at stage k, i.e., aki , is a

realization of the behavioral strategy σki . Note that the values of the other player’s

type θj and action akj are not observable for player i at stage k, thus do not affect

player i’s behavioral strategy σki , i.e., Pr(a
k
i |akj , θj, lki ) = σki (a

k
i |lki ). Therefore, σk1

and σk2 are conditionally independent, i.e., Pr(aki , a
k
j |lki , lkj ) = σki (a

k
i |lki )σkj (akj |lkj ).

5.1.3 Belief and Bayesian Update

To quantify the uncertainty of the other player’s type throughout the entire

stages, each player i forms a belief bki : L
k
i 7→ ∆(Θj), j ̸= i. Likewise, bki (θj|lki ) means

that given information lki ∈ Lki at stage k, player i forms a belief that the other

player j is of type θj ∈ Θj with probability bki (θj|lki ). At the initial stage k = 0, the

only information available to player i is his/her own type, i.e., l0i = θi. We assume

that player i has a prior belief distribution b0i based on the past experiences with the

other player. If no previous experiences are available to player i, player i can take

the uniform distribution as an unbiased prior belief. As each player i obtains new

information when arriving at the next stage, his or her belief can be updated using

the Bayesian rule. We present the Bayesian update under two different information

structures Lki at stage 0 < k ≤ K in the following two subsections.
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Timely Observations

The most straightforward information structure is Lki = Hk × Θi, i.e., the

information available to player i at stage k is the action history hk and player i’s

own type θi, which leads to the belief update in (5.1), i.e., for all i, j ∈ {1, 2}, j ̸= i,

bk+1
i (θj|hk ∪ {aki , akj}, θi) =

σki (a
k
i |hk, θi)σkj (akj |hk, θj)bki (θj|hk, θi)∑

θ̄j∈Θj
σki (a

k
i |hk, θi)σkj (akj |hk, θ̄j)bki (θ̄j|hk, θi)

. (5.1)

Here, player i updates the belief bki based on the observation of the action aki , a
k
j .

When the denominator is 0, the history hk+1 is not reachable from hk, and the

Bayesian update does not apply. In this case, we let bk+1
i (θj|hk ∪ {aki , akj}, θi) :=

b0i (θj|θi).

Markov Belief

If the information available to player i at stage k is the state value xk and

player i’s own type θi, then the information set is taken to be Lki = Xk ×Θi. With

the Markov property that Pr(xk+1|θj, xk, · · · , x1, x0, θi) = Pr(xk+1|θj, xk, θi), the

Bayesian update between two consequent states is

bk+1
i (θj|xk+1, θi) =

Pr(xk+1|θj, xk, θi)bki (θj|xk, θi)∑
θ̄j∈Θj

Pr(xk+1|θ̄j, xk, θi)bki (θ̄j|xk, θi)
, i, j ∈ {1, 2}, j ̸= i. (5.2)

With the conditional independence of σk1 and σk2 ,

Pr(xk+1|θj, xk, θi) =
∑

{ak1 ,ak2}∈Āk

σk1(a
k
1|xk, θ1)σk2(ak2|xk, θ2), (5.3)

where Āk := {ak1 ∈ Ak1, ak2 ∈ Ak2|xk+1 = fk(xk, ak1, a
k
2)} contains all the action pairs
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that change the system state from xk to xk+1. Equation (5.3) shows that the

Bayesian update in (5.2) can be obtained from (5.1) by clustering all the action

pairs in set Āk. Thus, the Markov belief update (5.2) can also be regarded as an

approximation of (5.1) using action aggregations. Unlike the history set Hk, the

dimension of the state set, |Xk|, does not grow with the number of stages. Hence,

the Markov approximation significantly reduces the memory and computational

complexity. The following sections adopt the Markov belief update.

5.1.4 Stage and Cumulative Utility

The player’s utility can vary under the same action taken by different types of

users or defenders. For example, the remote access from a legitimate teleworker

brings a reward to the defender while the one from an adversarial user inflicts a loss.

Therefore, at each stage k, player i’s stage utility J̄ki : Xk×Ak1×Ak2×Θ1×Θ2×R 7→ R

can depend on both players’ types and actions, the current state xk ∈ Xk, and an

external noise wki ∈ R with a known probability density function ϖk
i . The noise

term models unknown or uncontrolled factors that can affect the value of the stage

utility. The existence of the external noise makes it impossible for player i, after

reaching stage k + 1, to infer the value of the other player’s type θj based on the

knowledge of the input parameters xk, ak1, a
k
2, θi, together with the output of the

utility function J̄ki at stage k. We denote the expected stage utility as

Jki (x
k, ak1, a

k
2, θ1, θ2) := Ewk

i ∼ϖk
i
[J̄ki (x

k, ak1, a
k
2, θ1, θ2, w

k
i )],∀xk, ak1, ak2, θ1, θ2.

Given the type θi ∈ Θi, the initial state xk0 ∈ Xk0 , and both players’ strategies

σk0:Ki := [σki (a
k
i |xk, θi)]k=k0,··· ,K ∈

∏K
k=k0

Σk
i from stage k0 to K, we can determine
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the expected cumulative utility Uk0:K
i for player i, i.e., for all j ̸= i,

Uk0:K
i (σk0:Ki , σk0:Kj , xk0 , θi) :=

K∑
k=k0

Eθj∼bki ,aki ∼σk
i ,a

k
j∼σk

j
[Jki (x

k, ak1, a
k
2, θ1, θ2)]

=
K∑

k=k0

∑
θj∈Θj

bki (θj|xk, θi)
∑
aki ∈Ak

i

σki (a
k
i |xk, θi) ·

∑
akj∈Ak

j

σkj (a
k
j |xk, θj)Jki (xk, ak1, ak2, θ1, θ2).

(5.4)

5.2 PBNE and Dynamic Programming

The user and the defender use the Bayesian update to reduce their uncertainties

on the other player’s type. Since their actions affect the belief update, both players

at each stage should optimize their expected cumulative utilities concerning the

updated beliefs at the future stages, which leads to the Perfect Bayesian Nash

Equilibrium (PBNE) in Definition 6.

Definition 6. Consider the two-person K-stage game with double-sided incomplete

information (i.e., each player’s type is not known to the other player), a sequence

of beliefs bki ,∀k ∈ {0, · · · , K}, an expected cumulative utility U0:K
i in (5.4), and a

given scalar ε ≥ 0. A sequence of strategies σ∗,0:K
i ∈∏K

k=0Σ
k
i is called ε-dynamic

Bayesian Nash equilibrium for player i if condition (C2) is satisfied. If condition

(C1) is also satisfied, σ∗,0:K
i is further called ε-Perfect Bayesian Nash Equilibrium.

(C1) Belief consistency: under strategy pair (σ∗,0:K
1 , σ∗,0:K

2 ), each player’s belief bki

at each stage k = 0, · · · , K satisfies (5.2).

(C2) Sequential rationality: for all given initial state xk0 ∈ Xk0 at every initial
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stage k0 ∈ {0, · · · , K},

Uk0:K
1 (σ∗,k0:K

1 , σ∗,k0:K
2 , xk0 , θ1) + ε ≥ Uk:K

1 (σk0:K1 , σ∗,k0:K
2 , xk0 , θ1),∀σk0:K1 ∈

K∏
k=0

Σk1;

Uk0:K
2 (σ∗,k0:K

1 , σ∗,k0:K
2 , xk0 , θ2) + ε ≥ Uk:K

2 (σ∗,k0:K
1 , σk0:K2 , xk0 , θ2), ∀σk0:K2 ∈

K∏
k=0

Σk2.

(5.5)

When ε = 0, the two ε-equilibria are called Dynamic Bayesian Nash Equilibrium

(DBNE) and Perfect Bayesian Nash Equilibrium (PBNE), respectively.

The belief consistency emphasizes that when strategic players make long-term

decisions, they have to consider the impact of their actions on their opponent’s

beliefs at future stages. The PBNE is a refinement of the DBNE with the additional

requirement of the belief consistency property. When the horizon K = 0, the

multi-stage game of incomplete information defined in Section 5.1 degenerates to a

one-stage (static) Bayesian game with the one-stage belief pairs (bK1 , b
K
2 ) and the

solution concept of the DBNE/PBNE degenerates to the Static Bayesian Nash

Equilibrium (SBNE) in Definition 7.

The sequential rationality property in (5.5) guarantees that unilateral deviations

from the equilibrium at any states do not benefit the deviating player. Thus, the

equilibrium strategy can be a reasonable prediction of both players’ multi-stage

behaviors. DBNE strategies have the property of strongly time consistency because

(5.5) holds for any possible initial states, even for states that are not on the

equilibrium path, i.e., those states would not be visited under DBNE strategies.

The strongly time consistency property makes the DBNE adapt to unexpected

changes. Solutions obtained by dynamic programming naturally satisfy strongly

time consistency. Hence, in the following, we introduce algorithms based on dynamic
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programming techniques.

Define the value function V k0
i (xk0 , θi) := Uk0:K

i (σ∗,k0:K
1 , σ∗,k0:K

2 , xk0 , θi) as the

utility-to-go from any initial stage k0 ∈ {0, · · · , K} under the DBNE strategy pair

(σ∗,k0:K
1 , σ∗,k0:K

2 ). Then, at the final stage K, the value function for player i ∈ {1, 2}

with type θi at state x
K is

V K
i (xK , θi) = sup

σK
i ∈ΣK

i

Eθj∼bKi ,aKi ∼σK
i ,a

K
j ∼σ∗,K

j
[JKi (xK , aK1 , a

K
2 , θ1, θ2)]. (5.6)

For any feasible sequence of belief pairs (bk1, b
k
2), k = 0, · · · , K − 1, we have the

following recursive system equations for player i to find the equilibrium strategy

pairs (σ∗,k
1 , σ∗,k

2 ) backwardly from stage K − 1 to the initial stage 0, i.e., ∀k ∈
{0, · · · , K − 1},∀i, j ∈ {1, 2}, j ̸= i,

V k
i (x

k, θi) = sup
σk
i ∈Σk

i

E
θj∼bki ,aki ∼σk

i ,a
k
j∼σ

∗,k
j

[V k+1
i (fk(xk, ak1, a

k
2), θi) + Jki (x

k, ak1, a
k
2, θ1, θ2)].

(5.7)

If we assume a virtual termination value V K+1
i (fK(xK , aK1 , a

K
2 ), θi) ≡ 0, we can

obtain (5.6) by letting stage k = K in (5.7). The second term in (5.7) represents

the immediate stage utility and the first term represents the expected utility under

the future state xk+1 = fk(xk, ak1, a
k
2), k ∈ {0, · · · , K − 1}. Since aki affects both

terms, players should adopt a long-term perspective and avoid myopic behaviors to

balance between the immediate utility and the expected future utility.
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5.3 Computational Algorithms

In 5.3.1, we formulate a constrained optimization problem to compute the SBNE

and V K
i for the one-stage game. In 5.3.2, we use the proposed optimization problem

as building blocks to compute the DBNE and V k
i ,∀k ∈ {0, · · · , K − 1}. Finally,

we propose an iterative algorithm to solve for the PBNE. Efficient algorithms to

compute the PBNE lay a solid foundation to quantify the risk of cyber-physical

attacks and guide the design of proactive DiD strategies.

5.3.1 One-Stage Bayesian Game and SBNE

Since both players’ actions at the final stage k = K only affect the immediate

utility JKi and there is no future state transition, we can treat the final-stage game

at each state xK ∈ XK as an equivalent one-stage Bayesian game with the belief

bKi and obtain the SBNE.

Definition 7. A pair of mixed-strategies (σ∗,K
1 ∈ ΣK

1 , σ
∗,K
2 ∈ ΣK

2 ) is said to

constitute a Static Bayesian Nash Equilibrium (SBNE) under the given belief pair

(bK1 , b
K
2 ) and the state xK ∈ XK, if ∀θ1 ∈ Θ1, θ2 ∈ Θ2,

Eθ2∼bK1 ,aK1 ∼σ∗,K
1 ,aK2 ∼σ∗,K

2
[JK1 (xK , aK1 , a

K
2 , θ1, θ2)]

≥ Eθ2∼bK1 ,aK1 ∼σK
1 ,a

K
2 ∼σ∗,K

2
[JK1 (xK , aK1 , a

K
2 , θ1, θ2)],∀σK1 ∈ ΣK

1 ;

Eθ1∼bK2 ,aK1 ∼σ∗,K
1 ,aK2 ∼σ∗,K

2
[JK2 (xK , aK1 , a

K
2 , θ1, θ2)]

≥ Eθ1∼bK2 ,aK1 ∼σ∗,K
1 ,aK2 ∼σK

2
[JK2 (xK , aK1 , a

K
2 , θ1, θ2)],∀σK2 ∈ ΣK

2 . (5.8)

In Theorem 3, we propose a constrained optimization program CK to compute

the SBNE. We suppress the superscript of K without any ambiguity in one-stage
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games.

Theorem 3. A strategy pair (σ∗
1 ∈ Σ1, σ

∗
2 ∈ Σ2) constitutes a SBNE to the one-

stage bi-matrix Bayesian game (J1, J2) under private type θi ∈ Θi,∀i ∈ {1, 2}, belief

bi,∀i ∈ {1, 2}, and a given state x, if and only if the strategy pair is a solution to

CK:

[CK ] : max
σ1,σ2,s1,s2

∑
θ1∈Θ1

α1(θ1)s1(x, θ1) +
∑
θ2∈Θ2

α2(θ2)s2(x, θ2)

+
∑
θ1∈Θ1

α1(θ1)Eθ2∼b1,a1∼σ1,a2∼σ2 [J1(x, a1, a2, θ1, θ2)]

+
∑
θ2∈Θ2

α2(θ2)Eθ1∼b2,a1∼σ1,a2∼σ2 [J2(x, a1, a2, θ1, θ2)]

s.t. (a) Eθ1∼b2,a1∼σ1 [J2(x, a1, a2, θ1, θ2)] ≤ −s2(x, θ2),∀θ2,∀a2,

(b)
∑
a1∈A1

σ1(a1|x, θ1) = 1, σ1(a1|x, θ1) ≥ 0, ∀θ1,

(c) Eθ2∼b1,a2∼σ2 [J1(x, a1, a2, θ1, θ2)] ≤ −s1(x, θ1), ∀θ1, ∀a1,

(d)
∑
a2∈A2

σ2(a2|x, θ2) = 1, σ2(a2|x, θ2) ≥ 0,∀θ2.

The dimensions of decision variables σ1(a1|x, θ1), ∀θ1 ∈ Θ1, and σ2(a2|x, θ2),∀θ2 ∈

Θ2, are |A1| × |Θ1| and |A2| × |Θ2|, respectively. Besides, s1(x, θ1),∀θ1 ∈ Θ1,

and s2(x, θ2),∀θ2 ∈ Θ2, are scalar decision variables for each given θi, i ∈ {1, 2}.

The non-decision variables α1(θ1),∀θ1 and α2(θ2),∀θ2, can be any strictly positive

and finite numbers. The solution to CK exists and is achieved at the equality of

constraints (a), (c), i.e., s∗2(x, θ2) = −V2(x, θ2), s∗1(x, θ1) = −V1(x, θ1).

Proof. The finiteness and discreteness of the action and the type spaces guar-

antee the existence of the SBNE in mixed strategies as shown in [196], which

further guarantee that program CK has solutions. To show the equivalence be-
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tween the solution to CK and the SBNE, we first show that every SBNE is a

solution of CK . If (σ∗
1 ∈ Σ1, σ

∗
2 ∈ Σ2) is a SBNE pair, then the quadruple

σ∗
1(θ1), σ

∗
2(θ2), s

∗
2(x, θ2) = −V2(x, θ2), s∗1(x, θ1) = −V1(x, θ1), ∀θi ∈ Θi,∀i ∈ {1, 2},

is feasible because it satisfies constraints (a), (b), (c), (d). Constraints (a) and (c)

imply a non-positive objective function of CK . Since the value of the objective

function achieved under this quadruple is 0, this quadruple is also optimal. Second,

we show that σ∗
1(θ1), σ

∗
2(θ2), s

∗
2(x, θ2), s

∗
1(x, θ1), the result of CK is a SBNE. The

solution of CK should satisfy all the constraints, i.e.,

Eθ1∼b2,a1∼σ∗
1 ,a2∼σ2 [J2(x, a1, a2, θ1, θ2)] ≤ −s

∗
2(x, θ2),∀θ2, ∀σ2 ∈ Σ2,

Eθ2∼b1,a1∼σ1,a2∼σ∗
2
[J2(x, a1, a2, θ1, θ2)] ≤ −s∗1(x, θ1),∀θ1, ∀σ1 ∈ Σ1. (5.9)

In particular, if we pick σi(θi) = σ∗
i (θi), ∀θi,∀i ∈ {1, 2}, and combine the fact that

the optimal value is achieved at 0, the inequality turns out to be an equality and

equation (5.9) becomes (5.8), which shows that (σ∗
1 ∈ Σ1, σ

∗
2 ∈ Σ2) is a SBNE.

Theorem 3 focuses on the double-sided Bayesian game where each player player

i has a private type θi ∈ Θi. To accommodate the one-sided Bayesian game where

player i’s type θi ∈ Θi is known by both players and player j’s type remains

unknown to player i, we can modify program CK by letting αi(θi) > 0 and

αi(θ̃i) = 0,∀θ̃i ∈ Θi \ {θi}.

5.3.2 Multi-Stage Bayesian Game and PBNE

From (5.7), we can see that at stages k < K, each player optimizes the sum

of the immediate utility Jki and the utility-to-go V k
i . Thus, we can replace the

original stage utility JKi in program CK with V k
i + Jki in program Ck to compute
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the DBNE in a multi-stage Bayesian game.

Theorem 4. Given a sequence of beliefs bki for each player i ∈ {1, 2} at each

stage k ∈ {0, 1, · · · , K − 1}, a strategy pair (σ∗,0:K−1
1 , σ∗,0:K−1

2 ) constitutes a DBNE

of the K-stage Bayesian game under double-sided incomplete information with

the expected cumulative utility U0:K
i in (5.4), if and only if σ∗,k

1 , σ∗,k
2 , s∗,k1 (xk, θ1),

and s∗,k2 (xk, θ2) are the optimal solutions to the following constrained optimization

problem Ck for each k ∈ {0, 1, · · · , K − 1}:

[Ck] : max
σk
1 ,σ

k
2 ,s

k
1 ,s

k
2

2∑
i=1

∑
θi∈Θi

αi(θi){ski (xk, θi) +
∑
θj∈Θj

bki (θj|xk, θi)
∑
ak1∈Ak

1

σk1(a
k
1|xk, θ1)

·
∑
ak2∈Ak

2

σk2(a
k
2|xk, θ2)[Jki (xk, ak1, ak2, θ1, θ2) + V k+1

i (fk(xk, ak1, a
k
2), θi)]}

s.t. (a)
∑
θ1∈Θ1

bk2(θ1|xk, θ2)
∑
ak1∈Ak

1

σk1(a
k
1|xk, θ1) · [Jk2 (xk, ak1, ak2, θ1, θ2)

+ V k+1
2 (fk(xk, ak1, a

k
2), θ2)] ≤ −sk2(xk, θ2),∀θ2 ∈ Θ2,∀ak2 ∈ Ak2,

(b)
∑
θ2∈Θ2

bk1(θ2|xk, θ1)
∑
ak2∈Ak

2

σk2(a
k
2|xk, θ2) · [Jk1 (xk, ak1, ak2, θ1, θ2)

+ V k+1
1 (fk(xk, ak1, a

k
2), θ1)] ≤ −sk1(xk, θ1),∀θ1 ∈ Θ1,∀ak1 ∈ Ak1.

Similarly, α1(θ1), α2(θ2) can be any strictly positive and finite numbers, and

(sk1(x
k, θ1), s

k
2(x

k, θ2)) is a sequence of scalar variables for each xk ∈ Xk, θi ∈ Θi, i ∈

{1, 2}. The optimum exists and is achieved at the equality of constraints (a), (b),

i.e., s∗,ki (xk, θi) = −V k
i (x

k, θi), ∀θi ∈ Θi,∀i ∈ {1, 2}.

The proof is similar to the one for Theorem 3. The decision variables σki are of

size |Aki | × |Xk| × |Θi|. By letting stage k = K and V K+1
i = 0, program CK for

the static Bayesian game is a special case of Ck for the multi-stage Bayesian game.
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We can solve program Ck+1 to obtain the DBNE strategy pair (σk+1
1 , σk+1

2 ) and the

value of V k+1
i . Then, we apply V k+1

i in program Ck to obtain a DBNE strategy

pair (σk1 , σ
k
2) and the value of V k

i . Thus, for any given sequences of type belief

pairs bki ,∀i ∈ {1, 2}, ∀k ∈ {0, 1, · · · , K}, we can solve Ck from k = K to k = 0

recursively to obtain the DBNE pair (σ∗,0:K−1
1 , σ∗,0:K−1

2 ).

Given a sequence of beliefs, we can obtain the corresponding DBNE via Ck in a

backward fashion. However, given a sequence of policies, both players forwardly

update their beliefs at each stage by (5.2). Thus, we need to find a consistent

pair of belief and policy sequences as required by the PBNE. As summarized in

Algorithm 4, we iteratively alternate between the forward belief update and the

backward policy computation to find the PBNE. We resort to ε-PBNE solutions

when the existence of PBNE is not guaranteed.

Algorithm 4 provides a computational approach to find ε-PBNE with the

following procedure. First, both players initialize their beliefs bki for every state

xk at stage k ∈ {0, 1, · · · , K}, according to their types. Then, they compute the

DBNE strategy pair σ∗,0:K
i ,∀i ∈ {1, 2}, under the given belief sequence at each

stage by solving program Ck from stage K to stage 0 in sequence. Next, they

update their beliefs at each stage according to the strategy pair σ∗,0:K−1
i ,∀i ∈ {1, 2},

via the Bayesian update (5.2). If the strategy pair σ∗,0:K−1
i ,∀i ∈ {1, 2}, satisfies

(5.5) under the updated belief, we find the ε-PBNE and terminate the iteration.

Otherwise, we repeat the backward policy computation in step two and the forward

belief update in step three.
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Algorithm 4: Numerical Solution of ε-PBNE

40 Initialization beliefs bki at each stage k ∈ {0, 1, · · · , K}, IterNum> 0, ε ≥ 0.
41 while the t <IterNum do
42 t := t+ 1;
43 for each xK ∈ XK do

44 Compute SBNE strategy σ∗,K
i and V K

i (xK , θi) via C
K .

45 end
46 for k ← K − 1 to 0 do
47 for each xk ∈ Xk do

48 Compute DBNE strategy σ∗,k
i and V k

i (x
k, θi) via C

k.
49 end

50 end
51 for k ← 0 to K − 1 do

52 Update bki with σ∗,0:K−1
i via (5.2).

53 end

54 if σ∗,0:K−1
i ,∀i ∈ {1, 2}, satisfy (5.5) then

55 Terminate

56 end

57 Output ε-PBNE strategy pair (σ∗,0:K−1
1 , σ∗,0:K−1

2 ) and consistent beliefs
bki ,∀k ∈ {0, · · · , K}.

5.4 Case Study

The model presented in Section 5.1 can be applied to various APT scenarios. To

illustrate the framework, this section presents a specific attack scenario where the

attacker stealthily initiates infection and escalates privileges in the cyber network,

aiming to launch attacks on the physical plant as shown in Fig. 5.2. Three vertical

columns in the left block illustrate the state transitions across three stages: the

initial compromise, the privilege escalation, and the sensor compromise of a physical

system. The red squares at each column represent possible states at that stage. The

right block illustrates a simplified flow chart of the Tennessee Eastman Process. We

use the Tennessee Eastman process as a benchmark of industrial control systems to

show that attackers can strategically compromise the SCADA system and decrease
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the operational efficiency of a physical plant without triggering the alarm.

In this case study, we adopt the binary type space Θ2 = {θb2, θg2} and Θ1 =

{θH1 , θL1 } for the user and the defender, respectively. In particular, θb2 and θg2 denote

the adversarial and legitimate user, respectively; θH1 and θL1 denote the sophisticated

and primitive defender, respectively. The bi-matrices in Table 5.1, 5.2, and 5.3

represent both players’ expected utilities at three stages, respectively. In these

matrices, the defender is the row player and the user is the column player. Each

entry of the matrix corresponds to players’ payoffs under their action pairs, types,

and the state. In particular, the two red numbers in the parenthesis before the

semicolon are the payoffs of the defender and the user, respectively, under type θb2,

while the parenthesis in blue after the semicolon presents the payoff of the defender

and the user, respectively, under type θg2.
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Figure 5.2: The diagram of the cyber state transition (denoted by the left block in
orange) and the physical attack on Tennessee Eastman process via the compromise
of the SCADA system (denoted by the right block in blue). APTs can damage the
normal industrial operation by falsifying controllers’ setpoints, tampering sensor
readings, and blocking communication channels to cause delays in either the control
message or the sensing data.
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5.4.1 Initial Stage: Phishing Emails

We use a binary set to represent whether the reconnaissance is effectual x0 = 1

or not x0 = 0. Effectual reconnaissance collects essential intelligence that can

better support APTs for an initial entry through phishing emails. To penalize the

adversarial exploitation of the open-source intelligence (OSINT) data, the defender

can create avatars (fake personal profiles) on the social network or the company

website as shown in [145].

At the initial stage of interaction, a user can send emails with non-executable

attachments and shortened URLs to the accounts of entry-level employees, managers,

or avatars. These three action options of the user are represented by a02 = 0, 1, 2,

respectively. Non-executable files such as PDF and MS Office are widely used in

organizations yet an APT attacker can exploit them to execute malicious actions on

the victim’s computer. The shortened URL is created by legitimate service providers

such as Google URL shortener yet can redirect to malicious links. The existing email

security mechanisms are not completely effective for identifying malicious PDF files

(see [157]) and malicious links behind shortened URLs (see [185]). As a supplement

to technical countermeasures, security training should be emphasized to increase

employees’ security awareness and protect them from web phishing. For example,

after receiving suspicious links or attachments with strange names at unexpected

times, the entry-level employee and the manager should be aware of the potential

risk and apply extra security measures such as a digital signature request from the

sender before clicking the link or opening the attachment. They should also be

sufficiently alert and report immediately if a PDF does not contain the information

that it claims to have. Then isolation can be applied to prevent the attacker from

the potential lateral movement. Since employees’ awareness and alertness diminish
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over time, the security training needs to be repeated at reasonable intervals as

argued in [143], which can be costly. With a limited budget, the defender can

choose to educate entry-level employees, manager-level employees, or no training to

avoid the prohibitive training cost c0. These three action options of the defender are

represented by a01 = 1, 2, 0, respectively. The utility matrix of the initial infection

is given in Table 5.1. If the user is legitimate, i.e., θ2 = θg2, then as denoted in the

blue color, he receives an immediate reward r01 if he successfully communicates with

the employee or the manager by email, but receives a substantial penalty r0g,f < 0

if he emails the avatars because he should not contact a non-existing person. If

the user is adversarial, i.e., θ2 = θb2, then as denoted in the red color, he receives

an immediate attack reward r02 if the email receiver does not have proper security

training, but an additional attack cost r0 if the receiver has been trained properly.

The adversarial user receives a faked reward r0b,f > 0 when contacting the avatar,

yet arrives at an unfavorable state at stage k = 1 and receives few rewards in the

future stages. The training cost and the attack cost are both different for the

primitive and the sophisticated defender, i.e., c0 := c0L · 1{θ1=θL1 } + c0H · 1{θ1=θH1 } and

r0 := r0L · 1{θ1=θL1 } + r0H · 1{θ1=θH1 }. The sophisticated defender holds the security

training with a higher frequency, which incurs a higher cost, i.e., c0H > c0L, but is

also more effective in mitigating web phishing, i.e., r0H > r0L.

5.4.2 Intermediate Stage: Privilege Escalation

The state at the intermediate stage can be interpreted as the location of the

user where x1 = 1 refers to the employee’s computer, x1 = 2 refers to the manager’s

computer, and x1 = 0 refers to the quarantine area. After the initial access, the

user operates within a process of low privilege. To access certain resources, the user
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Table 5.1: The expected utilities of the defender and the user at the initial stage,
i.e., J0

1 and J0
2 , respectively.

θb2;θ
g
2 Email Employees Email Managers Email Avatars

No
Training

(−r02, r02);(0, r01) (−r02, r02);(0, r01) (0, r0b,f );(0, r
0
g,f )

Train
Employees

(−c0,−r0);(−c0, r01) (−c0, r02);(−c0, r01) (−c0, r0b,f );(−c0, r0g,f )

Train
Managers

(−c0, r02);(−c0, r01) (−c0,−r0);(−c0, r01) (−c0, r0b,f );(−c0, r0g,f )

needs to gain higher-level privileges. An attacker can utilize the process injection

to execute malicious code in the address space of a live process and masquerade as

legitimate programs to evade detection as shown in [210]. A mitigation method for

the defender is to prevent certain endpoint behaviors that can occur during the

process injection. Table 5.2 presents this game of privilege escalation.

The user can choose to escalate his privileges, or choose ‘no operation performed

(NOP)’. The two action options are denoted by a12 = 1 and a12 = 0, respectively. The

defender can choose to either restrict or permit an escalation, which are denoted by

a11 = 1 and a11 = 0, respectively. If the legitimate user escalates his privilege and

the defender permits escalation, then both players obtain a reward of r11. If the

legitimate user escalates his privilege and the defender restricts escalation, then

the efficiency reduction brings a loss of r11 to both players. On the other hand, if

the adversarial user escalates his privilege and the defender permits escalation, the

defender receives a loss of r12. If the adversarial user escalates his privilege and

the defender restricts escalation, then the adversarial user has to resort to other

attack techniques which lead to a higher rate of detection. Thus, the defender

obtains a reward while the attacker receives an additional cost. We assume that
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Table 5.2: The expected utilities of the defender and the user at the intermediate
stage, i.e., J1

1 and J1
2 , respectively.

θb2;θ
g
2 NOP Escalate Privilege

Permit Escalation (0, 0);(0, 0) (−r12, r12);(r11, r11)

Restrict Escalation (0, 0);(0, 0) (r1,−r1);(−r11,−r11)

the reward and the additional cost are both r1L if the defender is primitive, and r1H

if the defender is sophisticated, i.e., r1 = r1L · 1{θ1=θL1 } + r1H · 1{θ1=θH1 }.

5.4.3 Final Stage: Sensor Compromise

The state at the final stage represents four possible privilege levels, denoted by

x2 = {0, 1, 2, 3}, respectively. The privilege level affects the result of the physical

attack at the final stage. The defender’s and the user’s actions, and the state

at the intermediate stage determine the state at the final stage. For example, if

the user is at the quarantine area during the intermediate stage, then he ends up

with a level-zero privilege regardless of actions taken by the defender and himself.

Users who take control of the manager’s computer at the intermediate stage can

obtain a higher privilege level than those who start from the entry-level employee’s

computer, yet the degree of escalation is reduced if the defender chooses to restrict

escalation.

We modify the Simulink model in [16] to quantify the monetary loss of the

Tennessee Eastman process under sensor compromises. Our attack model of sensor

compromise is presented in Section 5.4.3. A new performance metric to quantify

the operational efficiency of the Tennessee Eastman process is proposed in Section

5.4.3 and applied in the game matrix in Section 5.4.3.
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Performance Metric

The Tennessee Eastman process involves two irreversible reactions to produce

two liquid (liq) products G,H from four gaseous (g) reactants A,C,D,E, as shown

in the right block of Fig. 5.2. The control objective is to maintain a desired

production rate as well as quality while stabilizing the whole system under the

Gaussian noise to avoid violating safety constraints such as a high reactor pressure,

a high reactor temperature, and a high/low separator/stripper liquid level. Previous

studies on the security of the Tennessee Eastman process have mostly focused on

how an attacker can cause the shortest shutdown time (see [120]), or a serious

violation of a setpoint, e.g., the reactor pressure exceeds 3, 000 kpa (see [22]). These

attacks successfully cause the shutdown of the plant and a few days of shutdowns

can incur a considerable financial loss. However, the shutdown also discloses the

attack and leads to an immediate patch and a defense strategy update. Thus, it

becomes harder for the same kind of attacks to succeed after the plant recovers

from the shutdown.

In our APT scenario, the attacker aims to stealthily decrease the operational

efficiency of the plant, i.e., deviate the normal operation state of the plant with-

out triggering the safety alarm or shutting down the plant. By compromising

the SCADA system and generating fraudulent sensor readings, the attacker can

stealthily make the plant operates at a non-optimal state with reduced utilities.

The following economic metrics affect the operational utility of the Tennessee

Eastman process:

• Hourly operating cost Co with the unit ($/h) is taken as the sum of purge

costs, product stream costs, compressor costs, and stripper steam costs.
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• Production rate Rp with the unit (m3/h) is the volume of total products per

hour.

• Quality of products Qp with the unit (G mole%), is the percentage of G

among total products.

• PG with the unit ($/m3) is the price of product G.

We propose a new performance metric UTE, the per-hour utility to quantify the

operational efficiency of the Tennessee Eastman process as follows:

UTE = Rp ×Qp × PG − Co. (5.10)

Attack Model

An attack model is characterized by two separate parts, information and capacity.

First, the information available to the attacker such as readings of different sensors

can affect the performance of the attack differently. For example, observing the

input rate of the raw material in the Tennessee Eastman process is less beneficial for

the attacker than the direct measurements of PG, Rp, Qp, Co that affect the utility

metric in (5.10). Second, attackers can have different capacities in accessing and

revising controllers and sensors. An attacker may change the parameters of the

proportional-integral-derivative controller, directly falsify the controller output, or

indirectly deviate the setpoint by tampering, blocking or delaying sensor readings.

In this experiment, we assume a reading manipulation of sensor XMEAS(40)

and XMEAS(17) in loop 8 and loop 13 of Tennessee Eastman process (see [177]),

respectively. Sensor XMEAS(40) measures the composition of component G and

sensor XMEAS(17) measures the stripper underflow. A higher privilege state
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x2 ∈ {0, 1, 2, 3} means that the user can access more sensors for a longer time,

which results in a larger loss and thus a smaller utility of r21(x
2) to the defender if

the user is adversarial. Fig. 5.3 shows the variation of UTE versus the simulation

time under four different privilege states. We use the time average of these utilities

to obtain the normal operational utility r24 and compromised utilities r21(x
2) under

four different privilege states x2 ∈ {0, 1, 2, 3}. The attacker compromises the sensor
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Figure 5.3: The economic impact of sensor compromise in the Tennessee Eastman
process. The black line represents the utility of Tennessee Eastman process under
the normal operation while the other four lines represent the utility of Tennessee
Eastman process under attacks with four possible privilege levels. We use the time
average of these utilities to obtain the normal operational utility r24 and compromised
utilities r21(x

2),∀x2 ∈ {0, 1, 2, 3}, under four different states of privilege levels in
Table 5.3.
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and generates fraudulent readings. The fraudulent reading can be a constant,

denoted by the blue line, or a double of the real readings, denoted by the red or

green lines. The pink line represents a composition attack with a limited control

time. Initially, the attacker manages to compromise both sensors by doubling their

readings. After the attacker loses access to XMEAS(40) at the 6th hour, the system

is sufficiently resilient to recover partially in about 16 hours and achieve the same

level of utility as the single attack in green. When the attacker also loses access to

XMEAS(17) at the 36th hour, the utility goes back to normal in about 13 hours.

Utility Matrix

Attacks against SCADA system can apply command injection attacks to inject

false control and compromise sensor readings as shown in [149]. Encryption can

be introduced to conceal these malicious commands. However, a legitimate user

may also encrypt his communication with the sensor to avoid eavesdropping and

enhance privacy.

Therefore, at the final stage, the user has two options, sends commands to

the sensor with or without encryption, which are denoted by a22 = 1 and a22 = 0,

respectively. The defender chooses to apply either a complete or selective monitoring,

denoted by a21 = 1 and a21 = 0, respectively. The complete monitoring stores all

sets of communication data and analyzes them elaborately to identify malicious

commands despite encryption. The selective monitoring cannot identify malicious

commands if they are encrypted. The implementation of the complete monitoring

incurs an additional cost c2 compared to the selective one. The last-stage utility

matrix of both players is defined in Table 5.3. If the user is legitimate, as denoted

in blue, both the defender and the user can receive a reward of r4 when the
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Table 5.3: The expected utilities of the defender and the user at the final stage,
i.e., J2

1 and J2
2 , respectively.

θb2;θ
g
2

Unencrypted
Command (UC)

Encrypted Command
(EC)

Selective
Monitoring

(SM)
(r24, 0);(r

2
4, r

2
4/2) (r21(x

2), r24 − r21(x2));(r24, r24)

Complete
Monitoring

(CM)
(r24 − c2, 0);(r24 − c2, r24/2) (r2 − c2,−r2);(r24 − c2, r24)

Tennessee Eastman process operates normally. Legitimate users further receive a

utility reduction of r4/2 for the potential privacy loss if they choose unencrypted

commands. For adversarial users, they send malicious commands only when the

communication is encrypted to evade detection. Thus, if they choose not to encrypt

the communication, they receive 0 utility and the defender receives a reward of

r4 for the normal operation. However, if they choose to send encrypted malicious

commands, both players’ rewards depend on whether the defender chooses the

selective or complete monitoring. If the defender chooses the selective monitoring,

then the adversarial user can successfully compromise the sensor, which results in

a reduced utility of r21(x
2). In the meantime, the attacker benefits from the reward

reduction of r24 − r21(x2). If the defender chooses the complete monitoring, then the

adversarial user suffers a loss of r2 for being detected. The detection reward and the

implementation cost for two types of defenders are r2L, r
2
H and c2L, c

2
H , respectively.

Let r2 := r2L · 1{θ1=θL1 } + r2H · 1{θ1=θH1 } and c2 := c2L · 1{θ1=θL1 } + c2H · 1{θ1=θH1 }.

5.5 Computation Results

In this section, we apply the algorithms introduced in Section 5.3 to compute
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both players’ strategies and utilities at the equilibrium. We implement our algo-

rithms in MATLAB and use YALMIP (see [132]) as the interface to call external

solvers such as BARON (see [207]) to solve the optimization problems. We present

elaborate results from the concrete case study and provide meaningful insights of

the proactive cross-layer defense against multi-stage APT attacks that are stealthy

and deceptive.

For the static Bayesian game at the final stage in Section 5.5.1, we focus on

illustrating how two players’ private types affect their policies and utilities under

different information structures. We further apply sensitivity analysis to show how

the value of the key parameter affects the defender’s and the attacker’s utilities.

For the multi-stage Bayesian game in 5.5.2, we focus on the dynamic of the belief

update and state transition under the interaction of the stealthy attacker and the

proactive defender. Moreover, we investigate how the adversarial and defensive

deception, and how the initial state can affect the stage utility and the cumulative

utility of the user and the defender.

5.5.1 Final Stage and SBNE

Players’ beliefs affect their policies and expected utilities at the final stage. We

discuss three different scenarios as follows. In Fig 5.4a, the defender does not know

the user’s type. In Fig. 5.5, the user does not know the defender’s type. In Fig. 5.4b,

both the user and the defender do not know the other’s type. In all three scenarios,

the x-axis represents the belief of either the user or the defender. The y-axis of the

upper figure represents the probability of either the user taking action ‘selective

monitoring (SM)’ or the defender taking action ‘unencrypted command (UC)’. Fig.

5.4a shows the following trends as the user becomes more likely to be adversarial.
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(a) The user knows that the defender is
primitive, yet the defender only knows the
probability of the user being adversarial.
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Figure 5.4: The SBNE strategy and the expected utility of the primitive defender
and the user who is either legitimate or adversarial. The x-axis represents the
probability of the user being adversarial. The y-axis of the upper figure represents
the probability of either the user taking action ‘selective monitoring (SM)’ or the
defender taking action ‘unencrypted command (UC)’.

First, two black lines show that the expected utility of the defender decreases and

the defender is more inclined to apply action ‘complete monitoring ’ after her belief

exceeds a threshold. Second, two red lines show that the adversarial user takes

action ‘unencrpted command ’ with a higher probability and only gains a reward

when the probability of adversarial users is sufficiently small. Thus, we conclude

that when the probability of the adversarial user increases, the defender tends to

invest more in cyber defense so that the attacker behaves more conservatively and

inflicts fewer losses. Third, the two blue lines show that the legitimate user always

chooses ‘encrypt command ’ and receives a constant utility, which indicates that the

proactive defense does not affect the behavior and the utility of legitimate users at

this stage.

Fig. 5.5 shows that the defender benefits from introducing defensive deception.
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Figure 5.5: The SBNE strategy and the expected utility of the adversarial user
and the defender who is either primitive or sophisticated. The defender knows that
the user is adversarial while the adversarial user only knows the probability of the
defender being primitive. The x-axis represents the probability of the defender
being sophisticated. The y-axis of the upper figure represents the probability of
either the user taking action ‘selective monitoring (SM)’ or the defender taking
action ‘unencrypted command (UC)’.

When the defender becomes more likely to a sophisticated one, both types of

defenders can have a higher probability to apply the selective monitoring and

save the extra surveillance cost of the complete monitoring. The attacker with

incomplete information has a threshold policy and switches to a lower attacking

probability after reaching the threshold of 0.5 as shown in the black line. When

the probability goes beyond the threshold, the primitive defender can pretend

to be a sophisticated one and take action ‘selective monitoring ’. Meanwhile, a

sophisticated defender can reduce the security effort and take action ‘selective

monitoring ’ with a higher probability since the attacker becomes more cautious

in taking adversarial actions after identifying the defender as more likely to be
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sophisticated. It is also observed that the sophisticated defender receives a higher

payoff before the attacker’s belief reaches the 0.5 threshold. After the belief reaches

the threshold, the attacker is threatened to take less aggressive actions, and both

types of defenders share the same payoff.

Finally, we consider the double-sided incomplete information where both players’

types are private information, and each player only has the belief of the other

player’s type. Compared with the defender in Fig. 5.4a who takes action ‘selective

monitoring ’ with a probability less than 0.5 and receives a decreasing expected

payoff, the defender in Fig. 5.4b can take ‘selective monitoring ’ with a probability

closed to 1 and receive a constant payoff in expectation after the user’s belief

exceeds the threshold. Thus, the defender can spare defense efforts and mitigate

risks by introducing uncertainties on her type as a countermeasure to the adversarial

deception.

Sensitivity Analysis
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Figure 5.6: Utilities of the primitive defender and the attacker versus the value of
r2L under different states x2 ∈ {0, 1, 2, 3}.

As shown in Fig. 5.6, if the value of the penalty r2L is close to 0, i.e., the defense

at the final stage is ineffective, then an arrival at state x2 = 3, the highest privilege
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level can significantly increase the attacker’s payoff and cause the most damage to

the defender. As more effective defensive methods are employed at the final stage,

i.e., the value of r2L increases, the attacker becomes more conservative and strategic

in taking adversarial behaviors. Then, the state with the highest privilege level

may not be the most favorable state for the attacker.
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Figure 5.7: The defender’s prior and posterior beliefs of the user being adversarial.

5.5.2 Multi-Stage and PBNE

We show in Fig. 5.7 that the Bayesian belief update leads to a more accurate

estimate of users’ types. Without the belief update, the posterior belief is the same

as the prior belief in red and is used as the baseline. As the prior belief increases

in the x-axis, the posterior belief after the Bayesian update also increases in blue.

The blue line is in general above the red line, which means that with the Bayesian
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Figure 5.8: The probability of different states x2 ∈ {0, 1, 2, 3}.

update, the defender’s belief becomes closer to the right type. Also, we find that

the belief update is the most effective when an inaccurate prior belief is used as it

corrects the erroneous belief significantly.

In Fig. 5.8, we show that the proactive defense, i.e., defensive methods in

intermediate stages can affect the state transition and reduce the probability of

attackers reaching states that can result in huge damage at the final stage. As the

prior belief of the user being adversarial increases, the attacker is more likely to

arrive at state x2 = 0 and x2 = 1, and reduce the probability of visiting x2 = 2 and

x2 = 3.

Adversarial and Defensive Deception

Fig. 5.9 investigates the adversarial deception where the attacker takes full

control of the defense system and manipulates the defender’s belief. As shown in
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Figure 5.9: The defender’s utility under deceived beliefs.

the figure, the defender’s utilities all increase when the belief under the deception

approaches the correct belief that the user is adversarial. Also, the increase is

stair-wise, i.e., the defender only alternates her policy when the manipulated belief

is beyond certain thresholds. Under the same manipulated belief, a sophisticated

defender benefits no less than a primitive one. The defender receives a lower payoff

when the reconnaissance provides effectual intelligence.

Incapable of revealing the adversarial deception completely, the defender can

alternatively introduce defensive deceptions, e.g., a primitive defender can disguise

himself as a sophisticated one to confuse the attacker. Defensive deceptions

introduce uncertainties to attackers, increase their costs, and increase the defender’s

utility. Fig. 5.10 investigates the defender’s and the attacker’s utilities under

three different scenarios. The complete information refers to the scenario where

both players know the other player’s type. The deception with the H-type or the
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Figure 5.10: The cumulative utilities of the attacker and the defender under the
complete information, the adversarial deception, and the defensive deception. In
the legend, the left three represent the utilities for a sophisticated defender and the
right three represent the ones for a primitive defender.

L-type means that the attacker knows the defender’s type to be sophisticated or

primitive, respectively, yet the defender has no information about the user’s type.

The double-sided deception indicates that both players do not know the other

player’s type. The results from Fig. 5.10 are summarized as follows. First, the

sophisticated defender’s payoffs can increase as much as 56% than those of the

primitive defender. Also, a prevention of effectual reconnaissance increases the

defender’s utility by as much as 41% and reduces the attacker’s utility by as much

as 38%. Second, the defender and the attacker receive the highest and the lowest

payoff, respectively, under the complete information. When the attacker introduces
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deceptions over his type, the attacker’s utility increases and the defender’s utility

decreases. Third, when the defender adopts defensive deceptions to introduce

double-sided incomplete information, we find that the decrease of the sophisticated

defender’s utilities is reduced by at most 64%, i.e., changes from $55, 570 to $35, 570

when the reconnaissance is effectual. The double-sided incomplete information

also brings lower utilities to the attacker than the one-sided adversarial deception.

However, the defender’s utility under the double-sided deception is still less than the

complete information case, which concludes that acquiring complete information

of the adversarial user is the most effective defense. However, if the complete

information cannot be obtained, the defender can mitigate her loss by introducing

defensive deceptions.
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Chapter 6

Rational and Persistent Deception

among Intelligent Robots

Recent advances in automation and adaptive control in multi-agent systems

enable robots to use deception to accomplish their objectives. Since robots are

critical components of CPSs for life-critical tasks, technologies to counteract adver-

sarial robot deception are indispensable to achieving high-confidence robot systems.

Deception involves intentional information hiding to compromise the security and

operational efficiency of the robotic systems. This work proposes a dynamic game

framework to quantify the impact of deception, understand the robots’ behaviors

and intentions, and design cost-efficient strategies under the deception that persists

over stages. Existing researches on robot deception have relied on experiments while

this work aims to lay a theoretical foundation of deception with quantitative metrics,

such as deceivability and the price of deception. The proposed model has wide

applications, including cooperative robots, pursuit and evasion, and human-robot

teaming. The pursuit-evasion games are used as case studies to show how the
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Table 6.1: Summary of variables and their meanings.

Variable Meaning
N := {1, 2, · · · , N} Set of N players in the dynamic game
K := {0, 1, 2, · · · , K} Set of K discrete stages in the dynamic game

Θi := {θ1i , θ2i , · · · , θNi
i } Set of Ni possible types for player i ∈ N

θi ∈ Θi Type of player i ∈ N
θ := [θ1, · · · , θN ] N players’ joint type
Θ−i :=

∏
j∈N\{i}Θj Set of types of all players except for player i

θ−i := [θj]j∈N\{i} ∈ Θ−i Types of all players except for player i
∆(Θ−i) Set of probability distributions over set Θ−i
Ξi(·) Probability distribution of player i’s type
Ξ = [Ξi]i∈N Probability distribution of the joint type θ
Ξw(·) Probability distribution of noise wk,∀k ∈ K
xk ∈ Rn×1 System state of dimension n at stage k
xki ∈ Rni×1 Player i’s state of dimension ni at stage k
[x̂ki (θi)]k∈K Reference trajectory for player i of type θi
βki ∈ Λi ⊆ [0, 1]|Θ−i|×|Θi| Player i’s belief state at stage k
βk = [βki ]i∈N ∈ Λ N players’ joint belief state at stage k
hk := [x0, · · · , xk] ∈ Hk State history
fk State transition function at stage k
Γki , g

k
i Player i’s belief transition and cost at stage k

V k
i (β

k, xk, θi) Player i’s PBNE cost
V̄ k
i (x

k, θ) Player i’s PBNE cost when all players’ types are com-
mon knowledge

lki (θ−i|hk, θi) Player i’s belief at stage k, i.e., the probability of other
players’ types being θ−i based on player i’s available
information of hk, θi

deceiver can amplify the deception by belief manipulation and how the deceived

robots can reduce the negative impact of deception by enhanced maneuverability

and Bayesian learning. We summarize main notations in Table 6.1.

6.1 Dynamic Game with Private Types

We model deception as a K-stage game consisting of N robots as players

and each robot has asymmetric information. Let N := {1, · · · , N} be the set
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of N players and K := {0, 1, 2, · · · , K} be the set of K discrete stages. Private

information of player i ∈ N , i.e., his type θi, is modeled as the realization of a

discrete random variable with a finite support Θi := {θ1i , θ2i , · · · , θNi
i } and a prior

probability distribution Ξi(·). Hence, Ni is the number of possible types for player

i and Ξi(θi) is the probability that player i’s type is θi. Define shorthand notation

Ξ := [Ξi]i∈N and let Θ−i :=
∏

j∈N\{i}Θj be the set of types of all players except

for player i ∈ N . Each player i knows the value of his own type θi, but does

not know the values of other players’ types θ−i := [θj]j∈N\{i} ∈ Θ−i, throughout

K stages of the game. The system state dynamics under N players’ joint action

uk := [uk1, · · · , ukN ], joint type θ := [θ1, · · · , θN ], and an additive external noise

wk ∈ Rn×1 are shown in (6.1):

xk+1 = fk(xk, uk1, · · · , ukN , θ1, · · · , θN) + wk, k ∈ K \ {K}. (6.1)

The dynamics in (6.1) can have different interpretations based on applications. In the

pursuit-evasion scenario as in [124], xki ∈ Rni×1 represents robot i’s local states such

as its location and speed. The system state xk ∈ Rn×1 can be explicitly represented

by N robots’ joint state [xk1, · · · , xkN ] with n =
∑N

i=1 ni. In the application where

N robots cooperatively transport a payload, e.g., [72, 202], system state xk ∈ Rn×1

represents the payload’s location and posture, which does not explicitly relate to

robots’ local states. The noise sequence [wk]k∈K assumed to be independent with

probability density function Ξw(·), i.e., Ewk,wh∼Ξw
[wk(wh)′] = 0,∀k ∈ K, h ∈ K\{k}.

The noise is not necessarily Gaussian distributed but is assumed to have a zero

mean, i.e., Ewk∼Ξw
[wk] = 0,∀k ∈ K. We assume that system dynamics (6.1) are

multi-agent controllable as defined in Definition 8 so that players can design their
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deceptive actions to reach the entire state space in finite stages.

Definition 8 (Multi-Agent Controllability). System dynamics (6.1) are called

multi-agent controllable if for any target state xk ∈ Rn×1 at stage k ∈ K \ {0},

initial state x0 ∈ Rn×1, and joint type θ ∈ Θ, there exists a sequence of finite joint

actions u0:k that drive the system state from x0 to xk in expectation.

6.1.1 Forward Belief Dynamics

At each stage k ∈ K, the information available to player i compromises all

players’ state history hk := [x0, · · · , xk] ∈ Hk as well as his own type value

θi. Define ∆(Θ−i) as the set of probability distributions over set Θ−i. Each

player i at stage k forms a belief lki : Hk × Θi 7→ △Θ−i based on his available

information. Thus, lki (·|hk, θi) is a probability measure of other players’ types, i.e.,∑
θ−i∈Θ−i

lki (θ−i|hk, θi) = 1,∀hk ∈ Hk, θi ∈ Θi. Define a vector

βki := [lki (θ−i|hk, θ1i ), lki (θ−i|hk, θ2i ), · · · , lki (θ−i|hk, θNi
i )]θ−i∈Θ−i

as player i’s belief state at stage k ∈ K. We assume that the set of belief states is

independent of stages, i.e., βki ∈ Λi ⊆ [0, 1]|Θ−i|×|Θi|. Then, we can represent player

i’s belief dynamics as

βk+1
i := Γki (β

k
i , u

k, wk, θi),∀k ∈ {0, · · · , K − 1}. (6.2)

Note that the belief transition function Γki can be different for each i and k, i.e.,

players’ belief updates can be heterogeneous and time-varying. Define βk :=

[βki ]i∈N ∈ Λ :=
∏

i∈N Λi. In this work, we assume that the initial beliefs of all
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players of all types β0 and the belief update rules Γki , ∀i ∈ N , ∀k ∈ {0, · · · , K − 1},

are common knowledge. In the next two subsections, we provide two specific forms

of Γki that rely on intrinsic and extrinsic information, respectively.

Bayesian Belief Dynamics

The most common belief update rule Γki in (6.2) for player i at stage k + 1

uses Bayesian inference. Given the knowledge of the sequential state observations

xk, xk+1 and all players’ actions uk, each player i of type θi ∈ Θi at stage k + 1 can

update his belief as follows: ∀θ−i ∈ Θ−i,

lk+1
i (θ−i|hk+1, θi) =

lki (θ−i|hk, θi) Pr(xk+1|θ−i, xk, θi)∑
θ̄−i∈Θ−i

lki (θ̄−i|hk, θi) Pr(xk+1|θ̄−i, xk, θi)
. (6.3)

In (6.3), we use the Markov property, i.e.,

Pr(xk+1|θ−i, hk, θi) = Pr(xk+1|θ−i, xk, θi) = Ξw(x
k+1 − fk(xk, uk, θ)).

The denominator is positive as wk ∈ Rn×1.

Remark 7 (Actions Reveal Type Information). Even if the state dynamics

fk in (6.1) are independent of θj,∀j ∈ N \ {i}, player i ∈ N can still learn player

j’ type via (6.3) as player j’s action ukj is a function1 of his type θj.

Markov-Chain Belief Dynamics

In section 6.1.1, we assume that players can exploit the intrinsic informa-

tion of state dynamics fk, state observations xk, xk+1, and the prediction of

1Each player’s action is a function of his type as his cost is related to his type and the action
aims to minimize his cost.



197

all players’ actions uk. Since the above intrinsic information may not be avail-

able in practice, we consider the belief dynamics with extrinsic information in

this subsection. In particular, we assume that each player i’s belief dynamics

βk+1
i := Γki (β

k
i , w

k, θi), ∀k ∈ {0, · · · , K − 1}, are a discrete-time Markov chain

where the extrinsic information at stage k is characterized by the transition func-

tion Γki (·, wk, θi). Note that the transition function only characterizes how players

update their beliefs at each stage yet does not guarantee that a player can learn

the true types of others. The following example illustrates a class of players whose

belief dynamics exhibit the confirmation bias [155] where players ignore intrinsic

evidence such as uk and preserve their belief update rules Γki at each stage k.

Example 2. Consider a two-person game N = 2 where the first player has two types

N1 = 2,Θ1 = {θ11, θ21} and the second player only has one type N1 = 1,Θ2 = {θ12}.

The second player’s belief state βk2 = [lk2(θ
1
1|θ12), lk2(θ21|θ12)] toward the first player’s

type belongs to a finite set Λ2 = {[0.2, 0.8], [0.5, 0.5], [0.8, 0.2]}. The transition

function Γk2 is independent of k: if the current belief state is [0.5, 0.5], then the

belief at the next stage is [0.2, 0.8], [0.5, 0.5], or [0.8, 0.2] with probability 0.4, 0.2, 0.4,

respectively. If the current belief state is [0.8, 0.2] (resp. [0.2, 0.8]), then the belief at

the next stage is [0.8, 0.2] (resp. [0.2, 0.8]) or [0.5, 0.5] with probability 0.9 and 0.1,

respectively. The above transition function Γk2 means that the second player tends

to interpret the extrinsic information of the first player’s type based on his current

belief. If the second player already believes that the first player is of type θ11 with a

high probability of 0.8 at stage k, i.e., βk2 = [0.8, 0.2], then the second player is more

inclined to enhance his current belief, i.e., his belief state at the next stage, i.e.,

βk+1
2 , will remain to be [0.8, 0.2] with a high probability of 0.9. The above transition

function represents the phenomena of attitude polarization and confirmation bias
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where players preserve their existing beliefs and the disagreement becomes more

extreme at each stage even when players are exposed to the same evidence.

6.1.2 Nonzero-Sum Cost Function and Equilibrium

At non-terminal stage k ∈ K \ {K}, player i’s cost function is gki : Rn×1 ×∏N
j=1 Rmj×1 × Θi 7→ R. The final stage cost is gKi : Rn×1 × Θi 7→ R. Define

uk0:K−1
i := [uk0i , · · · , uK−1

i ] as player i’s action sequence from stage k0 to K − 1 and

uk0:K−1 := [uk0:K−1
i , uk0:K−1

−i ] as player i’s and all other players’ action sequences

from stage k0 to K − 1. Player i’s expected cumulative cost from arbitrary initial

stage k0 ∈ K to the terminal stage K is defined as

Jk0i (lk0:K−1
i , uk0:K−1, xk0 , θi) = EwK−1∼Ξw

[gKi (x
K , θi)]

+
K−1∑
k=k0

Ewk−1∼Ξw

[
Eθ−i∼lki [g

k
i (x

k, uk, θi)]
]
. (6.4)

The expectations are taken first over the external noise sequence wk and then

over other players’ internal type uncertainty. We cannot exchange the order of

these two expectations as lki is a function of wk−1. Each player i at stage k0 ∈ K

aims to minimize Jk0i by choosing only his action sequence uk0:K−1
i but not other

players’ action sequence uk0:K−1
−i . The following definition of sequential rationality

in Definition 9 guarantees that each player i has no motivation to deviate from the

sequentially rational action at any stage k ∈ {k0, · · · , K− 1} during the interaction

if all other players adopt the sequentially rational actions.

Definition 9. An action sequence u∗,k0:K−1 := {u∗,k0:K−1
i , u∗,k0:K−1

−i } is called se-

quentially rational for player i under the belief sequence lk0:K−1
i , state xk0, and type

θi, if for any state xk at stage k ∈ {k0, · · · , K − 1}, player i does not benefit from
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taking any other action sequence uk:K−1
i , i.e., Jki (l

k:K−1
i , u∗,k:K−1

i , u∗,k:K−1
−i , xk, θi) ≤

Jki (l
k:K−1
i , uk:K−1

i , u∗,k:K−1
−i , xk, θi),∀uk:K−1

i .

Since players’ actions may affect their future beliefs as captured by the belief

dynamics Γki in (6.2), we further require the equilibrium action u∗,k0:K−1 in Definition

9 to be consistent with the belief dynamics, which leads to the following definition

of Perfect Bayesian Nash Equilibrium (PBNE).

Definition 10. Consider the N-player dynamic game of private types and asym-

metric information defined by the state dynamics (6.1) and the expected cumulative

cost (6.4). The action sequence u∗,0:K−1 := {u∗,0:K−1
i , u∗,0:K−1

−i } of N players over K

stages compromises the Perfect Bayesian Nash Equilibrium (PBNE) if, regardless

of each player i’s type θi ∈ Θi, the following statements hold.

1. Sequential rationality: u∗,0:K−1 is sequential rational for each player i ∈ N

under his belief sequence l∗,0:K−1
i ;

2. Belief consistency: each player i’s belief sequence l∗,0:K−1
i is consistent

with (6.2) under u∗,0:K−1.

Proposition 1. It is sufficient to represent player i’s equilibrium cost, denoted

as Jki (l
∗,k:K−1
i , u∗,k:K−1, xk, θi), under the PBNE action u∗,k:K−1 at stage k ∈ K

as a function of βk, xk and θi, which is defined as V k
i (β

k, xk, θi). Under the

boundary condition V K
i (βK , xK , θi) := gKi (x

K , θi), the following holds for all k ∈

{0, · · · , K − 1} and all xk ∈ Rn×1, βk ∈ Λ, i.e.,

V k
i (β

k, xk, θi) = min
uki

∑
θ−i

lki (θ−i|hk, θi){gki (xk, uk, θi)+

Ewk∼Ξw
[V k+1
i (βk+1, xk+1, θi)]}, ∀θi ∈ Θi,∀i ∈ N , (6.5)
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where βk+1 and xk+1 satisfy (6.2) and (6.1), respectively.

Proof. According to the definition of PBNE, at the second last stage k = K − 1,

each player i’s equilibrium action

u∗,ki = argmin
uki

Eθ−i∼lki [g
k
i (x

k, uk, θi)] + Ewk∼Ξw
[gKi (x

K , θi)]

is in general a function of θi, x
k, l∗,ki , u∗,k−i . Due to the coupling between u∗,ki and

u∗,k−i , we need to solve a set of system equations for all i ∈ N and θi ∈ Θi. Then,

u∗,ki will be a function of βk, xk, θi and we obtain (6.5) at stage k = K − 1. We can

repeat the above procedure from k = K − 2 to k = 0 to obtain the recursive form

in (6.5).

Proposition 1 characterizes the structure of the equilibrium action u∗,ki and

the equilibrium cost V k
i (β

k, xk, θi) for each player i of type θi under the solution

concept of PBNE; i.e., both terms are feedback functions of the belief state βk, the

physical state xk, and the player’ type θi. Although J
k
i is a function of beliefs lk:K−1

i

over all the remaining stages, V k
i (β

k, xk, θi) only depends on the belief state at the

current stage k. If all players’ types are common knowledge, PBNE still applies

and we can define a new function V̄ k
i (x

k, θ) to represent the resulting equilibrium

cost V k
i (β

k, xk, θi) for all k ∈ K without loss of generality.

6.1.3 Offline Evaluation of Equilibrium Cost

If each player i’s initial belief confirms to the prior distribution of other players’

types, i.e., l0i (θj|x0, θi) = Ξj(θj),∀θi ∈ Θi, j ∈ N , θj ∈ Θj, ∀x0, then each player

i at system state x0 with belief state β0 can use his expected equilibrium cost

Eθi∼Ξi
[V 0
i (β

0, x0, θi)] over his type uncertainty Ξi as an offline performance measure
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of the equilibrium action u∗,0:K . As a comparison, player i’s expected equilibrium

cost Eθ∼Ξ[V̄
0
i (x

0, θ)] under the complete information game serves as a benchmark.

Note that player i does not need to know the realization of the joint type θ to

compute Eθ∼Ξ[V̄
0
i (x

0, θ)]. Due to the coupling in dynamics, costs, and cognition

among N players, obtaining more information and knowing the type of another

player j ∈ N \ {i} may not always improve player i’s performance; i.e., there

is no guarantee that Eθi∼Ξi
[V 0
i (β

0, x0, θi)] ≥ Eθ∼Ξ[V̄
0
i (x

0, θ)]. Besides the above

performance evaluation for an individual player i ∈ N under deception, we may

also aim to evaluate the overall performance of multiple players or all N players.

We define the Price of Deception (PoD) in Definition 11 with a set of coefficients

ηi ∈ [0, 1],∀i ∈ N ,∑i∈N ηi = 1. Since the equilibrium cost can be negative, we let

η0(Ξ) := −min(0, {Eθi∼Ξi
[V 0
i (β

0, x0, θi)]}i∈N , {Eθ∼Ξ[V̄
0
i (x

0, θ)]}i∈N ) be the normal-

izing constant to guarantee that pη(Ξ) is non-negative for all chosen coefficients

ηi, i ∈ N .

Definition 11. For a given set of coefficients η := {ηi}i∈N∪{0}, the Price of

Deception (PoD) of the N-player K-stage game defined by (6.1), (6.4), and (6.2)

under the prior probability distribution Ξ = [Ξi]i∈N is

pη(Ξ) :=

∑
i∈N ηiEθ∼Ξ[V̄

0
i (x

0, θ)] + η0(Ξ)∑
i∈N ηiEθi∼Ξi

[V 0
i (β

0, x0, θi)] + η0(Ξ)
∈ [0,∞).

The PoD is a crucial evaluation and design metric. We can endow PoD with

different meanings by properly choosing the weighting coefficients ηi, i ∈ N . For

example, if besides N players, there is a central planner who aims to minimize the

total cost of all N players under their deceptive interaction. Then, we can pick

ηi = 1/N, i ∈ N , to represent the overall system performance. Although the central
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planner cannot control players’ state dynamics, costs, and belief dynamics directly,

he can still affect their deceptive interaction if he can design the prior probability

distribution Ξ of the joint type θ. If the central planner instead only aims to reduce

the cost of one player j ∈ N , then we can pick ηj = 1 and ηh = 0,∀h ∈ N \ {j}.

With a given weighting parameters η, a larger value of pη(Ξ) indicates a better

accomplishment of the above goals. Note that individual deception may improve

the system performance, i.e., pη(Ξ) > 1.

6.2 Linear-Quadratic Specification

Linear-Quadratic (LQ) game is an important class of dynamic games. They

can also be applied iteratively to approximate nonlinear stochastic systems with

general cost functions and obtain equilibrium actions [54]. In the following sections,

we consider linear state dynamics

fk(xk, uk, θ) := Ak(θ)xk +
N∑
i=1

Bk
i (θi)u

k
i , (6.6)

with stage-varying matrices Ak(θ) ∈ Rn×n, Bk
i (θi) ∈ Rn×mi .

Remark 8. System (6.6) is multi-agent controllable if and only if matrices, denoted

as Hk
i (θ) := [Bk−1

i (θi), · · · ,
∏k−1

h=2A
h(θ)B1

i (θi),
∏k−1

h=1A
h(θ)B0

i (θi)],∀i ∈ N ,∀θ ∈

Θ, ∀k ∈ K, are of full rank as noise wk has zero mean and we can obtain E[xk] =∏k−1
h=0A

h(θ)x0 +
∑N

r=1H
k
r (θ)[u

k−1
r ; · · · ;u0r] by induction.
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Each player i’s cost is quadratic in both xk and uk; i.e.,

gki (x
k, uk, θi) = (xk − x̂ki (θi))′Dk

i (θi)(x
k − x̂ki (θi))

+f̂ki (x̂
k
i (θi)) +

N∑
j=1

(ukj )
′F k
ij(θi)u

k
j ,∀k ∈ K, (6.7)

where [x̂ki (θi)]k∈K is a known type-dependent reference trajectory for player i ∈ N

and f̂ki is a known function of x̂ki (θi). The cost matrices Dk
i (θi) ∈ Rn×n, F k

ij(θi) ∈

Rmi×mi ,∀i, j ∈ N , k ∈ K, are symmetric. At the final stage, FK
ij (θi) ≡ 0mi,mi

,

∀i, j ∈ N ,∀θi ∈ Θi. We introduce the following three sets of notations for the belief

matrix, the extended Riccati equations, and the matrix-form equilibrium action,

respectively.

Belief Matrix With a little abuse of notation, we can define the marginal

probability lki (θj|hk, θi) :=
∑

θr∈Θr,r∈N\{i,j} l
k
i (θ−i|hk, θi),∀j ∈ N \{i}, as the player

i’s belief toward the player j’s type at stage k. Define the belief matrix for all

i ∈ N , j ∈ N \ {i}, k ∈ {0, · · · , K − 1}, as

Lkij :=



Lki (θ
1
j |hk, θ1i ), · · · Lki (θ

Nj

j |hk, θ1i )

Lki (θ
1
j |hk, θ2i ), · · · Lki (θ

Nj

j |hk, θ2i )
...

. . .
...

Lki (θ
1
j |hk, θNi

i ), · · · Lki (θ
Nj

j |hk, θNi
i )


, (6.8)

where each block element Lki (θ
r
j |hk, θhi ) = Diag[lki (θ

r
j |hk, θhi ), · · · , lki (θrj |hk, θhi )] ∈

Rn×n,∀r ∈ {1, · · · , Nj},∀h ∈ {1, · · · , Ni}. Since all its elements are positive and

all rows sum to one, the belief matrix Lkij is a right stochastic matrix.
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Extended Riccati Equations A sequence of symmetric matrices Ski (β
k, θi) ∈

Rn×n, vectors Nk
i (β

k, θi) ∈ Rn×1, and scalars qki (β
k, θi) ∈ R satisfies the following

extended Riccati equations for all βk ∈ Λ, i ∈ N , θi ∈ Θi, k ∈ {0, · · · , K − 1}:

Ski =Dk
i + Eθ−i∼lki

[
(Ak +

N∑
j=1

Bk
jΨ

1,k
j )′Ewk∼Ξw

[Sk+1
i ]

· (Ak +
N∑
j=1

Bk
jΨ

1,k
j ) +

N∑
j=1

(Ψ1,k
j )′F k

ijΨ
1,k
j

]
, (6.9)

Nk
i =− 2Dk

i x̂
k
i + Eθ−i∼lki

[
(
N∑
j=1

Bk
jΨ

1,k
j + Ak)′(Ewk∼Ξw

[Nk+1
i ]

+ 2Ewk∼Ξw
[Sk+1
i ]

N∑
j=1

Bk
jΨ

2,k
j ) + 2

N∑
j=1

(Ψ1,k
j )′F k

ijΨ
2,k
j

]
, (6.10)

qki =(x̂ki )
′Dk

i x̂
k
i + f̂ki (x̂

k
i ) + Ewk∼Ξw

[(wk)′Sk+1
i wk + qk+1

i ]

+ Eθ−i∼lki

[
(
N∑
j=1

Bk
jΨ

2,k
j )′Ewk∼Ξw

[Sk+1
i ]

N∑
j=1

Bk
jΨ

2,k
j

+ (
N∑
j=1

Bk
jΨ

2,k
j )′Ewk∼Ξw

[Nk+1
i ] +

N∑
j=1

(Ψ2,k
j )′F k

ijΨ
2,k
j

]
, (6.11)

where functions Ψ1,k
i ,Ψ2,k

i ,∀i ∈ N , are defined below. The boundary conditions of

the extended Riccati equations are

SKi = DK
i ; N

K
i = −2DK

i x̂
K
i ; q

K
i = (x̂Ki )

′DK
i x̂

K
i + f̂Ki (x̂Ki ). (6.12)



205

Equilibrium Action in Matrix Form We need to represent the equilibrium

action of all players under all types in matrix form as each player’s action is

coupled with other players’ actions under PBNE. Since each player i has different

equilibrium actions under different types, with a little abuse of notation, we write

each player i’s action as a function of his type θi and define two action vectors

uki := [uki (θ
1
i ), · · · , uki (θNi

i )]′ ∈ RmiNi×1 and uk := [uk1,u
k
2 · · · ,ukN ]′ ∈ R

∑N
r=1mrNr×1.

For all i ∈ N , lki , θi ∈ Θi, k ∈ {0, · · · , K − 1}, define a series of (mi)-by-(mi) square

matrices

Rk
i (β

k, θi) := F k
ii(θi) + (Bk

i (θi))
′Sk+1
i (βk, θi)B

k
i (θi).

Let Bk
i := Diag[Bk

i (θ
1
i ) · · · , Bk

i (θ
Ni
i )] be (Nin)-by-(Nimi) block matrices. Let

Ski (β
k) := Diag[Ski (β

k, θ1i ), · · · , Ski (βk, θNi
i )] be (Nin)-by-(Nin) block matrices. Fi-

nally, for any βk ∈ Λ, we define three categories of parameter matrices W1,k(βk) =

[W 1,k
1 (βk); · · · ;W 1,k

N (βk)] ∈ R
∑N

r=1mrNr×n, W2,k(βk) = [W 2,k
1 (βk); · · · ;W 2,k

N (βk)] ∈

R
∑N

r=1mrNr×1, and W0,k(βk) := [W 0,k
ij (βk) ∈ RmiNi×mjNj ]i,j∈N . Their elements are

given as follows; i.e., ∀i ∈ N ,∀k ∈ {0, · · · , K − 1},

W 1,k
i (βk) =

[
(Bk

i (θ
1
i ))

′Sk+1
i (βk, θ1i )Eθ−i∼lki [A

k(θ1i , θ−i)];

· · · ; (Bk
i (θ

Ni
i ))′Sk+1

i (βk, θNi
i )Eθ−i∼lki [A

k(θNi
i , θ−i)]

]
,

W 2,k
i (βk) =

1

2

[
(Bk

i (θ
1
i ))

′Nk+1
i (βk, θ1i );

· · · ; (Bk
i (θ

Ni
i ))′Nk+1

i (βk, θNi
i )

]
,

W 0,k
ii (βk) = Diag[Rk

i (β
k, θ1i ), · · · , Rk

i (β
k, θNi

i )],

W 0,k
ij (βk) = (Bk

i )
′Sk+1
i (βk)LkijB

k
j ,∀j ∈ N \ {i}.
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Let matrix Mk
i (β

k, θli) ∈ Rmi×
∑N

r=1mrNr , l ∈ {1, 2, · · · , Ni}, i ∈ N , k ∈ {0, · · · , K −

1}, be the truncated row block, i.e., from the row
∑i−1

r=1mrNr + mi(l − 1) to∑i−1
r=1mrNr+mil, of matrix (−W0,k(βk))−1. We define the following shorthand no-

tations Ψ1,k
i (βk, θi) := Mk

i (β
k, θi)W

1,k(βk) and Ψ2,k
i (βk, θi) := Mk

i (β
k, θi)W

2,k(βk).

6.2.1 Extrinsic Belief Dynamics and the Extended Riccati

Equations

In this section, we focus on the extrinsic belief dynamics where Γki is independent

of players’ actions uk for all i ∈ N , k ∈ {0, · · · , K − 1}. The proof of Theorem 5

generalizes the one of classical LQ games (e.g., Chapter 5.5 and 6.2 in [14]) where

we further incorporate players’ asymmetric belief dynamics into their objective

functions to minimize their expected costs under deception. We apply dynamic

programming from stage K−1 backward to stage 0 to obtain a closed-form solution

of PBNE.

Theorem 5. An N-player K-stage LQ game of incomplete information defined

by (6.6), (6.7), and extrinsic belief dynamics βk+1
i = Γki (β

k
i , w

k, θi),∀i ∈ N , ∀k ∈

{0, · · · , K − 1}, admits a unique state-feedback PBNE

u∗,ki (βk, xk, θi) = Ψ1,k
i (βk, θi)x

k +Ψ2,k
i (βk, θi), (6.13)

if and only if Rk
i (β

k, θi) is positive definite and W0,k(βk) is non-singular for all

βk ∈ Λ, i ∈ N , θi ∈ Θi, k ∈ {0, · · · , K − 1}. The equilibrium cost V k
i is quadratic
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in xk, i.e.,

V k
i (β

k, xk, θi) = qki (β
k, θi) + (xk)′Nk

i (β
k, θi)

+ (xk)′Ski (β
k, θi)x

k,∀i ∈ N , k ∈ K. (6.14)

Proof. We use backward induction to prove the result. At the final stage K, the

value function V K
i (βK , xK , θi) = (xK− x̂Ki (θi))′DK

i (θi)(x
K− x̂Ki (θi))+ f̂Ki (x̂Ki (θi)) is

quadratic in xK and we obtain the boundary conditions for SKi , N
K
i , q

K
i in (6.12) by

matching the Right-Hand Side (RHS) of (6.14). At any stage k ∈ {0, · · · , K − 1},

if (6.14) is true at stage k + 1, we can expand Ewk∼Ξw
[V k+1
i (βk+1, xk+1, θi)] by

plugging in the state dynamics xk+1 = Ak(θ)xk+
∑N

i=1B
k
i (θi)u

k
i +w

k and the belief

dynamics βk+1
i = Γki (β

k
i , w

k, θi). Then, the RHS of (6.5) is quadratic in uki for each

player i. If the coefficient matrix Rk
i of the quadratic form (uki )

′Rk
i u

k
i is positive

definite, then the first-order necessary conditions for minimization are also sufficient

and we obtain the following unique set of equations for the equilibrium action u∗,k

by differentiating the RHS of (6.5) and setting it to zero, i.e., ∀θi ∈ Θi,

−Rk
i u

∗,k
i (θi) = (Bk

i )
′Sk+1
i Eθ−i∼lki [A

k]xk +
1

2
(Bk

i )
′Nk+1

i

+ (Bk
i )

′Sk+1
i

∑
j ̸=i

Eθj∼lki [B
k
j (θj)u

∗,k
j (θj)],∀i ∈ N . (6.15)

Due to the coupling in players’ actions and beliefs, we rewrite (6.15) in matrix

form, i.e., −W0,k(βk)u∗,k = W1,k(βk)xk +W2,k(βk), to solve the set of equations.

Given the existence of (−W0,k(βk))−1, each player i’s equilibrium action is an affine

function in xk, i.e., u∗,ki (βk, xk, θi) = Ψ1,k
i (βk, θi)x

k + Ψ2,k
i (βk, θi). Note that the

coefficients Ψ1,k
i ,Ψ2,k

i for player i are functions of βk, i.e., the beliefs of all players

under all types at stage k. Finally, after substituting the equilibrium action
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u∗,ki (βk, xk, θi) = Ψ1,k
i (βk, θi)x

k+Ψ2,k
i (βk, θi) into the RHS of (6.5) and representing

V k
i in the Left-Hand Side (LHS) in its quadratic form of xk, we can match the

coefficients of quadratic, linear, and constant terms in the LHS and RHS to obtain

the extended Riccati equations (6.9), (6.10), and (6.11).

Remark 9 (Positive Definiteness). If Dk
i (θi) and F

k
ij(θi),∀j ∈ N , are positive

definite for all k ∈ K, then Rk
i (β

k, θi) is positive definite for all k ∈ K, βk ∈ Λ,

because the linear combination of positive definite matrices in (6.9) preserves positive

definiteness. Note that the above condition is only a necessary condition; i.e., Dk
i

and F k
ij do not need to be positive definite to make Rk

i positive definite as shown in

Section 6.3.

Remark 10 (Cognitive Coupling). Compared with the classical LQ games (e.g.,

Chapter 6 in [14]), the deception of players’ types results in a unique feature of

cognitive coupling represented by the belief matrix in (6.8); i.e., each player’s action

hinges on not only his own belief but also all other players’ beliefs as these beliefs

can affect their actions and further the outcome of the interaction. Thus, player i

can change other players’ actions by manipulating their beliefs of his type θi, i.e.,

lkj ,∀j ∈ N \ {i}, or making them believe that his belief lki on their types θ−i has

changed.

We introduce matrix block partitions as follows. For each type θi ∈ Θi, we

divide Ak(θ), Dk
i (θi), S

k
i (θi) into N -by-N blocks where the (i, i) block is denoted as

Aki (θ), D̄
k
i (θi), S̄

k
i (θi) ∈ Rni×ni , respectively. The i-th row block of Nk

i (θi), x̂
k
i (θi) is

N̄k
i (θi), x̄

k
i (θi) ∈ Rni×1, respectively. The i-th row block of Bk

i (θi) is B̄
k
i (θi) ∈ Rni×mi .

When the system state xk can be represented by players’ joint states [xki ]i∈N ,

Corollary 1 shows that the LQ game of asymmetric information degenerates to an
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LQ control problem if players have decoupled cost and state dynamics defined as

follows.

Definition 12 (Decoupled Dynamics and Cost). Player i ∈ N has decoupled

dynamics if for all k ∈ K, Aki (θ) = Āki (θi),∀θ ∈ Θ, while all other elements in the

i-th row block and the i-th column block of Ak(θ) are 0. Besides, all elements of

Bk
i (θi) except for the row block B̄k

i (θi) are required to be 0. Player i ∈ N has a

decoupled cost if for all stage k ∈ K, F k
ij(θi) = 0mi,mi

,∀θi ∈ Θi, j ∈ N \ {i}, and all

elements of Dk
i (θi) equal 0 except for D̄k

i (θi).

Corollary 1 (Degeneration to LQ Control). If xk = [xki ]i∈N for all stage

k ∈ K and player i has both decoupled cost and state dynamics, then his action

under PBNE is independent of other players’ actions, types, and beliefs, i.e.,

u∗,ki = −(Rk
i )

−1(B̄k
i )

′S̄k+1
i Aki x

k
i − 1

2
(Rk

i )
−1(B̄k

i )
′N̄k+1

i , where we have Rk
i = F k

ii +

(B̄k
i )

′S̄k+1
i B̄k

i , (G
k
i )

′ = In − S̄k+1
i B̄k

i (R
k
i )

−1(B̄k
i )

′, S̄ki = (Aki )
′(Gk

i )
′S̄k+1
i Aki + D̄k

i , and

N̄k
i = (Aki )

′(Gk
i )

′N̄k+1
i − 2D̄k

i x̄
k
i .

Proof. We show by induction that Ski , N
k
i , ∀k ∈ K, satisfy the sparsity condition

that only the (i, i) block of Ski and the i-th row block of Nk
i are nonzero. At

stage K, SKi = DK
i and NK

i = −2DK
i x̂

K
i satisfy the above condition. At stage

k ∈ {0, · · · , K − 1}, if Sk+1
i , Nk+1

i satisfy the sparsity condition, W0,k(βk) be-

comes a diagonal block matrix where W 0,k
ij (βk) = 0miNi,mjNj

and Mk
i (β

k, θi) =

−(Rk
i (β

k, θi))
−1 for all βk ∈ Λ. Then, Ski , N

k
i satisfy the condition based on (6.9)

and (6.10).
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6.2.2 Intrinsic Belief Dynamics and the Receding-Horizon

Control

If there exists a player i ∈ N whose belief dynamics Γki depend on intrinsic

information at some stage k ∈ {0, · · · , K−1} as shown in (6.2), then the equilibrium

action u∗,ki is in general a nonlinear function of xk and the equilibrium cost V k
i is

not quadratic in xk even under the LQ setting of (6.6) and (6.7). Besides the static

cognitive coupling among N players in Remark 10, the intrinsic information of uk

in the belief update introduces another dynamic cognitive coupling between the

forward belief dynamics via (6.2) and the backward equilibrium computation via

(6.5), which makes it challenging to compute PBNE. To reduce the computational

complexity and further obtain implementable actions, we adopt a receding-horizon

approach that computes the sequentially rational action sequence of all the future

stages u∗,k:K−1 at current stage k ∈ {0, · · · , K − 1} assuming β k̄ = βk,∀k̄ ∈

{k, ..., K − 1}, yet only implements the current-stage action u∗,k. Then, at the new

stage k + 1, each player observes the new system state xk+1 and updates the belief

to βk+1 and recomputes the entire action sequence u∗,k+1:K−1 under assumption of

β k̄ = βk+1, ∀k̄ ∈ {k + 1, ..., K − 1}, yet still only implements the new current-stage

action u∗,k+1. Players repeat the above procedure until they reach the final stage

of the interaction.

Compared with PBNE, which produces an offline planning for all future stages

under all possible scenarios before the game has taken place, the receding-horizon

approach enables an online replanning of their actions repeatedly at the beginning

of each new stage as the interaction continues. Although we assume that players’

beliefs at the future stages are the same as the current beliefs during the phase of
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equilibrium computation, players can correct and update their beliefs and actions

based on the online observation of xk during each replanning phase. Thus, the

receding-horizon approach provides a reasonable approximation of the PBNE action

and is more adaptive to unexpected environmental changes of the state dynamics

fk and cost structure gki ,∀i ∈ N .

Under the LQ specification in (6.6) and (6.7) and Bayesian belief dynamics in

(6.3), we summarize the computation phase and online implementation phase in

Algorithm 5 and 6, respectively. To investigate the scalability of our algorithms,

we analyze the temporal and spatial complexity concerning N,K, and Ni. To

simplify the notation and enhance readability, we focus on the symmetric setting

where Ni = N0 ∈ Z+,∀i ∈ N . For each player i ∈ N of type θi ∈ Θi at the

beginning of the interaction, i.e., k = 0, he needs to store the game parameters

A0, B0
r (θr), D

0
r(θr), F

0
rh(θr),∀θr ∈ Θr, and the belief matrix L0

rh for all r, h ∈ N ,

which are common knowledge. The spatial complexity to store the game parameters

and the belief matrix is O(N2N0) and O(N2N2
0 ), respectively. Note that in general,

player i has coupled cognition as shown in Remark 10 and has to keep track of not

only his belief Lki,j, ∀j ∈ N , but also other players’ beliefs Lkr,h,∀r ∈ N \{i}, h ∈ N ,

to decide his equilibrium action under deception at each stage k. During the

K-stage interaction, each player i ∈ N of type θi ∈ Θi observes the system state xk

and computes his equilibrium action u∗,ki (βk, xk, θi) at stage k based on Algorithm

5. After all players implement their equilibrium actions at stage k, the system state

evolves to xk+1. Based on the new state observation xk+1, each player i updates

the belief matrix in (6.8) via (6.3). Since player i can delete the game parameters

and the belief matrices of previous stages, the spatial complexity remains the

same as the real-time stage index k increases. Thus, our algorithm can handle the
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interaction of long duration. All players repeat the above procedure stated in lines

14-17 of Algorithm 6 until reaching the terminal stage k = K.

Algorithm 5: PBNE computation with β k̄ = βk, ∀k̄ ∈ {k, ..., K − 1} at
stage k ∈ {0, · · · , K − 1} for player i ∈ N of type θi ∈ Θi

58 Load game parameters Ak, Bk
r (θ̄r), D

k
r (θ̄r), F

k
rh(θ̄r),∀θ̄r ∈ Θr and the belief

matrix Lkr,h for all r, h ∈ N ;

59 Input state observation xk;
60 for k̄ ← K − 1 to k do
61 for j ← 1 to N do

62 for θj ← θ1j to θ
Nj

j do

63 Compute S k̄j , N
k̄
j via (6.9), (6.10) with β k̄ = βk;

64 end

65 end

66 end

67 Return his equilibrium action u∗,ki (lki , x
k, θi) via (6.13);

The computational complexity of the belief matrix update in the line 15 of

Algorithm 6 is O(NN
0 N). For any βk, the term W0,k(βk) has computational com-

plexity O(NN
0 N) + O(N3

0N
2), which is determined by the belief matrix update

and the matrix chain multiplication of W 0,k
ij (βk), respectively. Then, the compu-

tational complexity of (W0,k(βk))−1 and W1,k(βk) is O(NN
0 N) + O(N3

0N
3) and

O(NN
0 N) + O(N3

0N
2), respectively. Given βk and θi, the computational com-

plexity of Ski (β
k, θi) in (6.9) is O(NN

0 N) + O(N3
0N

3) + O(N3
0N

2) + O(N0N) =

O(max (NN
0 N,N

3
0N

3)), which hinges on the computational complexity of the ma-

trix Mk
i (β

k, θi) (or (W
0,k(βk))−1), W1,k(βk), and the matrix chain multiplication

in (6.9). Similarly, Nk
i (β

k, θi) and W
2,k(βk) both have computational complexity

of O(NN
0 N) + O(N0N). Therefore, player i’s temporal complexity at each stage
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Algorithm 6: K-stage receding-horizon control for player i ∈ N of type
θi ∈ Θi

68 Initialize k = 0;
69 Store game parameters Ak, Bk

r (θ̄r), D
k
r (θ̄r), F

k
rh(θ̄r), ∀θ̄r ∈ Θr and the belief

matrix Lkr,h for all r, h ∈ N ;

70 while k < K do

71 Call Algorithm 5 to implement u∗,ki (lki , x
k, θi);

72 Observe state xk+1 and update all elements of the belief matrix via (6.3)

to obtain Lk+1
r,h , ∀r, h ∈ N ;

73 Delete Ak, Bk
r (θ̄r), D

k
r (θ̄r), F

k
rh(θ̄r),L

k
r,h and Store

Ak+1, Bk+1
r (θ̄r), D

k+1
r (θ̄r), F

k+1
rh (θ̄r),L

k+1
r,h for all θ̄r ∈ Θr and for all

r, h ∈ N ;
74 Update stage index k ← k + 1;

75 end

k ∈ {0, 1, · · · , K − 1} is

O((K − k) ·N0N ·max (NN
0 N,N

3
0N

3)).

The temporal complexity has the maximum value of O(K ·max {NN+1
0 N2, N4

0N
4})

at the initial stage k = 0 where each player has to predict the entire K future stages

to act optimally under the deception. Since the temporal complexity decreases as the

real-time stage index k increases, a player who can compute the equilibrium action

within the required time at the initial stage k = 0 is guaranteed to meet the real-

time requirement in the following stages of interaction. If the number of types and

agents are on the same scale, e.g., N0 = N , then limN→∞(NN+1
0 N2)/(N4

0N
4)→∞

and the computation of belief matrix update plays a dominant role as each player

keeps track of all players’ beliefs to obtain the equilibrium action under deception.

If N0 ≪ N , e.g., N0 = N1/N , then limN→∞(NN+1
0 N2)/(N4

0N
4)→ 0 and the inverse

of W0,k(βk) becomes the most time-consuming operation due to the coupling in
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dynamics, costs, and cognition.

Effective deception can prevent or delay other players from learning the deceiver’s

private type. We define the criterion of successful learning of the deceiver’s type in

Definition 13 and ϵ-deceviability and ϵ-learnability in Definition 14.

Definition 13 (Stage of Truth Revelation). Consider two players i, j ∈ N

with type θi and θj, respectively. Stage ktri,j ∈ K ∪ {K + 1} is said to be player

i’s truth-revealing stage with accuracy δ ∈ (0, 1]2 if it satisfies the following two

conditions.

• The bounded mismatch condition: player i’s belief mismatch remains

less than δ after stage ktri,j ∈ K, i.e.,

1− lki (θj|hk, θi) ≤ δ, ∀k ≥ ktri,j. (6.16)

• The first-hitting-time condition: ktri,j ∈ K is the first stage satisfying

(6.16), i.e., 1− lk
tr
i,j−1

i (θj|hk
tr
i,j−1, θi) > δ, ktri,j > 1.

If there does not exist ktri,j ∈ K that satisfies (6.16), we define ktri,j := K +1. If there

are only two players N = 2, we write ktri,j as k
tr
i without ambiguity.

Due to deceivers’ deceptive actions and the external noises, the belief sequence

may be fluctuant; i.e., there can exist k < ktri,j such that 1− lki (θj|hk, θi) ≤ δ. Thus,

as shown in Definition 13, a player should only claim a successful learning of other

players’ types if his belief mismatch remains less than δ for the remaining stages.

Definition 14 (Deceviability and Learnability). Consider players i, j ∈ N with

type θi and θj, thresholds δ ∈ (0, 1], ϵ ∈ [0, 1], and a given stage index k̃ ∈ K∪{K+1}.
2Since the belief mismatch does not reduce to 0 in finite stages with initial belief l0i ∈ (0, 1),

the accuracy threshold δ ̸= 0.
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Player i is k̃-stage ϵ-deceivable if the probability Pr(ktri,j < k̃), or equivalently

Pr(lk̃i (θj|xk̃, θi) > 1− δ), is not greater than ϵ for all l0i ∈ (0, 1). If the above does

not hold, player j’s type is said to be k̃-stage ϵ-learnable by player i.

Since robot deception involves only a finite number of stages, it is essential that

the deceived robot can learn the deceiver’s type as quickly as possible so that he

has sufficient stages to plan on and mitigate the deception impact from the previous

stages. Therefore, the definition of learnability, i.e., non-deceviability in Definition

14, not only requires the deceived player to be capable of learning the deceiver’s

private information, but also learning it in a desirable rate, i.e., within k̃ stage. Due

to the external noise, ktri,j is a random variable. Thus, the definition of learnability

requires Pr(ktri,j < k̃) > ϵ; i.e., player i has a large probability to correctly learn the

type of player j before stage k̃.

6.3 Dynamic Target Protection under Deception

We investigate a pursuit-evasion scenario that contains two UAVs with the

decoupled linear time-invariant state dynamics, i.e., Ak(θ) = I4 and B̄k
i (θi) =

[B̃i(θi), 0; 0, B̃i(θi)] ∈ R2×2,∀k ∈ K. We use ‘she’ for UAV 1, the pursuer, and ‘he’

for UAV 2, the evader. UAV i’s state xki := [xki,x, x
k
i,y]

′ ∈ R2×1 represents i’s location

(xki,x, x
k
i,y) in the 2D space, and action uki = [uki,x, u

k
i,y] ∈ R2×1 affects i’s speed in x

and y directions.

UAV 2 as the evader selects either the harbor in ‘Normandy’ or ‘Calais’ as his

final location based on his type θ2 ∈ {θg2, θb2}. He aims to reach ‘Normandy’ located

at γ(θg2) := (xg, yg) in K = 40 stages if his type is θg2, otherwise ‘Calais’ located

at γ(θb2) := (xb, yb) if his type is θb2. UAV 1 as the pursuer can make interfering
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signals and aims to be close to UAV 2 at the final stage to protect the harbor

targeted by the evader, i.e., gk1(x
k, uk, θ1) = dk12(θ1)((x

k
2,y − xk1,y)2 + (xk2,x − xk1,x)2) +

fk11(θ1)((u
k
1,x)

2 + (uk1,y)
2) − fk12(θ1)((uk2,x)2 + (uk2,y)

2),∀k ∈ K, where dk12(θ1) ∈ R≥0

penalizes her distance from the evader at stage k ∈ K, fk11(θ1) ∈ R≥0 prevents her

from a high action cost, and fk12(θ1) ∈ R≥0 incites her opponent, i.e., the evader,

to take costly actions. We classify UAV 1 into two types, i.e., Θ1 = {θH1 , θL1 },

based on her maneuverability represented by the value of B̃1(θ1). Given higher

maneuverability B̃1(θ
H
1 ) > B̃1(θ

L
1 ), the pursuer of type θH1 can obtain a higher

speed under the same action uk1 and thus cover a longer distance.

The evader’s goals of deceptive target reaching and pursuit evasion are in-

corporated into the cost structure gk2(x
k, uk, θ2) = dk2,b(θ2)((x

k
2,y − yb)2 + (xk2,x −

xb)2) + dk2,g(θ2)((x
k
2,y − yg)2 + (xk2,x− xg)2)− dk21(θ2)((xk1,y − xk2,y)2 + (xk1,x− xk2,x)2) +

fk22(θ2)((u
k
2,x)

2+(uk2,y)
2)−fk21(θ2)((uk1,x)2+(uk1,y)

2),∀k ∈ K. Similar to the pursuer’s

cost parameters, dk21(θ2) ∈ R≥0 represents the evader’s level of evasion determina-

tion to keep a distance from the pursuer along the trajectory. The action costs

of the evader and the pursuer are regulated by fk22(θ2) ∈ R≥0 and fk21(θ2) ∈ R≥0,

respectively. The parameters dk2,b(θ2) and d
k
2,g(θ2) represent the evader’s attempt

to head toward ‘Normandy’ and ‘Calais’, respectively, at stage k ∈ K under type

θ2 ∈ Θ2. We use the ratio dk2,g(θ2)/d
k
2,b(θ2) to represent the evader’s level of trajec-

tory deception. Since the pursuer can learn the evader’s type based on the real-time

observations of state xk2, the evader attempts to make his target ϵ0-ambiguous at

all previous stages, i.e., |dk2,b(θ2)/dk2,g(θ2) − 1| ≤ ϵ0,∀θ2,∀k ̸= K, and reveal his

true target only at the final stage, i.e., dK2,g(θ
b
2) = 0 and dK2,b(θ

g
2) = 0. The evader

chooses a small ϵ0 ≥ 0 and achieves the maximum ambiguity when ϵ0 = 0. Two

blue lines in Fig. 6.1a illustrate how the evader manages to remain ambiguous in
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a cost-effective manner from two different initial locations. Instead of keeping an

equal distance to both potential targets, the evader heads toward the midpoint

((xg + xb)/2, (yg + yb)/2) at the early stages to confuse the pursuer. However, the

evader starts to head toward the true target at around half of K stages rather than

the last few stages so that he can reach the target with a moderate control cost

(uk2)
′F k

22(θ2)u
k
2. Fig. 6.1a also shows that for a given initial location, the evader

who adopts a higher level of trajectory deception heads more toward the misleading

target at the early stages.

In this case study, we suppose that the evader’s true target is Calais and let θb2

be his true type and θg2 be the misleading type. The following two ratios capture the

evader’s tradeoff of being deceptive, effective, and evasive. On one hand, the ratio

dk2,b(θ
b
2)/d

K
2,b(θ

b
2), k ̸= K, reflects the evader’s tradeoff between applying deception

along the trajectory and staying close to the true target at the final stage. Fig.

6.1b shows that as the evader focuses more on a deceptive trajectory represented

by a larger value of dk2,b(θ
b
2)/d

K
2,b(θ

b
2), k ̸= K, his trajectory remains ambiguous for

longer stages while his final location is farther away from the true target. On the

other hand, the ratio dk21(θ
b
2)/d

K
2,b(θ

b
2), k ̸= K, reflects the evader’s tradeoff between

evasion and target-reaching. As the evader focuses more on keeping a distance from

the pursuer along the trajectory, he takes a bigger detour and stays farther away

from his true target at the final stage as shown in Fig. 6.1c.

Finally, we transform UAV i’s coupled cost gki into the matrix form given

in Section 6.2, i.e., x̂k1(θ1) = 04,1, f̂
k
1 (x̂

k
1(θ1)) = 0, F k

ii(θ1) = fkii(θ1) · I2, F k
ij(θ1) =
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Figure 6.1: The evader’s trajectories from x02 = [0, 0] and x02 = [−5, 2] in solid and
the dashed lines, respectively. The black downward and upward triangles represent
the location of Calais (xb, yb) = (−10, 10) and Normandy (xg, yg) = (10, 10),
respectively. The ratios capture the evader’s tradeoff of forming a deceptive
trajectory, reaching the true target, and evading the pursuit.

−fkij(θ1) · I2, j ̸= i,Dk
1(θ1) = dk12(θ1) · [1, 0,−1, 0; 0, 1, 0,−1;−1, 0, 1, 0; 0,−1, 0, 1],

Dk
2(θ2) =



−dk21 0 dk21 0

0 −dk21 0 dk21

dk21 0 dk2,b + dk2,g − dk21 0

0 dk21 0 dk2,b + dk2,g − dk21


,

x̂k2(θ2) =
1

dk2,b+d
k
2,g
· [dk2,bxb + dk2,gx

g ; dk2,by
b + dk2,gy

g ; dk2,bx
b + dk2,gx

g ; dk2,by
b + dk2,gy

g],

f̂k2 (x̂
k
2(θ2)) =

dk2,bd
k
2,g((x

b−xg)2+(yb−yg)2)
dk2,b+d

k
2,g

.

6.3.1 Deceptive Evader with Decoupled Cost Structure

We first investigate the scenario where the evader has a decoupled cost structure3

defined in Definition 12, i.e., dk21(θ2) = 0, ∀θ2 ∈ Θ2, ∀k ∈ K. According to Corollary

1, the evader’s trajectory is then independent of the pursuer’s action, type, and

3This paper has supplementary downloadable materials available at http://ieeexplore.ieee.
org, provided by the authors. This includes a video demo of two UAVs’ trajectories and belief
updates under the decoupled structure.

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
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belief. Fig. 6.2 visualizes the pursuer’s trajectories. Although the pursuer only

aims to be close to the evader at the final stage, she also takes proactive actions

in the previous stages to be cost-efficient. If the pursuer knows the evader’s type,

then she can head toward the true target directly and will not be misled by the

evader’s trajectory ambiguity at the early stages as illustrated by the black dashed

line in Fig. 6.2. If the evader’s type is private, then a larger initial belief mismatch

1− l01(θb2|x0, θH1 ) makes the pursuer head more toward the misleading target at the

early stages as illustrated by the three solid lines in Fig. 6.2. However, due to the

pursuer’s online learning, which is compatible, efficient, and robust as shown in

Section 6.3.1, she manages to approach the evader at the final stage regardless of

her initial belief mismatch. Fig. 6.3 shows the pursuer’s K-stage belief variation.

The evader’s ambiguous trajectory results in belief fluctuations at the early stages,

yet the pursuer can quickly reduce the belief mismatch when the evader starts

to head toward the true target. After the pursuer has corrected her initial belief

mismatch at around stage k = 16, she can head toward the true target in the

cost-efficient way; i.e, she attempts to keep a uniform linear motion under the

external noise as shown in the upper right region of Fig. 6.2.

Finite-Horizon Analysis of Bayesian Update

In this subsection, we illustrate the compatibility, efficiency, and robustness of

the finite-horizon Bayesian update in (6.3) to reduce the initial belief mismatch. The

pursuer is of high-maneuverability and the evader’s true type is θb2. Define the likeli-

hood function of θb2 and θ
g
2 as a

k := Pr(xk+1|θb2, xk, θH1 ) and ck := Pr(xk+1|θg2, xk, θH1 ),

respectively. As wk ∈ Rn×1, ak and ck are positive. With an initial belief l01 ∈ (0, 1)

and a finite likelihood ratio ek := ck/ak ∈ (0,∞), we can represent (6.3) in the
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Figure 6.2: The pursuer’s trajectories under different initial beliefs.

following form with three properties:

lk+1
1 =

lk1 · ak
lk1 · ak + (1− lk1) · ck

=
1

1 + ( 1
l01
− 1)

∏k
k̄=0 e

k̄
∈ (0, 1).

1. (Compatibility): For all lk1 ∈ (0, 1), the belief update at stage k is compatible

to the evidence represented by the ratio ek. In particular, if ek < 1, then

lk+1
1 > lk1 ; if e

k > 1, then lk+1
1 < lk1 ; if e

k = 1, then lk+1
1 = lk1 .

2. (Efficiency): If the evidence of state observation xk+1 indicates that the

type is more likely to be the true type θb2, i.e., e
k < 1, then the function

lk+1
1 /lk1 = 1/(lk1 + (1− lk1)ek) at stage k is monotonically decreasing over lk1 . If

the evidence indicates that the type is more likely to be the misleading type

θg2, i.e., e
k > 1, then the function lk+1

1 /lk1 is monotonically increasing over lk1 .

3. (Robustness): The order of the evidence sequence ek̄, k̄ = 0, · · · , k, has no

impact on the belief lk+1
1 .
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Figure 6.3: The pursuer’s belief update over K stages under three different initial
beliefs and the same noise sequence [wk]k∈K. The inset black box magnifies the
selected area.

Property one shows that although the external noise can result in the fluctuations

of the belief update, the belief mismatch, i.e., 1 − lk1 , will decrease when ek < 1,

regardless of the prior belief lk1 ∈ (0, 1). Property two shows the efficiency of the

belief update. The belief changes more under a larger belief mismatch, which results

in a quick correction. Property three shows the robustness of the belief update.

The erroneous belief update caused by a heavy noise can be corrected in the later

stages when the noise fades.

Comparison with Heuristic Policies

We compare the proposed pursuer’s control policy with two heuristic ones to

demonstrate its efficacy in counter-deception4. The first heuristic policy is to repeat

the attacker’s trajectory with a one-stage delay; i.e., the pursuer applies the action

so that xk+1
1 = xk2,∀k ∈ K \ {K}. The pursuer does not need to apply Bayesian

learning and we name this policy as direct following. The second heuristic policy for

4The supplementary materials include a video demo that compares the proposed policy’s
trajectory and performance with two heuristic policies.
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the pursuer is to stay at the initial location until her truth-revealing stage ktr1 and

then head toward the evader’s expected final-stage location in the remaining stages.

The second policy is conservative because the pursuer does not take proactive

actions until she identifies the evader’s type.

Let player i’s ex-post cumulative cost V̂ 0:k
i :=

∑k
h=0 g

h
i ,∀k ∈ K, be a real-time

evaluation of the online algorithm. Although a pursuer under both heuristic policies

manages to stay close to the evader at the final stage, Fig. 6.4 shows that both

heuristic policies are more costly than the proposed equilibrium strategy in the long

run. The conservative policy avoids potential trajectory deviations under deception
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(c) The accumulation
of the pursuer’s cost
V̂ 0:k
i , ∀k ∈ K.

Figure 6.4: The pursuer’s ex-post cumulative cost under two heuristic policies and
the proposed policy.

but results in less planning stages for the pursuer to achieve the capture goal. We

visualize the accumulation of the pursuer’s cost in Fig. 6.4c. The red lines show

that the pursuer who adopts the conservative policy spends no action costs before

the truth-revealing stage ktr1 , i.e., (u
k
1)

′F k
11(θ1)u

k
1 = 0,∀k ≤ ktr1 , but huge costs in the

remaining stages to fulfill her capture goal. The total cumulative cost V̂ 0:K
i at the

final stage increases exponentially with the value of ktr1 as shown in Fig. 6.4b. The

black line in Fig. 6.4c illustrates the accumulation of V̂ 0:k
i when the pursuer direct

follows the evader’s trajectory. Only under extreme deception scenarios where
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ktr1 > 34, the direct following policy results in a lower cost than the conservative

policy does. Since the initial belief l01 affects both the truth-revealing stage and

the proposed policy, we plot V̂ 0:K
i versus l01 under the conservative policy and the

proposed policy in Fig. 6.4a. When there is no belief mismatch l01(θ
b
2|x0, θH1 ) = 1,

we have ktr1 = 1 and the conservative policy is equivalent to the proposed policy.

As the belief mismatch increases, the cost V̂ 0:K
i under the proposed policy (resp.

the conservative policy) increases due to the larger deviation along the x-axis (resp.

the larger ktr1 ). The proposed policy always results in a lower cost V̂ 0:K
i than

the conservative policy does. The results in Fig. 6.4 lead to the following two

principles for the pursuer to behave under deception. First, Bayesian learning is a

more effective countermeasure than the direct following of the evader’s deceptive

trajectory. Second, if learning the evader’s type takes a long time, the pursuer is

better to act proactively based on her current belief than to delay actions until the

truth-revealing stage.

6.3.2 Dynamic Game for Counter-Deception

In this section, the evader has a coupled cost5 defined in Definition 12 and

the level of evasion determination increases with a constant rate α > 0; i.e.,

dk21(θ2) = αk,∀θ2 ∈ Θ2,∀k ∈ K. The evader deceives the pursuer by hiding his true

target. The pursuer can adopt the following two countermeasures to reduce her

cost under the evader’s deception. Section 6.3.2 investigates the effectiveness of

adaptive learning. We find that the pursuer manages to approach the true target

at the final stage by updating her belief and taking actions accordingly based on

5A video demo of two UAVs’ real-time trajectories and belief updates under the coupled
structure is included in the supplementary materials.
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the real-time trajectory observation. Section 6.3.2 further allows the pursuer to

introduce additional deception, i.e., obfuscate her maneuverability, to counteract

the evader’s information advantage and his deception impact.

Pursuer with a Public Type

When the pursuer’s type is common knowledge, we plot both UAVs’ trajectories

under two initial beliefs and two types of pursuers in Fig. 6.5. The solid lines show
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Figure 6.5: The K-stage trajectory of the evader and the pursuer in solid and
dashed lines, respectively. If the evader’s type is common knowledge and the pursuer
is of high-maneuverability, we represent their noise-free trajectories in black. If
the evader’s type is private and the pursuer’s initial belief mismatch is 0.9, two
UAVs’ trajectories are in red (resp. blue) when the pursuer’s maneuverability is
high (resp. low).

that the evader with the coupled cost detours to stay further from the pursuer.

The initial belief mismatch causes a deviation along the x-axis for both high- and

low-maneuverability pursuers as shown in red and blue, respectively. However, the

deviation has a smaller magnitude and lasts shorter than the one represented by

the red line in Fig. 6.2 due to the coupled cost structure of the evader. The pursuer

with a high maneuverability stays closer to the evader at the final stage.
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Deception to Counteract Deception

When the pursuer’s type is also private, Fig. 6.6 shows that she can manipulate

the evader’s initial belief l02 to obtain a smaller ktr1 and a belief update with less

fluctuation. The red line with stars is the same as the one in Fig. 6.3. It shows that

the pursuer’s belief learning is slower and fluctuates more when she interacts with

the evader who has a decoupled cost. The reason is that her manipulation of the

initial belief l02 does not affect the evader’s decision making as shown in Corollary

1. A comparison between Fig. 6.6a and Fig. 6.6b shows that it is beneficial for a
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(a) Low-maneuverability pursuer’s belief update.

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

13 15 17 19 21

0.95

1

(b) High-maneuverability pursuer’s belief update.

Figure 6.6: The pursuer’s belief update over K stages under the same initial belief
l01(θ

b
2|x0, θ1) = 0.1. The inset black box magnifies the selected area.

low-maneuverability pursuer to disguise as a high-maneuverability pursuer but not
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vice versa. Thus, introducing additional deception to counteract existing deception

is not always effective.

6.3.3 Multi-Dimensional Deception Metrics

The impact of the evader’s deception can be measured by metrics such as

the endpoint distance xfd2 := ||xK2 − γ(θ2)||2 between the evader and the true

target, the endpoint distance xfd1 := ||xK2 − xK1 ||2 between two UAVs, both UAVs’

truth-revealing stages ktri , and their ex-post cumulative costs V̂ 0:k
i ,∀k ∈ K. In this

pursuit-evasion case study, we define ϵ-reachability and ϵ-capturability in Definition

15. Although xfdi ,∀i ∈ {1, 2}, is a random variable, we can obtain a good estimate

of the reachability and capturability due to the negligible variance of xfdi as shown

in Fig. 6.7a and Fig. 6.8a.

Definition 15 (Reachability and Capturability). Consider the proposed sce-

nario of pursuit evasion with a given ϵ ≥ 0, a threshold x̄fd ≥ 0, and all initial

beliefs l0i ∈ (0, 1). The target is said to be ϵ-reachable if Pr(xfd2 ≥ x̄fd) ≤ ϵ. The

evader is said to be ϵ-capturable if Pr(xfd1 ≥ x̄fd) ≤ ϵ.

In Section 6.3.3, we investigate how the evader can manipulate the pursuer’s

initial belief l01(θ
b
2|x0, θH1 ) to influence the deception. In Section 6.3.3, we investigate

how the pursuer’s maneuverability plays a role in deception. In both sections,

the evader has a coupled cost structure. The pursuer either applies the Bayesian

update or not, which is denoted by blue and red lines, respectively, in both Fig.

6.7 and Fig. 6.8. In Section 6.3.3, we study other metrics, such as deceivability,

distinguishability, and PoD.
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The Impact of the Evader’s Belief Manipulation

Both UAVs determine their initial beliefs based on the intelligence collected

before their interactions. By falsifying the pursuer’s intelligence, the evader can

manipulate the pursuer’s initial belief l01 and further influence the deception as

shown in Fig. 6.7. In the x-axis, an initial belief l01(θ
b
2|x0, θH1 ) closer to 1 indicates
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(b) A realization of the pursuer’s truth-
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Figure 6.7: The influence of the initial belief mismatch on deception. Error bars
represent variances of the random variables.

a smaller belief mismatch. Fig. 6.7a shows that the pursuer’s distance to the

evader at the final stage decreases as the belief mismatch decreases regardless of



228

the existence of Bayesian learning. However, the initial belief manipulation has a

much less influence on the endpoint distance xfd1 when Bayesian learning is applied.

Fig. 6.7b shows that for each realization of the noise sequence wk, the pursuer’s

truth-revealing stage steps down as the belief mismatch decreases when Bayesian

update is applied. Fig. 6.7c illustrates the pursuer’s ex-post cumulative cost V̂ 0:K
1

and V̂ 0:K−1
1 at the last and the second last stage, respectively. Without Bayesian

update, the evader’s deception significantly increases the pursuer’s cost at the

second last stage due to the large endpoint distance xfd1 . The red lines show that

the cost increase is higher under a larger belief mismatch. Fig. 6.7d illustrates the

evader’s ex-post cumulative cost at the last stage. If the pursuer does not apply

Bayesian learning, then the evader can decrease his cost by increasing the pursuer’s

belief mismatch. If the pursuer applies Bayesian learning, then the evader’s cost

increases slightly if the pursuer’s belief mismatch is increased. When the belief

mismatch is small (i.e., 1 − l01 ∈ (0, 0.35)), we observe a win-win situation; i.e.,

Bayesian learning not only reduces the pursuer’s ex-post cumulative cost, but also

the evader’s.

The Impact of the Pursuer’s Maneuverability

The pursuer’s maneuverability can also affect deception as shown in Fig. 6.8.

The pursuer has an initial belief l01(θ
b
2|x0, θH1 ) = 0.5 and the evader knows the

pursuer’s type. Fig. 6.8a illustrates that the pursuer can exponentially decrease

her distance to the evader at the final stage as her maneuverability increases. Fig.

6.8b demonstrates that the maneuverability increase can decrease and increase the

pursuer’s and the evader’s ex-post cumulative costs at the final stage, respectively.

The variance grows as maneuverability decreases because the pursuer’s trajectory
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(b) Two UAVs’ K-stage costs V̂ 0:K
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Figure 6.8: The influence of the pursuer’s maneuverability on deception. Error
bars represent variances of the random variables.

will become largely affected by the external noise. In both figures, we observe the

phenomenon of the marginal effect ; i.e., the change rates of both the endpoint

distance xfd1 and the cost V̂ 0:K
i decrease as the maneuverability increases. Thus,

we conclude that higher maneuverability can improve the pursuer’s performance

under the evader’s deception as measured by the distance xfd1 and the cost V̂ 0:K
1 .

Moreover, the improvement rate is higher with low maneuverability.

Deceivability, Distinguishability, and PoD

Deceivability defined in Definition 14 is highly related to the distinguishblity

among different types. In this case study, a larger distance between targets, i.e.,

||γ(θg2) − γ(θb2)||2, makes it easier for the pursuer to distinguish between evaders

of type θb2 and type θg2. A larger maneuverability difference |B̃1(θ
H
1 ) − B̃1(θ

L
1 )|

makes it easier for the evader to distinguish between pursuers of type θH1 and

type θL1 . We visualize two UAVs’ truth-revealing stages ktri versus the distance

between targets and the maneuverability difference in Fig. 6.9. The evader has
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a coupled cost and both players’ initial belief mismatches are 0.5. The dashed

black line indicates B̃1(θ
L
1 ) = 0.3. When the maneuverability difference is negligible
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Figure 6.9: The deceived robot’s truth-revealing stage versus the deceiver’s type
distinguishability. Error bars represent their variances, which are magnified by 5
times.

B̃1(θ
H
1 ) ∈ (0.26, 0.36), the pursuer’s type cannot be learned correctly in K stages;

i.e., the pursuer is (K +1)-stage 0-deceivable. When the maneuverability difference

is small, i.e., B̃1(θ
H
1 ) ∈ (0.1, 0.5), yet not negligible, i.e., B̃1(θ

H
1 ) /∈ (0.26, 0.36), the

variance of ktr2 is large.

Let θ2 = θb2 be common knowledge and assume that the evader’s belief confirms

to the prior distribution of the pursuer’s type for all stages, i.e., lk2(θ1|hk, θb) =

Ξ1(θ1),∀θ1 ∈ Θ1,∀k ∈ K. Then, Fig. 6.10 illustrates how the prior distribution of

the pursuer’s type affects the value of PoD under three scenarios:

• η1 = 1, i.e., the central planner only evaluates UAV 1’s performance under

deception.

• η1 = 0, i.e., the central planner only evaluates UAV 2’s performance under
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deception.

• η1 = 0.5, i.e., the central planner evaluates the average performance of two

UAVs under deception.

When the pursuer’s type is also common knowledge, i.e., Ξ1(θ
H
1 ) = 0 (i.e., the

pursuer has type θL1 ) and Ξ1(θ
H
1 ) = 1 (i.e., the pursuer has type θH1 ), the game is of

complete information and the value of PoD equals 1. Since PoD takes continuous

values over Ξ1(θ
H
1 ) ∈ [0, 1] and has a value of 1 at two endpoints for all feasible η1,

we refer to the plots in Fig. 6.10 as jump rope plots. They corroborate that the
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Figure 6.10: PoD vs. prior type distribution for three values of η1.

PoD can be bigger than 1; i.e., deception among players may not only benefit the

deceiver but also the deceivee.



232

Part IV

Defensive Deception Technologies
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Chapter 7

Cognitive Honeypots for Lateral

Movement Mitigation

Following Section 1.3.2, it is challenging to detect and terminate the adversarial

lateral movement of APTs in Fig. 1.3 timely. Since APTs attackers can remain

undetected in compromised nodes for a long time, a network that is secure at

any separate time may become insecure if the times and the spatial locations are

considered holistically. Therefore, the defender needs to reduce the Long-Term

Vulnerability (LTV) of valuable assets. Honeypots, as a promising deceptive defense

method, can detect lateral movement attacks at their early stages. Since advanced

attackers can identify the honeypots located at fixed machines that are segregated

from the production system, we propose a cognitive honeypot mechanism which

reconfigures idle production nodes as honeypot at different stages based on the

probability of service links and successful compromise. We use time-expanded

networks in Section 7.1 to model the time of the random service occurrence and

the adversarial compromise explicitly.
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7.1 Chronological Enterprise Network Model

Figure 7.1: A sequence of user-host networks with service links in chronological
order under discrete stage-index k. The initial stage k0 is the stage of the attacker’s
initial intrusion yet the defender does not know the value of k0. The solid arrows
show the direction of the user-host and host-host network flows. By incorporating
part of temporal links denoted by the dashed arrows, we reveal the attack path
over a long period explicitly.

We model the normal operation of an enterprise network over a continuous

period as a sequence of user-host networks in chronological order. As shown in Fig.

7.1, nodes U1 and U2 represent the two users’ client computers. Nodes H1, H2, and

H3 represent three hosts in the network. In particular, host H3 stores confidential

information or controls a critical actuator, thus the defender needs to protect H3

from attacks. Define V := {VU ,VH} as the node set where VU ,VH are the sets

of the user nodes and hosts, respectively. The solid arrows represent two types
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of service links, i.e., the user-host connections and the host-host communications

through an application such as HTTP [27]. Users such as U1 and U2 can access

non-confidential hosts, such as H1 and H2, through their client computers for

upload and/or download. However, to prevent data theft and physical damages,

host H3 is inaccessible to users; e.g., there are no service links from U1 or U2 to

H3 at any stage k. Since the normal operation requires data exchanges among

hosts, directed network flows exist among hosts at different stages; e.g., H3 has an

outbound connection to H2 at stage k = k0 and an inbound connection from H2

at stage k = k0 + 3. We assume that both types of service links occur randomly

and last for a random but finite duration. Whenever there is a change of network

topology, i.e., adding or deleting the user-host and host-host links, we define it as a

new stage. We can characterize the chronological network as a series of user-host

networks at discrete stages k = k0, k0 + 1, · · · , k0 + ∆k, where the initial stage

k0 ∈ Z+ and ∆k ∈ Z+
0 . Since APTs are stealthy, the defender may not know the

value of k0, i.e., when the initial intrusion happens or has already happened. The

lack of accurate and timely identification of the initial intrusion brings a significant

challenge to detect and deter the lateral movement.

7.1.1 Time-Expanded Network and Random Service Links

We abstract the discrete series of networks in Fig. 7.1 from k ∈ {k0, · · · , k0+∆k}

as a time-expanded network G = (V , E ,∆k) in Fig. 7.2. In the time-expanded

network, we distinguish the same user or host node by the stage k and define nki ∈ V

as the i-th node in set V at stage k ∈ {k0, · · · , k0+∆k}. We drop the superscript k

if we refer to the node rather than the node at stage k or the time does not matter.

We can assume without loss of generality that the number of nodes N := |V| does
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Figure 7.2: Time-expanded network G = {V , E ,∆k} for the adversarial lateral
movement and the cognitive honeypot configuration. The solid, dashed, double-
lined arrows represent the service links, the temporal connections, and the honey
links to honeypots, respectively. The shadowed nodes reveal the attack path from
U1 to H3 explicitly over ∆k = 3 stages.

not change with time as we can let V contain all the potential users and hosts

in the enterprise network over ∆k stages. The link set E := {Ek0 , · · · , Ek0+∆k} ∪

{Ek0C , · · · , Ek0+∆k−1
C } consists of two parts. On the one hand, the user-host and

host-host connections at each stage k ∈ {k0, · · · , k0+∆k} are represented by the set

Ek = {e(nki , nkj ) ∈ {0, 1}|nki , nkj ∈ V , i ̸= j,∀i, j ∈ {1, · · · , N}}. On the other hand,

set EkC := {e(nki , nk+1
i ) = 1|nki , nk+1

i ∈ V ,∀i ∈ {1, · · · , N}} contains the virtual

temporal links from stage k to k + 1. A link exists if e(·, ·) = 1 and does not if

e(·, ·) = 0. The time-expanded network G is a directed graph due to the temporal

causality represented by the set EkC , k ∈ {k0, · · · , k0 +∆k − 1}.

Since the user-host and the host-host connections happen randomly at each

stage, we assume that a service link from node nki ∈ V to node nkj ∈ V \ {nki } exists
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with probability βi,j ∈ [0, 1] for any stage k ∈ {k0, · · · , k0 +∆k}. If a connection

from node nki to nkj is prohibitive; e.g., U1 cannot access H3 in Fig. 7.1, then

βi,j = 0. We can define β := {βi,j}, i, j ∈ {1, · · · , N}, as the service-link generating

matrix without loss of generality by letting βi,i = 0,∀i ∈ {1, · · · , N}. In this work,

we consider a time-invariant β whose value can be estimated empirically from

long-term historical data1. The service links at each stage may only involve a small

number of nodes and leave other nodes idle.

Definition 16. A node nki ∈ V is said to be idle at stage k if it is neither the source

nor the sink node of any service link at stage k, i.e., e(nki , n
k
j ) = 0, e(nkj , n

k
i ) =

0, ∀nkj ∈ V.

7.1.2 Attack Model of Lateral Movement

We assume that the initial intrusion can only happen at a subset of N nodes

VI ⊆ V due to the network segregation. We can refer to VI as the Demilitarized

Zone (DMZ). Take Fig. 7.1 as an example, if all hosts in the enterprise network

are segregated from the Internet, the initial intrusion can only happen to the client

computer of U1 or U2 through phishing emails or social engineering. Although

network segregation narrows down the potential location of initial intrusion from

V to the subset VI that may contain only one node, it is still challenging for the

defender to prevent the nodes in VI from an initial intrusion as the defender cannot

determine when the initial intrusion happens; i.e., the value of k0 is unknown. In

this work, we assume that the initial intrusion only happens to one node in set VI
at a time; i.e., no concurrent intrusions happen. Once the attacker has entered

1For example, we can use the user-computer authentication dataset from the Los Alamos
National Laboratory enterprise network [71] to estimate the probability of user-host service links
over a long period. The dataset is available at https://csr.lanl.gov/data/auth/.

https://csr.lanl.gov/data/auth/
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the enterprise network via the initial intrusion from an external network domain,

he does not launch new intrusions from the external domain to compromise more

nodes in VI . Instead, the attacker can exploit the internal service links to move

laterally over time, which is much stealthier than intrusions from external network

domains. For example, after the attacker has controlled U1’s computer by phishing

emails, he would not send phishing emails to other users from the external network

domain, which increases his probability of being detected. We define ρi ∈ [0, 1]

as the probability that the initial intrusion happens at node nk0i ∈ VI , ∀k0 ∈ Z+.

The probability satisfies
∑

i∈VI
ρi = 1 and is assumed to be independent of the

stage k0. This probability of initial intrusion can be estimated based on the node’s

vulnerability assessed by historical data, red team exercises, and the Common

Vulnerability Scoring System (CVSS) [139].

After the initial intrusion, the attacker can exploit service links at different

stages by various techniques to move laterally, such as Pass the Hash (PtH), taint

shared content, and remote service session hijacking [31]. Take PtH as an example,

when a user enters the password and logs into host H1 from a compromised client

computer U1 at stage k0 as shown in Fig. 7.1, the attacker at U1 can capture the

valid password hashes for accessing host H1 by credential access technique. Then,

the attacker can use the captured hashes to access the host H1 for all the future

stage k > k0. The attacker can also compromise a user node from a compromised

host by tainting the shared content, i.e., adding malicious scripts to valid files in the

host. Then, the malicious code can be executed when user U2 downloads those files

from H1 at stage k0 +1. PtH (resp. tainting shared content) enables an adversarial

lateral movement from a user node (resp. host node) to a host node (resp. user

node). The attacker can also use remote service session hijacking, such as Secure
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Shell (SSH) hijacking and Remote Desktop Protocol (RDP) hijacking, to move

laterally between hosts by hijacking the inbound or outbound network flows. In this

work, we assume that once the attacker compromises a node, he retains the control

of the node for the given length of time window ∆k determined by the defender.

For example, the defender can require users to update their password every ∆k

days to invalidate the PtH attack. During the time window, i.e., from the initial

intrusion k = k0 to k = k0+∆k, the attacker can launch simultaneous attacks from

all the compromised nodes to move laterally whenever there are outbound service

links from them. If there are multiple service links from one compromised node,

the attacker can also compromise all the sink nodes of these service links within the

stage. Note that the only objective of the attacker is to search for valuable nodes

(e.g., H3), compromise it, and then launch subversive attacks for data theft and

physical damages. Thus, we assume that the attack does not launch any subversive

attacks in all the compromised nodes except at the target node to remain stealthy.

That is, even though the attacker retains the control of the compromised nodes, he

only uses them as stepping stones to reach the target node.

The persistent lateral movement over a long time period enables the attacker

to reach and compromise segregated nodes that are not in the DMZ VI . In both

Fig. 7.1 and Fig. 7.2, although the network has no direct service links, represented

by solid arrows, from U1 to H3 at each stage, the cascade of static security in all

stages does not result in long-term security over ∆k = 3 stages. After we add the

temporal links represented by the dashed arrows and consider stages and spatial

locations holistically, we can see the attack path from the initial intrusion node U1

to the target node H3 over ∆k = 3 stages as highlighted by the shadows in Fig. 7.2.

The temporal order of the service links affects the likelihood that the attacker can
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compromise the target node. For example, if we exchange the services links that

happen at stage k0 + 1 and stage k0 + 2, then the attacker from node U1 cannot

reach H3 in ∆k = 3 stages. Since the attacker can launch simultaneous attacks

from multiple compromised nodes to move laterally, there can exist multiple attack

paths from an initial intrusion node to the target node.

The adversarial exploitation of service links is not always successful due to the

defender’s mitigation technologies against lateral movement techniques [31]. For

example, the firewall rules to block RDP traffic between hosts can invalidate RDP

hijacking. If the attacker has compromised nodes nk
′
i ∈ V before stage k > k′ and

a service link from nki to nkj ∈ V \ {nki } exists at stage k, i.e., e(nki , nkj ) = 1, we

can define λi,j ∈ [0, 1] as the probability that the attacker at node nki successfully

compromises node nkj , which is assumed to be independent of stage k.

7.1.3 Cognitive Honeypot

The lateral movement of persistent and stealthy attacks makes the enterprise

network insecure in the long run. The high rates of false alarms and the miss

detection of both the initial external intrusion and the following internal compromise

make it challenging for the defender to identify the set of nodes that have been

compromised. Thus, the defender needs to patch and reset all suspicious nodes at

all stages to deter the attacks, which can be cost-prohibitive.

Honeypots are a promising active defense method to detect and deter these

persistent and stealthy attacks by deception [152]. In this paper, the connection

from a service node to a honeypot is referred to as a honey link. The defender

disguises a honey link as a service link to attract attackers. For example, the

defender can start a session with remote services from a host to a honeypot. The
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attacker who has compromised the host will be detected once he hijacks the remote

service session and carries out actions in the honeypots. Since regular honeypots

are implemented at fixed locations and on machines that are never involved in

the regular operation, advanced attacks like APTs can identify the honeypots and

avoid accessing them. Motivated by the roaming honeypot [115] and the fact that

the service links at each stage only involve a small number of nodes, we develop the

following cognitive honeypot configuration that utilizes and reconfigures different

idle nodes at different stages as honeypots. Let VD ⊆ V be the subset of nodes that

can be reconfigured as honeypots when idle. At each stage k, the defender randomly

selects a node nkw ∈ VD to be the potential honeypot and creates a random honey

link from other nodes to nkw. Since disguising a honeypot as a normal node requires

emulating massive services and the continuous monitoring of all inbound network

flows are costly, we assume that the defender sets up at most one honeypot and

monitors one honey link at each stage.

As shown in Fig. 7.2, U1, H2, and H3 are idle at stage k0 + 1 and U1 is

reconfigured as the honeypot. The link from H3 to U1 is the honey link which is

monitored by the defender. At stage k0, U2 is the only idle node and is reconfigured

as the honeypot with a honey link from U1 to U2. As stated in Section 7.1.2,

the attacker who has compromised U1 at stage k0 remains stealthy and does

not sabotage any normal operations. Thus, the defender can reconfigure U1 as a

honeypot at stage k0+1. However, the honeypot of U1 at stage k0+1 cannot identify

the attacker by monitoring all the inbound traffic as he has already compromised U1.

On the contrary, the honeypots at stage k0 and k0 + 2 can trap the attackers who

have compromised U1 and mistaken the honey links as service links2. Theoretically,

2The defender would avoid configuring honey links from the target node to the honeypot. If
the attacker has not compromised the target node H3 as shown in stage k0 + 1, the honeypot
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the honeypot can achieve zero false alarms as the legitimate network flows should

occur only at the service links. For example, although the existence of the honey

link at stage k0 enables legitimate users at U1 to access another user’s computer

U2, a legitimate user aiming to finish the service link from U1 to H1 should not

access any irrelevant nodes other than host H1. On the other hand, an attacker at

U1 cannot tell whether the links from U1 to H1 and U2 are service links or honey

links. Thus, only an attacker at U1 can access the honeypot U2 at stage k0.

Random Honeypot Configuration and Detection

Since the defender can neither predict future service links nor determine the set

of compromised nodes at the current stage, she needs to develop a time-independent

policy γ := {γl,w},∀nkl , nkw ∈ V , to determine the honeypot location and the honey

link at each stage k to minimize the risk that an attacker from the node of the

initial intrusion can compromise the target node after ∆k stages. Each policy

element γl,w is the probability that the honeypot is node nkw and the honey link

is from node nkl to nkw at stage k ∈ {k0, · · · , k0 +∆k}. Note that γi,i = 0,∀i ∈ V,

and we can let nl, nw belong to the entire node set V without loss of generality

because if a node nw /∈ VD is not reconfigurable, then we can let the probability

γl,w be zero. Define nj0 ∈ V \VI as the target node to protect for all stages and the

target node is segregated from the set of potential initial intrusion. Then, defender

should avoid honey links from node nj0 for all stages, i.e., γj0,w = 0,∀nw ∈ V. If

a honey link from nl to nw, e.g., the link from U1 to H3, is not available for all

stages due to segregation, then γl,w = 0. Since at most one link is allowed, we have

the constraint
∑

nl,nw∈V γl,w = 1. In this work, we assume that the honeypot policy

cannot capture the attacker. If the attacker has compromised the target node as shown in stage
k0 + 3, then the late detection cannot reduce the loss that has already been made.
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γ is not affected by the realization of the service links at each stage and thus can

interfere with the service links that are not idle as defined in Definition 16. If the

honeypot nkw selected by the policy γ is interfering, i.e., not idle, then the defender

neither monitors nor filters the inbound network flows to avoid any interference

with the normal operation.

Although we increase the difficulty for the attacker to identify the honeypot

by applying it to idle nodes in the network and change its location at every stage,

we cannot eliminate the possibility of advanced attackers identifying the honeypot

[118]. If the attacker has compromised node ni before stage k and there is a honey

link from node nki to n
k
j at stage k, then we assume that the attacker has probability

qi,j ∈ [0, 1] to identify the honey link and choose not to access the honeypot. If the

honeypot is not identified, then the attacker accesses the honeypot and he is detected

by the defender. We assume the defender can deter the lateral movement completely

after a detection from any single honeypot by patching or resetting all nodes at

that stage. As stated in Section 7.1.2, the attacker can move simultaneously from

all the compromised nodes to multiple nodes through service links that connect

them. For example, the attacker at stage k0 + 2 can compromise H2 and H1

through the two service links and may also reach the honeypot if the attacker

attempts to compromise H3 from U1. However, we assume that the attacker at a

compromised node does not move consecutively through multiple service links (or

honey links defined in Section 7.1.3 as the attacker cannot distinguish honey links

from service ones) in a single stage to remain stealthy. Contrary to the persistent

lateral movement over a long time period, consecutive attack moves within one

stage make it easier for the defender to connect all Indicators of Compromise (IoCs)

and attribute the attacker. Take Fig. 7.2 as an example. Suppose that there are
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two links, e.g., H1 to U2 and U2 to H2 at a stage k, where each link can be either a

service link or a honey link. If the attacker has only compromised H1 among these

three nodes, then he only attempts to compromise node U2 rather than both U2

and H2 during stage k.

Interference, Stealthiness, and Cost of Roaming

In this section, we define three critical security metrics for a cognitive honeypot

to achieve low interference, low cost, and high stealthiness. Define VS as the

set of all the subsets of V. Define a series of binary random variables xkv,w,v′ ∈

{0, 1}, v, v′ ∈ VS, nkw ∈ V, where xkv,w,v′ = 1 means that there are no direct service

links from any node nkl ∈ v to node nkw and from nkw to nkl ∈ v′ at stage k. Thus,

Pr(xkv,w,v′ = 1) =
∏

nk
l ∈v

(1−βl,w)
∏

nk
l′∈v

′(1−βw,l′) represents the probability that the

honeypot at nkw does not interfere with any service link whose source node is in set v

and sink node is in v′. Then, we can define HPoI(γ) as the probability of interference

in Definition 17. Since the defender can only apply cognitive honeypots to idle

nodes, a low probability of interfering can increase efficiency. To reduce HPoI(γ),

the defender can design γ based on the value of β, i.e., the frequency/probability

of all potential service links.

Definition 17. The probability of interference (PoI) for any honeypot policy

γ is

HPoI(γ) :=
∑
nh∈V

∑
nw∈V\{nh}

γh,w(1− Pr(xkV\{nw},w,V\{nw} = 1))

=
∑
nw∈V

(1− Pr(xkV\{nw},w,V\{nw} = 1))
∑

nh∈V\{nw}

γh,w. (7.1)

Since the attacker can learn the honeypot policy γ, the defender prefers the



245

policy to be as random as possible to increase the stealthiness of the honeypot.

A fully random policy that assigns equal probability to all possible honey links

provides forward and backward security; i.e., even if an attacker identifies the

honeypot at stage k, he cannot use that information to deduce the location of the

honeypots in the following and previous stages. We use HSL(γ), the entropy of

γ in Definition 18 as a measure for the stealthiness level of the honeypot policy

where we define 0 · log 0 = 0.

Definition 18. The stealthiness level (SL) for any γ is defined as HSL(γ) :=∑
nh,nw∈V γh,w log(γh,w).

A tradeoff of roaming honeypots hinges on the cost to reconfigure the idle

nodes when the defender changes the location of the honeypot and the honey link.

Define the term C(γh1,w1 , γh2,w2),∀nh1 , nh2 , nw1 , nw2 ∈ V , as the cost of changing a

(nh1 −nw1) honey link to a (nh2 −nw2) honey link. Note that this cost captures the

cost of changing the honeypot location from w1 to w2. If only the location change of

honeypots incurs a cost, we can let C(γh1,w, γh2,w) = 0, ∀h1 ≠ h2,∀nw ∈ V , without

loss of generality. We define the cost of roaming in Definition 19.

Definition 19. The cost of roaming (CoR) for any honeypot policy γ is

HCoR(γ) :=
∑
nh1

∈V

∑
nw1∈V\{nh1

}

γh1,w1(1− Pr(xkV\{nw1},w1,V\{nw1}
= 1))

·
∑
nh2

∈V

∑
nw2∈V\{h2}

γh2,w2(1− Pr(xkV\{nw2},w2,V\{nw2}
= 1)) · C(γh1,w1 , γh2,w2) (7.2)

7.2 Farsighted Vulnerability Mitigation

Throughout the entire operation of the enterprise network, the defender does not

know whether, when, and where the initial intrusion has happened. The defender
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also cannot know attack paths until a honeypot detects the lateral movement attack.

Therefore, instead of reactive policies to mitigate attacks that have happened at

known stages, we aim at proactive and persistent policies that prepare for the initial

intrusion at any stage k0 over a time window of length ∆k. That means that the

honeypot should roam persistently at all stages according to the policy γ to reduce

LTV, i.e., the probability that an initial intrusion can reach and compromise the

target node within ∆k stages.

Given the target node nj0 ∈ V \ VI , a subset v ∈ VS, and the defender’s

honeypot policy γ, we define gj0(v, γ,∆k) as the probability that an attacker who

has compromised the set of nodes v can compromise the target node nj0 within ∆k

stages. Since the initial intrusion happens to a single node ni ∈ VI with probability

ρi as argued in Section 7.1.2, the ∆k-stage vulnerability of the target node nj0

defined in Definition 20 equals ḡ∆kj0,VI
(γ) :=

∑
ni∈VI

ρigj0({ni}, γ,∆k). In this paper,

we refer to ∆k-stage vulnerability as LTV when ∆k > 1.

Definition 20 (Long-Term Vulnerability). The ∆k-stage vulnerability of the

target node nj0 is the probability that an attacker in the DMZ VI can compromise

the target node nj0 within a time window of ∆k stages.

The length of the time window represents the attack’s time-effectiveness which

is determined by the system setting and the defender’s detection efficiency. For

example, ∆k can be the time-to-live (typically on the order of days [173]) for

re-authentication to invalidate the PtH attack. For another example, suppose that

the defender can detect and deter the attacker after the initial intrusion yet with

a delay due to the high rate of false alarms. If the delay can be contained within

∆k0 stages, then the defender should choose the honeypot policy to minimize the

∆k0-stage vulnerability. Consider a given threshold T0 ∈ [0, 1], we define the concept
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of level-T0 stage-∆k security for node nj0 and honeypot policy γ in Definition 21.

Definition 21 (Long-Term Security). Policy γ achieves level-T0 stage-∆k se-

curity for node nj0 if the ∆k-stage vulnerability is less than the threshold, i.e.,

ḡ∆kj0,VI
(γ) ≤ T0.

Finally, we define the defender’s decision problem of a cognitive honeypot that

can minimize the LTV for the target node with a low PoI, a high SL, and a low

CoR in (7.3). The coefficients αPoI , αSL, αCoR represent the tradeoffs of ∆k-stage

vulnerabilities with PoI, SL, and CoR, respectively.

min
γ

ḡ∆kj0,VI
(γ) + αPoIHPoI(γ)− αSLHSL(γ) + αCoRHCoR(γ)

s.t.
∑

nh,nw∈V

γh,w = 1,

γh,w = 0,∀nh ∈ V , nw ∈ V \ VD. (7.3)

7.2.1 Imminent Vulnerability

We first compute the probability that an initial intrusion at node ni ∈ VI
can compromise the target node nj0 ∈ V \ VI within ∆k = 0 stages. The term

γi,w(1 − qi,w) is the Probability of Immediate Capture (PoIC), i.e., the attacker

with initial intrusion at node ni is directly trapped by the honeypot nw. Since the

attacker does not take consecutive movements in one stage to remain stealthy as

stated in Section 7.1.2, gj0({ni}, γ, 0) equals the product of the probability that

attacker exploits the service link from ni to nj0 successfully and the probability

that the attacker is not trapped by the honeypot, i.e., ∀ni ∈ VI ,

gj0({ni}, γ, 0) = βi,j0λi,j0(1−
∑
w ̸=i,j0

γi,w(1− qi,w) Pr(xkV\{nw},w,V\{nw} = 1)). (7.4)
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7.2.2 Long-Term Vulnerability

Define Vi,j0 ⊆ VS as the set of all the subsets of V \ {ni, nj0}. For each v ∈ Vi,j0 ,

define Vvi,j0 as the set of all the subsets of V \ {ni, nj0 , v}. Define the shorthand

notation fv,u(β, λ) :=
∏

nh1
∈v βi,h1λi,h1

∏
nh2

∈u βi,h2(1− λi,h2)
∏

nh3
∈V\{ni,nj0

,v,u}(1−

βi,h3) as the probability of partial compromise, i.e., the attacker with initial intrusion

at node ni has compromised the service links from ni to all nodes in set v ∈ Vi,j0 ,

yet fails to compromise the remaining service links from ni to all nodes in set

u ∈ Vvi,j0 . We can compute gj0({ni}, γ,∆k) based on the following induction, i.e.,

gj0({ni}, γ,∆k) = gj0({ni}, γ, 0) + (1− βi,j0λi,j0)
∑
v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ)(1−

∑
nw∈V\{ni,v,u}

γi,w(1− qi,w) Pr(xkV\{ni,nw},w,V\{nw} = 1))gj0({ni} ∪ v, γ,∆k − 1).

(7.5)

7.2.3 Curse of Multiple Attack Paths and Sub-Optimal

Honeypot Policies

For a given γ, we can write out the explicit form of gj0({ni} ∪ v, γ,∆k − 1) for

all ∆k ∈ Z+ as in (7.4) and (7.5). However, the complexity increases dramatically

with the cardinality of set v due to the curse of multiple attack paths ; i.e., the event

that the attacker can compromise target node nj0 within ∆k stages from node ni

is not independent of the event that the attacker can achieve the same compromise

from node nh ̸= ni. Thus, we use the union bound

gj0({ni} ∪ v, γ,∆k) ≥ max
nj∈{ni}∪v

gj0({nj}, γ,∆k),

gj0({ni} ∪ v, γ,∆k) ≤ min(1,
∑

nj∈{ni}∪v

gj0({nj}, γ,∆k)),
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to simplify the computation and provide an upper bound and a lower bound for gj0({ni}∪

v, γ,∆k), v ̸= ∅, ∀∆k ∈ Z+, in (7.6) and (7.7), respectively.

glowerj0 ({ni}, γ,∆k) = gj0({ni}, γ, 0) + (1− βi,j0λi,j0)
∑

v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ)(1−

∑
nw∈V\{ni,v,u}

γi,w(1− qi,w) Pr(x
k
V\{ni,nw},w,V\{nw} = 1)) max

nj∈{ni}∪v
glowerj0 ({nj}, γ,∆k − 1).

(7.6)

gupperj0
({ni}, γ,∆k) =gj0({ni}, γ, 0) + (1− βi,j0λi,j0)

∑
v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ)

· (1−
∑

nw∈V\{ni,v,u}

γi,w(1− qi,w) Pr(x
k
V\{ni,nw},w,V\{nw} = 1))

·min(1,
∑

nj∈{ni}∪v

gupperj0
({nj}, γ,∆k − 1)).

(7.7)

The initial condition at ∆k = 0 is

glowerj0
({nj}, γ, 0) = gupperj0

({nj}, γ, 0) = gj0({nj}, γ, 0),∀nj ∈ {ni} ∪ v.

Define

ḡ∆k,lowerj0,VI
(γ) :=

∑
ni∈VI

ρig
lower
j0

({ni}, γ,∆k)

and ḡ∆k,upperj0,VI
(γ) :=

∑
ni∈VI

ρig
upper
j0

({ni}, γ,∆k) as the lower and upper bounds

of the ∆k-stage vulnerability of the target node nj0 under any given policy γ,

respectively. Then, replacing ḡ∆kj0,VI
(γ) in (7.3) with ḡ∆k,lowerj0,VI

(γ) and ḡ∆k,upperj0,VI
(γ),

we obtain the optimal risky and conservative honeypot policy γ∗,risky and γ∗,cons,

respectively. Both sub-optimal honeypot policies approximate the optimal policy

that is hard to compute explicitly. A risky defender can choose γ∗,risky to minimize
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the lower bound of LTV while a conservative defender can choose γ∗,cons to minimize

the upper bound.

We propose the following iterative algorithm to compute these two honey-

pot policies. We use γ∗,risky as an example and γ∗,cons can be computed in the

same fashion. At iteration t ∈ Z+
0 , we consider any feasible honeypot policy

γt and compute glowerj0
({ni}, γt,∆k′),∀ni ∈ VI ,∀∆k′ ∈ {1, · · · ,∆k}, via (7.6).

Then, we solve (7.3) by replacing ḡ∆kj0,VI
(γt) with ḡ∆k,lowerj0,VI

(γt) and plugging in

glowerj0
({ni}, γt,∆k), ∀ni ∈ VI , as constants. Since ḡ∆k,lowerj0,VI

(γt), HPoI(γ
t), HCoR(γ

t)

are all linear with respect to γt, the objective function of the constrained opti-

mization in (7.3) is a linear function of γt plus the entropy regularization HSL(γ
t).

Then, we can solve the constrained optimization in closed form and update the

honeypot policy from γt to γt+1. Given a small error threshold ϵ > 0, the above

iteration process can be repeated until there exists a T1 ∈ Z+
0 such that a proper

matrix norm is less than the error threshold, i.e., ||γT1+1 − γT1|| ≤ ϵ. Then, we can

output γT1+1 as the optimal risky honeypot policy γ∗,risky.

7.2.4 LTV Analysis under two Heuristic Policies

In this section, we consider the scenario where the initial intrusion set VI = {ni}

contains only one node ni, i.e., the attacker cannot compromise other nodes directly

from the external network at stage k0. Then, a reasonable heuristic policy is to set

up the honeypot at a fixed node nw0 ∈ V \ {ni, nj0} whenever the node is idle and

also a direct honey link from ni to nw0 . We refer to these deterministic policies

with γi,w0 = 1 as the direct policies in Section 7.2.4.

In the second scenario, the defender further segregates node ni from the external

network to form a air gap so that she chooses to apply no direct honey links from
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Algorithm 7: Optimal Risky (and Conservative) Honeypot Policy

76 Initialization VI , nj0 ∈ V \ VI ,∆k ∈ Z+, ϵ > 0, γ0,t = 0;
77 while ||γt+1 − γt|| > ϵ do
78 for ∆k′ = 1, · · · ,∆k do
79 for i ∈ VI do
80 Compute glowerj0

({ni}, γt,∆k′) via (7.6);

81 end

82 end

83 Replace ḡ∆kj0,VI
(γt) with ḡ∆k,lowerj0,VI

(γt) and plug in

glowerj0
({ni}, γt,∆k),∀ni ∈ VI ;

84 Obtain γt+1 as the solution of (7.3);
85 if ||γt+1 − γt|| ≤ ϵ then
86 T1 = t;
87 Terminate

88 t := t+ 1;

89 end
90 Output γ∗,risky = γT1+1.

ni to any honeypot at all stages, i.e.,γi,w = 0,∀nw ∈ V . However, advanced attacks,

such as Stuxnet, can cross the air gap by an infected USB flash drive to accomplish

the initial intrusion to the air-gap node ni and then move laterally to the entire

network V. Although the defender mistakenly sets up no honey links from ni to

the honeypot at all stages, other indirect honey links with source nodes other than

ni may also detect the lateral movement in ∆k stages. Unlike the deterministic

direct policies, we refer to these stochastic policies with γi,w = 0,∀nw ∈ V, as the

indirect policies in Section 7.2.4.

Since the defender may adopt these heuristic policies in the listed scenarios,

this section aims to analyze the LTV under the direct and indirect policies to

answer the following security questions. How effective is the lateral movement for

a different length of duration time under heuristic policies? What are the limit

and the bounds of the vulnerability when the window length goes to infinity? How
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much additional vulnerability is introduced by adopting improper indirect policies

rather than the direct policies? How to change the value of parameters, such as β

and λ, to reduce LTV if they are designable?

Indirect Honeypot Policies

Since the defender overestimates the effectiveness of air gap and chooses the

improper honeypot policies that γi,w = 0,∀nw ∈ V, the vulnerability of any

target node nj0 is non-decreasing with the length of the time window as shown in

Proposition 2.

Proposition 2 (Non-Decreasing Vulnerability over Stages). If the PoIC is zero, i.e.,

γi,w(1− qi,w) = 0,∀nw ∈ V, then the vulnerability gj0({ni}, γ,∆k) ∈ [0, 1] is an non-

decreasing function regarding ∆k for all target node nj0 ∈ V \VI , ni ∈ VI . The value

of gj0({ni}, γ,∆k) does not increase to 1 as ∆k increases to infinity if and only if

βi,j0λi,j0 = 0 and gj0({ni}∪v, γ,∆k−1) = gj0({ni}, γ,∆k−1), ∀v ∈ VS,∀∆k ∈ Z+.

Proof. If γi,w(1− qi,w) = 0,∀nw ∈ V , we can use the facts that gj0({ni}∪ v, γ,∆k−

1) ≥ gj0({ni}, γ,∆k − 1), ∀γ, nj0 ∈ V , ni ∈ VI ,∆k ≥ 0,∀v ∈ VS, and

∑
v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ) ≡ 1,∀β, λ,

to obtain gj0({ni}, γ,∆k) as

βi,j0λi,j0 + (1− βi,j0λi,j0)
∑
v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ)gj0({ni} ∪ v, γ,∆k − 1)

≥ βi,j0λi,j0 + (1− βi,j0λi,j0)gj0({ni}, γ,∆k − 1) ≥ gj0({ni}, γ,∆k − 1), (7.8)

for all ∆k ∈ Z+. The inequality is an equality if and only if βi,j0λi,j0 = 0 and
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gj0({ni} ∪ v, γ,∆k − 1) = gj0({ni}, γ,∆k − 1),∀v ∈ VS,∀∆k ∈ Z+.

The equation gj0({ni} ∪ v, γ,∆k − 1) = gj0({ni}, γ,∆k − 1),∀v ∈ VS,∀∆k ∈

Z+, holds only under very unlikely conditions such as there is only one node in

the network, i.e., N = 1 or service links occur only from node ni, i.e., λi′,j =

0, ∀i′ ≠ i,∀nj ∈ V. Thus, except for these rare special cases, the vulnerability

gj0({ni}, γ,∆k) always increases to the maximum value of 1 under indirect policies.

Remark 11. Proposition 2 shows that without a proper mitigation strategy, e.g.,

no direct honey link from the initial intrusion node to the honeypot, the vulnerability

of a target node never decreases over stages. Moreover, except from rare special

cases, the target node will be compromised with probability 1 as time goes to infinity.

Proposition 2 demonstrates the disadvantaged position of the defender against

persistent lateral movement without proper honeypot policies. Under these dis-

advantageous situations, the defender may need alternative security measures to

mitigate the LTV. For example, the defender may reduce the arrival frequency

of the service link from nj1 to nj2 , i.e., βj1,j2 , to delay lateral movement at the

expenses of operational efficiency. Also, the defender may attempt to reduce the

probability of a successful compromise from node nj1 to nj2 , i.e., λj1,j2 , by filtering

the service link from nj1 to nj2 with more stringent rules or demotivate the attacker

to initiate the link compromise by disguising the service link as a honey link. In

the rest of this subsection, we briefly investigate the influence of β and λ on the

∆k-stage vulnerability under indirect policies.

The probability of no direct link from the initial intrusion node ni to target nj0 ,

i.e., 1− βi,j0λi,j0 , and the probability that the attacker at node ni is demotivated

to or fails to compromise the service links from node ni, i.e.,
∑

u∈V∅
i,j0

f∅,u(β, λ),
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defines the Probability of Movement Deterrence (PoMD)

r := (1− βi,j0λi,j0)
∑

u∈V∅
i,j0

f∅,u(β, λ)

. In (7.8) where the PoIC is 0, i.e., γi,w(1− qi,w) = 0, ∀nw ∈ V , we can upper bound

the term gj0({ni} ∪ v, γ,∆k − 1) by 1 for all v ̸= ∅, which leads to

gj0({ni}, γ,∆k) = (1− r) · gj0({ni} ∪ v, γ,∆k − 1) + r · gj0({ni}, γ,∆k − 1)

≤ (1− r) + r · gj0({ni}, γ,∆k − 1)

= 1− r∆k + r∆kgj0({ni}, γ, 0) = 1− r∆k(1− βi,j0λi,j0),

(7.9)

where the final line results from solving the first-order linear difference equation

iteratively by ∆k − 1 times.

Equation (7.9) shows that the upper bound of LTV increases exponentially

concerning the duration of lateral movement ∆k yet decreases in a polynomial

growth rate as PoMD increases. Note that letting PoMD be 1 can completely

deter lateral movement and achieve zero LTV for any ∆k ∈ Z+. However, it is

challenging to attain it as it requires the attacker do not succeed from ni to any

node nj with probability 1, i.e., λi,j = 0,∀nj ∈ V . Since increasing PoMD incurs a

higher cost (e.g., reducing the compromise rate λ) and lower operational efficiency

(e.g., reducing the frequency of service links β), we aim to find the minimum PoMD

to mitigate LTV even when the duration of lateral movement ∆k goes to infinity.

In Proposition 3, we characterize the critical Threshold of Compromisability (ToC)

T ToCm := 1−m/∆k for a positive m≪ ∆k to guarantee a level-(βi,j0λi,j0), stage-∞

security defined in Definition 21. The proof follows directly from a limit analysis
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based on (7.9).

Proposition 3 (ToC ). Consider the scenario where γi,w(1− qi,w) = 0,∀nw ∈ V,

and r as a function of ∆k has the form r = 1 −m∆k−n, where n,m ∈ R+ and

m≪ ∆k.

(1). If (1− r)/m is of the same order with 1/∆k, i.e., n = 1, then the limit of the

upper bound lim∆k→∞ 1−r∆k(1−βi,j0λi,j0) is a constant 1−e−m(1−βi,j0λi,j0).

(2). If (1 − r)/m is of higher order, i.e., n > 1, then the limit of the upper

bound is gj0({ni}, γ, 0) = βi,j0λi,j0. If βi,j0λi,j0 = 0, zero LTV is achieved

gj0({ni}, γ,∞) = 0.

(3). If (1− r)/m is of lower order, i.e., n < 1, then the limit of the upper bound

is 1.

Based on the fact that 1−e−m(1−βi,j0λi,j0) ≥ βi,j0λi,j0 where the equality holds

if and only if βi,j0λi,j0 = 1, we can conclude that if r ≥ T ToCm for a positive m≪ ∆k,

then the ∞-stage vulnerability of target node nj0 is upper bounded by βi,j0λi,j0

and thus achieves the level-(βi,j0λi,j0), stage-∞ security as defined in Definition 21.

Note that if the target node is segregated from nodes in DMZ VI for the sake of

security, then there is no direct service link from node ni to the target node nj0

and βi,j0λi,j0 = 0. In that case, the target node nj0 can achieve a zero vulnerability

for an infinite duration of lateral movement, i.e., gj0({ni}, γ,∞) = 0, because the

upper bound is 0 and LTV is always non-negative.

Direct Honeypot Policies

For the direct policies γi,w0 = 1, nw0 ∈ V \{ni, nj0}, we obtain the corresponding

∆k-stage vulnerability and an explicit lower bound in (7.10) based on (7.5) by using
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the inequality gj0({ni} ∪ v, γ,∆k − 1) ≥ gj0({ni}, γ,∆k − 1). Define shorthand

notations k1 :=
∏

l ̸=w0
(1−βl,w0)(1−βw0,l)(1−qi,w0) ∈ [0, 1] and k2 :=

∑
v∈Vi,j0

\{nw0}∑
u∈Vv

i,j0
\{w0} fv,u(β, λ) ≤

∑
v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ) = 1. Note that k1 = 0 is a

very restrictive condition as it requires that the honeypot nw0 is not interfering,

i.e., node nw0 is idle and the attacker never identify the honey link from ni to nw0 ,

i.e., qi,w0 = 0.

gj0({ni}, γ,∆k) = βi,j0λi,j0 [1−
∏
l ̸=w0

(1− βl,w0)(1− βw0,l)(1− qi,w0)]+

(1− βi,j0λi,j0)[
∑

v∈Vi,j0

∑
u∈Vv

i,j0

fv,u(β, λ)gj0({ni} ∪ v, γ,∆k − 1)−
∑

v∈Vi,j0
\{nw0}

∑
u∈Vv

i,j0
\{nw0}

fv,u(β, λ) ·
∏
l ̸=i,w0

(1− βl,w0)
∏
l′ ̸=w0

(1− βw0,l′)(1− qi,w0)gj0({ni} ∪ v, γ,∆k − 1)]

≥ βi,j0λi,j0(1− k1) + (1− βi,j0λi,j0)[1− k1k2(1− βi,w0)]gj0({ni}, γ,∆k − 1).

(7.10)

Define a shorthand notation r2 := (1 − βi,j0λi,j0)[1 − k1k2(1 − βi,w0)], we can

solve the linear difference equation in the final step of (7.10) to obtain an lower

bound, i.e., gj0({ni}, γ,∆k) ≥ T lower,12 := βi,j0λi,j0(1−k1)1−(r2)∆k+1

1−r2 for all ∆k ∈ Z+.

According to the first equality in (7.10), we also obtain an upper bound T upper2

for gj0({ni}, γ,∆k),∀∆k ∈ Z+, in Lemma 2 by using the inequality gj0({ni} ∪

v, γ,∆k) ≤ 1,∀v ∈ Vi,j03. The bound T upper2 < 1 is non-trivial if βi,j0λi,j0 ̸=

0, βi,j0λi,j0 ̸= 1, and k1k2(1− βi,w0) ̸= 0.

Lemma 2. If γi,w0 = 1, w0 ̸= i, j0, then gj0({ni}, γ,∆k) is lower and upper bounded

by T lower,12 and T upper2 := 1− βi,j0λi,j0k1 − (1− βi,j0λi,j0)k1k2(1− βi,w0) ∈ [0, 1] for

all ∆k ∈ Z+, respectively.

3Since we can compute gj0({ni} ∪ v, γ,∆k − 1) explicitly when v is empty, we can obtain a
tighter upper bound by using the inequality gj0({ni} ∪ v, γ,∆k) ≤ 1,∀v ∈ Vi,j0 \ ∅.
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Lemma 2 shows that if the defender applies a direct honeypot from ni in a

deterministic fashion, then the ∆k-stage vulnerability is always upper bounded.

However, these direct policies cannot reduce the ∞-stage vulnerability to zero as

shown in Proposition 4.

Proposition 4 (Vulnerability Residue). If βi,j0λi,j0 ̸= 0 and γi,w0 = 1, w0 ≠ i, j0,

then

(1). The term T lower,22 :=
βi,j0λi,j0 (1−k1)

(1−βi,j0λi,j0 )k1k2(1−βi,w0
)+βi,j0λi,j0

∈ [0, 1) is strictly less

than 1.

(2). If gj0({ni}, γ,∆k− 1) < T lower,22 , then gj0({ni}, γ,∆k) > gj0({ni}, γ,∆k− 1).

(3). lim∆k→∞ gj0({ni}, γ,∆k) is lower bounded by max(T lower,12 , T lower,22 ).

Proof. Based on the inequality in (7.10), we obtain that if gj0({ni}, γ,∆k − 1) <

T lower,22 , then gj0({ni}, γ,∆k) > gj0({ni}, γ,∆k − 1). Since the above is true for all

∆k ∈ Z+, we know that the ∆k-stage vulnerability increases with ∆k strictly until

it has reach T lower,22 . If βi,j0λi,j0 ̸= 0 and k1 ̸= 1, then T lower,22 > 0 is a non-trivial

lower bound. The other lower bound T lower,12 comes from Lemma 2.

Remark 12. Proposition 4 defines a vulnerability residue

T V R := max(T lower,12 , T lower,22 )

under direct honeypot policies. A nonzero T V R characterizes the limitation of

security policies against lateral movement attacks, i.e., LTV cannot be reduced to 0

as ∆k →∞.
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Chapter 8

Adaptive Honeypot Engagement

for Threat Intelligence

Following Section 1.4.2, defenders adopting reactive defense mechanisms suffer

from information disadvantages. Off-the-shelf defense can detect low-level Indicators

of Compromise (IoCs), such as hash values, IP addresses, and domain names.

However, they can hardly disclose high-level indicators such as attack tools and

Tactics, Techniques, and Procedures (TTPs) of the attacker, which induces the

attacker fewer pains to adapt to the defense mechanism, evade the indicators, and

launch revised attacks, as shown in Figure 8.1. Since high-level threat intelligence is

more effective in deterring emerging advanced attacks yet harder to acquire through

the traditional passive mechanism, defenders need to adopt proactive defense

paradigms to learn these fundamental characteristics of the attacker, attribute

cyber attacks [178], and design defensive countermeasures correspondingly.

Honeypots are one of the most frequently employed active defense techniques

to gather information on threats. A honeynet is a network of honeypots, which
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Effectiveness:
defenders acquire 

more threat 
information. 

Stability: 
attackers suffer 
more pains to 
adapt to the 

defense 
mechanism.  

Difficulty: 
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Hash Values

Figure 8.1: The transformation from IoCs to threat intelligence increases the
difficulty, stability, and effectiveness. IoCs focus on the evidence during or after
the attack, while threat intelligence identifies the attack tools, attack goals, and
the personnel who launches the attack.

emulates the real production system but has no production activities nor autho-

rized services. Thus, an interaction with a honeynet, e.g., unauthorized inbound

connections to any honeypot, directly reveals malicious activities. On the contrary,

traditional passive techniques, such as firewall logs or IDSs, have to separate attacks

from a ton of legitimate activities, thus providing many more false alarms and may

still miss some unknown attacks.

Besides a more effective identification and denial of adversarial exploitation

through low-level indicators such as the inbound traffic, a honeynet can also

help defenders to achieve the goal of identifying attackers’ TTPs under proper

engagement actions. The defender can interact with attackers and allow them to

probe and perform in the honeynet until she has learned the attacker’s fundamental

characteristics. More services a honeynet emulates, more activities an attacker is
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allowed to perform, and a higher degree of interactions together result in a larger

revelation probability of the attacker’s TTPs. However, the additional services and

reduced restrictions also bring extra risks. Attacks may use some honeypots as

pivot nodes to launch attackers against other production systems [200].

Access Point

Internet / Cloud

Firewall

SwitchSwitch

Access Point

Internet / Cloud

Intrusion 

Detection

Honeypot

192.168.1.10

Honeywall

Gateway

Router

Server

Honeypot

192.168.1.45

Data Base

Computer Network

Server

Work Station

192.168.1.55

Data Base

192.168.1.90

Honeywall

SensorActuator
Honeypot

Honeypot Network

HoneypotHoneypot

Honeynet Production Systems

Figure 8.2: The honeynet in red mimics the targeted production system in green.
The honeynet shares the same structure as the production system yet has no
authorized services.

The current honeynet applies the honeywall as a gateway device to supervise

outbound data and separate the honeynet from other production systems, as shown

in Fig. 8.2. However, to avoid attackers’ identification of the data control and

the honeynet, a defender cannot block all outbound traffics from the honeynet,

which leads to a trade-off between the rewards of learning high-level IoCs and the

following three types of risks.

T1: Attackers identify the honeynet and thus either terminate on their own or
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generate misleading interactions with honeypots.

T2: Attackers circumvent the honeywall to penetrate production systems [172].

T3: Defender’s engagement costs outweigh the investigation reward.

We quantify risk T1 in Section 8.1.3, T2 in Section 8.1.5, and T3 in Section 8.1.4,

respectively. In particular, risk T3 brings the problem of timeliness and optimal

decisions on timing. Since a persistent traffic generation to engage attackers is

costly and the defender aims to obtain timely threat information, the defender

needs cost-effective policies to lure the attacker quickly to the target honeypot and

reduce attacker’s sojourn time in honeypots of low-investigation value.

Clients

Server

Switch

Normal Zone

Computer
Network

Emulated
Sensors

Emulated
Database

12

1110

1
2

345

67

9

8

13

Absorbing 
State

Figure 8.3: Honeypots emulate different components of the production system.

To achieve the goal of long-term, cost-effective policies, we construct the Semi-

Markov Decision Process (SMDP) in Section 8.1 on the network shown in Fig. 8.3.
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Nodes 1 to 11 represent different types of honeypots, nodes 12 and 13 represent the

domain of the production system and the virtual absorbing state, respectively. The

attacker transits between these nodes according to the network topology in Fig.

8.2 and can remain at different nodes for an arbitrary period of time. The defender

can dynamically change the honeypots’ engagement levels (e.g., the amount of

outbound traffic) to affect the attacker’s sojourn time, engagement rewards, and

the probabilistic transition in that honeypot.

8.1 Problem Formulation

To obtain optimal engagement decisions at each honeypot under the probabilistic

transition and the continuous sojourn time, we introduce the continuous-time

infinite-horizon discounted SMDPs, which can be summarized by the tuple {t ∈

[0,∞),S,A(sj), tr(sl|sj, aj), z(·|sj, aj, sl), rγ(sj, aj, sl), γ ∈ [0,∞)}. We describe

each element of the tuple in this section.

8.1.1 Network Topology

We abstract the structure of the honeynet as a finite graph G = (N , E). The

node set N := {n1, n2, · · · , nN} ∪ {nN+1} contains N nodes of hybrid honeypots.

Take Fig. 8.3 as an example, a node can be either a virtual honeypot of an integrated

database system or a physical honeypot of an individual computer. These nodes

provide different types of functions and services, and are connected following the

topology of the emulated production system. Since we focus on optimizing the

value of investigation in the honeynet, we only distinguish between different types

of honeypots in different shapes, yet use one extra node nN+1 to represent the
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entire domain of the production system. The network topology E := {ejl}, j, l ∈ N ,

is the set of directed links connecting node nj with nl, and represents all possible

transition trajectories in the honeynet. The links can be either physical (if the

connecting nodes are real facilities such as computers) or logical (if the nodes

represent integrated systems). Attackers cannot break the topology restriction.

Since an attacker may use some honeypots as pivots to reach a production system,

and it is also possible for a defender to attract attackers from the normal zone

to the honeynet through these bridge nodes, there exist links of both directions

between honeypots and the normal zone.

8.1.2 States and State-Dependent Actions

At time t ∈ [0,∞), an attacker’s state belongs to a finite set S := {s1, · · · , sN ,

sN+1, sN+2} where si, i ∈ {1, · · · , N + 1}, represents the attacker’s location at

time t. Once attackers are ejected or terminate on their own, we use the extra

absorbing state sN+2 to represent the virtual location. The attacker’s state reveals

the adversary visit and exploitation of the emulated functions and services. Since

the honeynet provides a controlled environment, we assume that the defender can

monitor the state and transitions persistently without uncertainties. The attacker

can visit a node multiple times for different purposes. A stealthy attacker may visit

the honeypot node of the database more than once and revise data progressively

(in a small amount each time) to evade detection. An attack on the honeypot

node of sensors may need to frequently check the node for the up-to-date data.

Some advanced honeypots may also emulate anti-virus systems or other protection

mechanisms such as setting up an authorization expiration time, then the attacker

has to compromise the nodes repeatedly.
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At each state si ∈ S, the defender can choose an action ai from a state-dependent

finite set A(si). For example, at each honeypot node, the defender can conduct

action aE to eject the attacker, action aP to purely record the attacker’s activities,

low-interactive action aL, or high-interactive action aH to engage the attacker, i.e.,

A(si) := {aE, aP , aL, aH}, i ∈ {1, · · · , N}. The high-interactive action is costly to

implement yet both increases the probability of a longer sojourn time at honeypot

ni, and reduces the probability of attackers penetrating the normal system from ni

if connected. If the attacker resides in the normal zone either from the beginning

or later through the pivot honeypots, the defender can choose either action aE to

eject the attacker immediately, or action aA to attract the attacker to the honeynet

by exposing some vulnerabilities intentionally, i.e., A(sN+1) := {aE, aA}. Note

that the instantiation of the action set and the corresponding consequences are

not limited to the above scenario. For example, the action can also refer to a

different degree of outbound data control. A strict control reduces the probability

of attackers penetrating the normal system from the honeypot, yet also brings less

investigation value.

8.1.3 Continuous-Time Process and Discrete Decision

Based on the current state sj ∈ S, the defender’s action aj ∈ A(sj), the attacker

transits to state sl ∈ S with a probability tr(sl|sj, aj) and the sojourn time at

state sj is a continuous random variable with a probability density z(·|sj, aj, sl).

Note that the risk T1 of the attacker identifying the honeynet at state sj under

action aj ̸= AE can be characterized by the transition probability tr(sN+2|sj, aj)

as well as the duration time z(·|sj, aj, sN+2). Once the attacker arrives at a new

honeypot ni, the defender dynamically applies an interaction action at honeypot
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ni from A(si) and keeps interacting with the attacker until he transits to the next

honeypot. The defender may not change the action before the transition to reduce

the probability of attackers detecting the change and become aware of the honeypot

engagement. Since the decision is made at the time of transition, we can transform

the above continuous time model on horizon t ∈ [0,∞) into a discrete decision

model at decision epoch k ∈ {0, 1, · · · ,∞}. The time of the attacker’s kth transition

is denoted by a random variable T k, the landing state is denoted as sk ∈ S, and

the adopted action after arriving at sk is denoted as ak ∈ A(sk).

8.1.4 Investigation Value

The defender gains a reward of investigation by engaging and analyzing the

attacker in the honeypot. To simplify the notation, we divide the reward during time

t ∈ [0,∞) into ones at discrete decision epochs T k, k ∈ {0, 1, · · · ,∞}. When τ ∈

[T k, T k+1] amount of time elapses at stage k, the defender’s reward of investigation

r(sk, ak, sk+1, T k, T k+1, τ) = r1(s
k, ak, sk+1)1{τ=0} + r2(s

k, ak, T k, T k+1, τ), (8.1)

at time τ of stage k, is the sum of two parts. The first part is the immediate cost

of applying engagement action ak ∈ A(sk) at state sk ∈ S and the second part is

the reward rate of threat information acquisition minus the cost rate of persistently

generating deceptive traffics. Due to the randomness of the attacker’s behavior,

the information acquisition can also be random, thus the actual reward rate r2 is

perturbed by an additive zero-mean noise wr.

Different types of attackers target different components of the production system.

For example, an attacker who aims to steal data will take intensive adversarial
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actions at the database. Thus, if the attacker is actually in the honeynet and adopts

the same behavior as he is in the production system, the defender can identify the

target of the attack based on the traffic intensity. We specify r1 and r2 at each

state properly to measure the risk T3. To maximize the value of the investigation,

the defender should choose proper actions to lure the attacker to the honeypot

emulating the target of the attacker in a short time and with a large probability.

Moreover, the defender’s action should be able to engage the attacker in the target

honeypot actively for a longer time to obtain more valuable threat information.

We compute the optimal long-term policy that achieves the above objectives in

Section 8.1.5.

As the defender spends longer time interacting with attackers, investigating

their behaviors and acquires better understandings of their targets and TTPs, less

new information can be extracted. In addition, the same intelligence becomes less

valuable as time elapses due to the timeliness. Thus, we use a discounted factor of

γ ∈ [0,∞) to penalize the decreasing value of the investigation as time elapses.

8.1.5 Optimal Long-Term Policy

The defender aims at a policy π ∈ Π which maps state sk ∈ S to action

ak ∈ A(sk) to maximize the long-term expected utility starting from state s0, i.e.,

u(s0, π) = E

[
∞∑
k=0

∫ Tk+1

Tk

e−γ(τ+T
k)(r(Sk, Ak, Sk+1, T k, T k+1, τ) + wr)dτ

]
.

At each decision epoch, the value function v(s0) = supπ∈Π u(s
0, π) can be
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represented by dynamic programming, i.e.,

v(s0) = sup
a0∈A(s0)

E

[∫ T 1

T 0

e−γ(τ+T
0)r(s0, a0, S1, T 0, T 1, τ)dτ + e−γT

1

v(S1)

]
. (8.2)

We assume a constant reward rate r2(s
k, ak, T k, T k+1, τ) = r̄2(s

k, ak) for sim-

plicity. Then, (8.2) can be transformed into an equivalent MDP form, i.e., ∀s0 ∈ S,

v(s0) = sup
a0∈A(s0)

∑
s1∈S

tr(s1|s0, a0)(rγ(s0, a0, s1) + zγ(s0, a0, s1)v(s1)), (8.3)

where zγ(s0, a0, s1) :=
∫∞
0
e−γτz(τ |s0, a0, s1)dτ ∈ [0, 1] is the Laplace transform of

the sojourn probability density z(τ |s0, a0, s1) and the equivalent reward

rγ(s0, a0, s1) := r1(s
0, a0, s1) +

r̄2(s
0, a0)

γ
(1− zγ(s0, a0, s1)) ∈ [−mc,mc]

is assumed to be bounded by a constant mc.

A classical regulation condition of SMDP to avoid the probability of an infinite

number of transitions within a finite time is stated as follows: there exists constants

θ ∈ (0, 1) and δ > 0 such that

∑
s1∈S

tr(s1|s0, a0)z(δ|s0, a0, s1) ≤ 1− θ, ∀s0 ∈ S, a0 ∈ A(s0). (8.4)

It is shown in [80] that condition (8.4) is equivalent to

∑
s1∈S

tr(s1|s0, a0)zγ(s0, a0, s1) ∈ [0, 1),

which serves as the equivalent stage-varying discounted factor for the associated
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MDP. Then, the right-hand side of (8.2) is a contraction mapping and there exists

a unique optimal policy π∗ = argmaxπ∈Π u(s
0, π) which can be found by value

iteration, policy iteration or linear programming.

Cost-Effective Policy

The computation result of our 13-state example system is illustrated in Fig.

8.3. The optimal policies at honeypot nodes n1 to n11 are represented by different

colors. Specifically, actions aE, aP , aL, aH are denoted in red, blue, purple, and

green, respectively. The size of node ni represents the state value v(si).

In the example scenario, the honeypot of database n10 and sensors n11 are the

main and secondary targets of the attacker, respectively. Thus, defenders can

obtain a higher investigation value when they manage to engage the attacker in

these two honeypot nodes with a larger probability and for a longer time. However,

instead of naively adopting high interactive actions, a savvy defender also balances

the high implantation cost of aH . Our quantitative results indicate that the high

interactive action should only be applied at n10 to be cost-effective. On the other

hand, although the bridge nodes n1, n2, n8 which connect to the normal zone n12

do not contain higher investigation values than other nodes, the defender still

takes action aL at these nodes. The goal is to either increase the probability

of attracting attackers away from the normal zone or reduce the probability of

attackers penetrating the normal zone from these bridge nodes.

Engagement Safety versus Investigation Values

Restrictive engagement actions endow attackers less freedom so that they are

less likely to penetrate the normal zone. However, restrictive actions also decrease
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the probability of obtaining high-level IoCs, thus reduces the investigation values.

To quantify the system value under the trade-off of the engagement safety and

the reward from the investigation, we visualize the trade-off surface in Fig. 8.4. In

the x-axis, a larger penetration probability p(sN+1|sj, aj), j ∈ {s1, s2, s8}, aj ̸= aE,

decreases the value v(s10). In the y-axis, a larger reward rγ(sj, aj, sl), j ∈ S \

{s12, s13}, l ∈ S, increases the value. The figure also shows that value v(s10)

changes in a higher rate, i.e., are more sensitive when the penetration probability is

small and the reward from the investigation is large. In our scenario, the penetration

probability has less influence on the value than the investigation reward, which

motivates a less restrictive engagement.

Figure 8.4: The trade-off surface of v(s10) in z-axis under different values of
penetration probability p(sN+1|sj, aj), j ∈ {s1, s2, s8}, aj ̸= aE, in x-axis, and the
reward rγ(sj, aj, sl), j ∈ S \ {s12, s13}, l ∈ S, in y-axis.
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8.2 Risk Assessment

Given any feasible engagement policy π ∈ Π, the SMDP becomes a semi-Markov

process [151]. We analyze the evolution of the occupancy distribution and first

passage time in Section 8.2.1 and 8.2.2, respectively, which leads to three security

metrics during the honeypot engagement. To shed lights on the defense of APTs,

we investigate the system performance against attackers with different levels of

persistence and intelligence in Section 8.2.3.

8.2.1 Transition Probability of Semi-Markov Process

Define the cumulative probability qij(t) of the one-step transition from {Sk =

i, T k = tk} to {Sk+1 = j, T k+1 = tk + t} as Pr(Sk+1 = j, T k+1 − tk ≤ t|Sk =

i, T k = tk) = tr(j|i, π(i))
∫ t
0
z(τ |i, π(i), j)dτ, ∀i, j ∈ S, t ≥ 0. Based on a variation

of the forward Kolmogorov equation where the one-step transition lands on an

intermediate state l ∈ S at time T k+1 = tk+u,∀u ∈ [0, t], the transition probability

of the system in state j at time t, given the initial state i at time 0 can be represented

as

pii(t) = 1−
∑
h∈S

qih(t) +
∑
l∈S

∫ t

0

pli(t− u)dqil(u),

pij(t) =
∑
l∈S

∫ t

0

plj(t− u)dqil(u) =
∑
l∈S

plj(t) ⋆
dqil(t)

dt
,∀i, j ∈ S, j ̸= i,∀t ≥ 0,

where 1 −∑
h∈S qih(t) is the probability that no transitions happen before time

t. We can easily verify that
∑

l∈S pil(t) = 1,∀i ∈ S,∀t ∈ [0,∞). To compute

pij(t) and pii(t), we can take Laplace transform and then solve two sets of linear

equations.
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For simplicity, we specify z(τ |i, π(i), j) to be exponential distributions with

parameters λij(π(i)), and the semi-Markov process degenerates to a continuous

time Markov chain. Then, we obtain the infinitesimal generator via the Leibniz

integral rule, i.e.,

q̄ij :=
dpij(t)

dt

∣∣∣∣
t=0

= λij(π(i)) · tr(j|i, π(i)) > 0,∀i, j ∈ S, j ̸= i,

q̄ii :=
dpii(t)

dt

∣∣∣∣
t=0

= −
∑

j∈S\{i}

q̄ij < 0,∀i ∈ S.

Define matrix Q̄ := [q̄ij]i,j∈S and vector Pi(t) = [pij(t)]j∈S , then based on the

forward Kolmogorov equation,

dPi(t)

dt
= lim

u→0+

Pi(t+ u)−Pi(t)

u
= lim

u→0+

Pi(u)− I

u
Pi(t) = Q̄Pi(t).

Thus, we can compute the first security metric, the occupancy distribution of any

state s ∈ S at time t starting from the initial state i ∈ S at time 0, i.e.,

Pi(t) = eQ̄tPi(0),∀i ∈ S. (8.5)

We plot the evolution of pij(t), i = sN+1, j ∈ {s1, s2, s10, s12}, versus t ∈ [0,∞)

in Fig. 8.5 and the limiting occupancy distribution pij(∞), i = sN+1, in Fig.

8.6. In Fig. 8.5, although the attacker starts at the normal zone i = sN+1, our

engagement policy can quickly attract the attacker into the honeynet. Fig. 8.6

demonstrates that the engagement policy can keep the attacker in the honeynet

with a dominant probability of 91% and specifically, in the target honeypot n10

with a high probability of 41%. The honeypots connecting the normal zone also
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have a higher occupancy probability than nodes n3, n4, n5, n6, n7, n9, which are less

likely to be explored by the attacker due to the network topology.
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Figure 8.5: Evolution of pij(t), i =
sN+1.

1: Swtich

2: Server

3

4

5

6

7

8

9

10: Database

11: Sensor

12: Normal Zone

12%

10%

1%
2%
1%
3%

3%

11%

3%

41%

4%

9%

Figure 8.6: The limiting occupancy
distribution.

8.2.2 First Passage Time

Another quantitative measure of interest is the first passage time TiD of visiting

a set D ⊂ S starting from i ∈ S \ D at time 0. Define the cumulative probability

function f ciD(t) := Pr(TiD ≤ t), then f ciD(t) =
∑

h∈D qih(t) +
∑

l∈S\D
∫ t
0
f clD(t −

u)dqil(u). In particular, if D = {j}, then the probability density function fij(t) :=

dfcij(t)

dt
satisfies

pij(t) =

∫ t

0

pjj(t− u)df cij(u) = pjj(t) ⋆ fij(t),∀i, j ∈ S, j ̸= i.

Take Laplace transform p̄ij(s) :=
∫∞
0
e−stpij(t)dt, and then take inverse Laplace

transform on f̄ij(s) =
p̄ij(s)

p̄jj(s)
, we obtain

fij(t) =

∫ ∞

0

est
p̄ij(s)

p̄jj(s)
ds,∀i, j ∈ S, j ̸= i. (8.6)
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We define the second security metric, the attraction efficiency as the probability

of the first passenger time Ts12,s10 less than a threshold tth. Based on (8.5) and

(8.6), the probability density function of Ts12,s10 is shown in Fig. 8.7. We take the

mean denoted by the orange line as the threshold tth and the attraction efficiency

is 0.63, which means that the defender can attract the attacker from the normal

zone to the database honeypot in less than tth = 20.7 with a probability of 0.63.
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Figure 8.7: Probability density function of Ts12,s10 .

Mean First Passage Time

The third security metric of concern is the average engagement efficiency defined

as the Mean First Passage Time (MFPT) tmiD = E[TiD],∀i ∈ S,D ⊂ S. Under the

exponential sojourn distribution, MFPT can be computed directly through the a

system of linear equations, i.e.,

tmiD = 0, i ∈ D,

1 +
∑
l∈S

q̄ilt
m
lD = 0, i /∈ D. (8.7)

In general, the MFPT is asymmetric, i.e., tmij ̸= tmji ,∀i, j ∈ S. Based on (8.7),
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we compute the MFPT from and to the normal zone in Fig. 8.8 and Fig. 8.9,

respectively. The color of each node indicates the value of MFPT. In Fig. 8.8, the

honeypot nodes that directly connect to the normal zone have the shortest MFPT,

and it takes attackers much longer time to visit the honeypots of clients due to the

network topology. Fig. 8.9 shows that the defender can engage attackers in the

target honeypot nodes of database and sensors for a longer time. The engagements

at the client nodes are yet much less attractive. Note that two figures have different

time scales denoted by the color bar value, and the comparison shows that it

generally takes the defender more time and efforts to attract the attacker from the

normal zone.

The MFPT from the normal zone tms12,j measures the average time it takes to

attract attacker to honeypot state j ∈ S \ {s12, s13} for the first time. On the

contrary, the MFPT to the normal zone tmi,s12 measures the average time of the

attacker penetrating the normal zone from honeypot state i ∈ S \ {s12, s13} for the

first time. If the defender pursues absolute security and ejects the attack once it

goes to the normal zone, then Fig. 8.9 also shows the attacker’s average sojourn

time in the honeynet starting from different honeypot nodes.

8.2.3 Advanced Persistent Threats

In this section, we quantify three engagement criteria on attackers of different

levels of persistence and intelligence in Fig. 8.10 and Fig. 8.11, respectively. The

criteria are the stationary probability of normal zone pi,s12(∞),∀i ∈ S \ {s13}, the

utility of normal zone v(s12), and the expected utility over the stationary probability,

i.e.,
∑

j∈S pij(∞)v(j),∀i ∈ S \ {s13}.

As shown in Fig. 8.10, when the attacker is at the normal zone i = s12 and
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Figure 8.8: MFPT from the normal zone
tms12,j.

Figure 8.9: MFPT to the normal zone
tmi,s12 .

the defender chooses action a = aA, a larger λ := λij(aA),∀j ∈ {s1, s2, s8}, of the

exponential sojourn distribution indicates that the attacker is more inclined to

respond to the honeypot attraction and thus less time is required to attract the

attacker away from the normal zone. As the persistence level λ increases from 0.1

to 2.5, the stationary probability of the normal zone decreases and the expected

utility over the stationary probability increases, both converge to their stable values.

The change rate is higher during λ ∈ (0, 0.5] and much lower afterward. On the

other hand, the utility loss at the normal zone decreases approximately linearly

during the entire period λ ∈ (0, 2.5].

As shown in Fig. 8.11, when the attacker becomes more advanced with a larger

failure probability of attraction, i.e., p := p(j|s12, aA),∀j ∈ {s12, s13}, he can stay

in the normal zone with a larger probability. A significant increase happens after

p ≥ 0.5. On the other hand, as p increases from 0 to 1, the utility of the normal zone

reduces linearly, and the expected utility over the stationary probability remains

approximately unchanged until p ≥ 0.9.

Fig. 8.10 and Fig. 8.11 demonstrate that the expected utility over the stationary
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Figure 8.10: Three engagement criteria
under different persistence levels λ ∈
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Figure 8.11: Three engagement criteria
under different intelligence levels p ∈
[0, 1].

probability receives a large decrease only at the extreme cases of a high transition

frequency and a large penetration probability. Similarly, the stationary probability

of the normal zone remains small for most cases except for the above extreme cases.

Thus, our policy provides a robust expected utility as well as a low-risk engagement

over a large range of changes in the attacker’s persistence and intelligence.

8.3 Reinforcement Learning of SMDP

Due to the absent knowledge of an exact SMDP model, i.e., the investigation

reward, the attacker’s transition probability (and even the network topology), and

the sojourn distribution, the defender has to learn the optimal engagement policy

based on the actual experience of the honeynet interactions. As one of the classical

model-free Reinforcement Learning (RL) methods, the Q-learning algorithm for
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SMDP has been stated in [21], i.e.,

Qk+1(sk, ak) :=(1− αk(sk, ak))Qk(sk, ak) + αk(sk, ak)[r̄1(s
k, ak, s̄k+1)

+ r̄2(s
k, ak)

(1− e−γτ̄k)
γ

− e−γτ̄k max
a′∈A(s̄k+1)

Qk(s̄k+1, a′)], (8.8)

where sk is the current state sample, ak is the current selected action, αk(sk, ak) ∈

(0, 1) is the learning rate, s̄k+1 is the observed state at next stage, r̄1, r̄2 is the ob-

served investigation rewards, and τ̄ k is the observed sojourn time at state sk. When

the learning rate satisfies
∑∞

k=0 α
k(sk, ak) = ∞,∑∞

k=0(α
k(sk, ak))2 < ∞,∀sk ∈

S,∀ak ∈ A(sk), and all state-action pairs are explored infinitely, maxa′∈A(sk)

Qk(sk, a′), k →∞, in (8.8) converges to value v(sk) with probability 1.

At each decision epoch k ∈ {0, 1, · · · }, the action ak is chosen according

to the ϵ-greedy policy, i.e., the defender chooses the optimal action denoted as

argmaxa′∈A(sk)Q
k(sk, a′) with a probability 1 − ϵ, and a random action with a

probability ϵ. Note that the exploration rate ϵ ∈ (0, 1] should not be too small to

guarantee sufficient samples of all state-action pairs. The Q-learning algorithm

under a pure exploration policy ϵ = 1 still converges yet at a slower rate.

In our scenario, the defender knows the reward of ejection action aA and

v(s13) = 0, thus does not need to explore action aA to learn it. We plot one

learning trajectory of the state transition and sojourn time under the ϵ-greedy

exploration policy in Fig. 8.12, where the chosen actions aE, aP , aL, aH are denoted

in red, blue, purple, and green, respectively. If the ejection reward is unknown,

the defender should be restrictive in exploring aA which terminates the learning

process. Otherwise, the defender may need to engage with a group of attackers who

share similar behaviors to obtain sufficient samples to learn the optimal engagement
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Figure 8.12: One instance of Q-learning on SMDP where the x-axis shows the
sojourn time and the y-axis represents the state transition. The chosen actions
aE, aP , aL, aH are denoted in red, blue, purple, and green, respectively.

policy.

In particular, we choose αk(sk, ak) = kc
k{sk,ak}−1+kc

,∀sk ∈ S,∀ak ∈ A(sk), to

guarantee the asymptotic convergence, where kc ∈ (0,∞) is a constant parameter

and k{sk,ak} ∈ {0, 1, · · · } is the number of visits to state-action pair {sk, ak} up to

stage k. We need to choose a proper value of kc to guarantee a good numerical

performance of convergence in finite steps as shown in Fig. 8.13. We shift the green

and blue lines vertically to avoid the overlap with the red line and represent the

corresponding theoretical values in dotted black lines. If kc is too small as shown in

the red line, the learning rate decreases so fast that new observed samples hardly

update the Q-value and the defender may need a long time to learn the right value.

However, if kc is too large as shown in the green line, the learning rate decreases so

slow that new samples contribute significantly to the current Q-value. It causes a

large variation and a slower convergence rate of maxa′∈A(s12)Q
k(s12, a

′).

We show the convergence of the policy and value under kc = 1, ϵ = 0.2, in the
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Figure 8.14: The evolution of the mean
and the variance of Qk(s12, aP ).

video demo (See URL: https://bit.ly/2QUz3Ok). In the video, the color of each

node nk distinguishes the defender’s action ak at state sk and the size of the node

is proportional to maxa′∈A(sk)Q
k(sk, a′) at stage k. To show the convergence, we

decrease the value of ϵ gradually to 0 after 5000 steps.

Since the convergence trajectory is stochastic, we run the simulation for 100

times and plot the mean and the variance of Qk(s12, aP ) of state s12 under the

optimal policy π(s12) = aP in Fig. 8.14. The mean in red converges to the

theoretical value in about 400 steps and the variance in blue reduces dramatically

as step k increases.

https://bit.ly/2QUz3Ok
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Part V

Incentive Mechanisms against

Insider Threats
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Chapter 9

ZETAR: Strategic and

Trustworthy Recommendations for

Compliance Improvement

Following Section 1.3.2, insider threats have resulted in significant operational

disruptions, data loss, and reputation damage. Many studies [74, 146, 213] have

recognized the critical role of incentives in mitigating insider threats. An incentive-

based insider threat program can influence insiders’ incentives and elicit proper

behaviors of the insiders that align with the organization’s security objectives. Its

design can proactively improve the cyber hygiene of an organization by deterring

noncompliance and misbehavior.

It is, however, challenging for a defender to model, characterize, and further

control the insiders’ incentives quantitatively. First, insiders’ incentives are not

directly controllable but indirectly and restrictively affected through extrinsic

factors such as reward, penalty, and information. Systematically quantifying the
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impact of these extrinsic factors on the insiders’ incentives and behaviors is the

precondition of designing them to motivate (rather than command) an employee to

act in the organization’s interests. Second, it is costly to customize an incentive

mechanism for a large population of insiders with varied incentives. The automated

and customized design of the incentive mechanism is a desideratum to achieve

population-level compliance. Third, insiders’ incentives are not directly observable

but have to be gradually learned based on insiders’ behaviors and responses to the

incentive mechanism. It is instrumental for the learning process to be fast and

adaptive to mitigate insider threats timely.

To this end, we develop a modeling and computational framework called ZETAR1

for the defender to improve compliance and organizational cyber hygiene. As

Defender with 
Security Objective 𝑣!

Employees with 
Different Incentives 𝑣"

Compliance Status Feedback

Audit 
Policy

Customized 
Recommendation

Misalignment

Figure 9.1: An illustration of ZETAR feedback system: the defender of a corporate
network conducts a stochastic audit on employees’ compliance status and provides
customized recommendations to employees based on the learning of their incentives.
ZETAR reduces the incentive misalignment between employees and the defender.

illustrated in Fig. 9.1, ZETAR conducts two major roles of zero-trust audit and

1ZETAR stands for ZEro-Trust Audit with strategic Recommendation.



283

strategic recommendation. The zero-trust audit mechanism inspects each insider’s

behaviors to attribute accountable insiders, penalize non-compliant behaviors, and

reward compliant behaviors. It is challenging to customize the audit mechanism

under time and budget constraints. ZETAR introduces a strategic recommendation

mechanism to reveal information that adapts to the insiders’ different incentives.

9.1 System Model of ZETAR

ZETAR provides customized designs for employees with different incentives.

Each design involves two players, the organizational defender D and an employee

U . The defender can assess the organization’s security posture and audit insiders’

behaviors either by himself or through a third-party service provider. An audit

monitors the compliance of the insiders. The defender is informed of the audit

outcomes and improves the compliance by appropriate management of incentives

and strategic recommendations.

9.1.1 An Organization’s Security Posture

Security Posture (SP) reflects an enterprise’s overall cybersecurity strength

and capacities to deter, detect, and respond to the dynamic threat landscape

[42]. Based on different scoring and categorization methodologies [5], SP can be

classified into finite categories (e.g., high-risk SP and low-risk SP). In this work,

we consider a finite number of J SP categories that compose the set Y := {yj}j∈J ,

where J := {1, · · · , J}. The current SP can be assessed based on penetration

tests, honeypots, and alert analysis [229]. Since an organization’s SP changes

probabilistically based on the dynamic behaviors of attackers, users, and defenders,
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we let bY (y
j) ∈ [0, 1] denote the probability of the organization to be in the state

of SP yj ∈ Y ,∀j ∈ J . With a slight abuse of notation, we define bY ∈ ∆Y as the

probability distribution over Y .

9.1.2 Zero-Trust Audit Policy

The defender of an organization needs to follow prescribed security rules to

improve its cyber hygiene. These rules can be set and audited by regulatory

agencies, cyber insurance providers, or the organization itself. Aligning with the

zero-trust security principle (e.g., see [181]), the audit is applied to all employees

in an organization without a prior trust assignment. Consider a finite set of I

Audit Schemes (ASs), denoted by X . Each AS contains the entire audit procedure.

For example, for a given AS x ∈ X , the audit involves the steps of (1) monitoring

and checking the employee’s behaviors (2) assigning a compliance score to the

employee, and (3) informing (the defender) of the compliance score and action. A

different AS x′ ∈ X , x′ ̸= x, can vary in the monitoring or scoring scheme. The

audit schemes are prescribed based on the security posture of the organization. Let

ψ ∈ Ψ : Y 7→ ∆X denote the audit policy, which probabilistically determines an

AS x ∈ X , where |X | = I. The probability of choosing x ∈ X given the security

posture y ∈ Y is thus given by ψ(x|y) ∈ [0, 1]. The outcome of the audit scheme is

used by the defender to create penalties or rewards for the employees to shape their

incentives and elicit compliant behaviors. Hence, the incentives of the employees

and the security objective of the defender are naturally dependent on the prescribed

audit scheme. They will be further elaborated on in Section 9.1.3.

Example 3 (Stochastic Audit of Critical Security Rules). Consider an orga-

nization that needs to comply with a finite set of H critical security rules, denoted by
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H := {1, · · · , H}, set by a U.S. regulatory agency. The rules entail proper behaviors

for remote access, user accounts, and backups [187]. The compliance of an employee

is monitored by checking each rule. Its outcome, denoted by oh, also known as the

compliance status concerning rule h ∈ H, is either full, partial, or no compliance,

denoted by ιf , ιp, and ιn, respectively. By lumping the outcomes into a vector, we

let a = (o1, · · · , oH) ∈ A :=
∏

h∈HOh, where Oh = {ιf , ιp, ιn}, be the consolidated

compliance status of an employee. An employee can choose his consolidated compli-

ance status a ∈ A based on his incentives. Let X = {x1, · · · , xH+1} be the set of

I = H + 1 ASs. Each AS follows the same procedure of checking the compliance

of the H rules to report an employee’s compliance status but differs in assessing

compliance scores. AS xh ∈ X , h = 1, · · · , H, yields a compliance score rh ∈ R

solely based on the outcome oh ∈ Oh, i.e., rh = gh(oh), where gh : Oh → R is the

scoring function associated with AS xh. AS xH+1 ∈ X uses the outcomes associated

with all the rules for the assessment, i.e., rH+1 = gH+1(a), where gH+1 : A → R

is the scoring function associated with AS xH+1. It is clear that xH+1 is the most

stringent AS among all. The score is used as the criterion to penalize employees

and thus affects their incentives that will be formally defined in Section 9.1.3.

In Example 3, the audit policy ψ ∈ Ψ is chosen based on a predetermined level of

tolerance. A proper level of tolerance trades off between the organization’s security

and the compliance cost resulting from the overhead and the lack of flexibility

[146]. An appropriate choice of tolerance depends on the SP; e.g., an audit policy

can prescribe the stringent audit xH+1 ∈ X at a higher rate under high-risk SP

than low-risk SP. We assume that the audit policy ψ set by the organization or

regulatory agencies remains the same for a sufficiently long time, making the policy

more implementable and agreeable to employees over the entire corporate network
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[213].

Let A denote the set (with cardinality K) of an insider’s actions. In Example 3,

an action a ∈ A is referred to as the rule compliance profile, i.e., a = (o1, · · · , oH),

which is a result of the insiders’ behaviors, including keystrokes, full application

contents (e.g., email, chat, data import, and data export), and screen captures

[201]. In the case where there is one rule, i.e., H = 1, A is reduced to an action set

that comprises three actions: full, partial, and no compliance. The insider’s actions

are monitored by the AS, and the defender is informed of the insider’s compliance

to nudge compliant behaviors.

9.1.3 Utilities of the Defender and Employees

In the past five years, financially motivated insider threats have continued to

be the most common motive of threat actors [15]. We define utility functions

vp : Y × X × A 7→ R for p ∈ {U,D} to capture an employee’s incentive and

the defender’s security objective, respectively. The defender’s utility vD(y, x, a)

assesses the impact of an employee’s action a ∈ A on network security under

the SP y ∈ Y and AS x ∈ X . Since the impact is assessed subjectively by the

defender, vD represents the defender’s security objective. For example, under

life-critical scenarios with zero tolerance to non-compliance, the defender can assign

vD(y, x, a
ic) = −∞,∀y ∈ Y , x ∈ X .

An employee’s utility vU(y, x, a) models his extrinsic and intrinsic incentives

to take action a ∈ A under SP y ∈ Y and AS x ∈ X . On the one hand, vU can

incorporate monetary incentives (through reward and recognition) and disincentives

(through penalty and punishment) from the defender. On the other hand, vU can

represent an employee’s proclivity for compliant behaviors. Readers can refer to
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Section 9.5.1 and 9.5.1 for an example of vD and vU , respectively.

9.1.4 Strategic Recommendations for Customized Compli-

ance

Following Section 9.1.2, the audit policy ψ remains unchanged once determined.

Since it is challenging for a fixed audit policy to achieve optimal inspection out-

comes for employees with different compliance requirements and incentives (as

will be further elaborated in Section 9.1.4), the defender designs a customized

recommendation mechanism, including a recommendation policy π ∈ Π that results

in a recommendation s ∈ S.

High-Risk 
SP 𝑦!"

Low-Risk 
SP	𝑦#"

Security Posture 
𝑦 ∈ 𝑌

Stringent 
Audit 𝑥$%

Tolerant 
Audit 𝑥&%

Audit Scheme
𝑥 ∈ 𝑋

Audit 
	𝜓: 𝑌 ↦ Δ𝑋

Compliance 
Required 𝑠'(

Compliance 
Exemption 𝑠)'

Recommendation
𝑠 ∈ 𝑆

Compliant 
Action 𝑎'(

Non-compliant 
Action	𝑎)'

Action
𝑎 ∈ 𝐴

Recommend
	𝜋: 𝑋 ↦ Δ𝑆

Employee 
Act

Figure 9.2: The timeline of ZETAR to enhance employees’ compliance in corporate
networks. The defender is informed of the security posture and the audit outcomes
of all employees’ behaviors. The defender designs a recommendation policy π ∈ Π
to improve compliance.

Information Structure and Timeline

As stated in [146], transparent criteria for organizational policies can create

a culture of trust and consequently serve as a positive incentive to reduce non-

compliance. Thus, we assume that the sets Y ,X ,S,A, the prior statistics bY ∈ ∆Y ,
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the audit policy ψ ∈ Ψ, and the recommendation policy π ∈ Π are common

knowledge. Since the organization’s SP changes randomly as shown in Section 9.1.1,

the SP is assessed repeatedly on a weekly or monthly basis, and it is unknown to

employees.

Fig. 9.2 illustrates the timeline of ZETAR as follows. Given the current SP

y ∈ Y and the audit policy ψ ∈ Ψ, the chosen AS x ∈ X is known to the defender

yet remains unknown to the employees. Before implementing the chosen AS x, the

defender recommends an action based on x and the recommendation policy π ∈ Π.

Then, the employee takes an action a ∈ A that is not necessarily the recommended

one. Finally, the defender implements the chosen AS and penalizes employees based

on the audit outcome. Employees observe the chosen AS after it is implemented.

After the zero-trust audit, the employees’ actions become known to the defender.

Employee’s Initial Compliance

Without the recommendation mechanism, an employee takes an action a0 ∈ A

to maximize his expected utility concerning the prior statistics bY ∈ ∆Y and ψ ∈ Ψ,

i.e., a0 ∈ argmaxa∈A
∑

y∈Y bY (y)
∑

x∈X ψ(x|y)vU (y, x, a). Due to the misalignment

between an employee’s incentive vU and the defender’s security objective vD, the

employee’s initial compliance status represented by a0 ∈ A may negatively affect

corporate security. For example, a self-interested employee tends to break the

security rules for convenience if the audit policy ψ chooses a stringent audit (e.g.,

xH+1 ∈ X in Example 3) less frequently.
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Recommendation Mechanism

To align employees’ incentives with the defender’s security objective, the defender

can recommend an action to an employee. Thus, set S := {sk}k∈K has the same

cardinality with A and represents the finite set of K recommendations where sk ∈ S

recommends the employee to take action ak ∈ A. The defender recommends the

action according to a stochastic recommendation policy π ∈ Π : X 7→ ∆S; i.e.,

given the chosen AS x ∈ X , the defender chooses recommendation s ∈ S with

probability π(s|x). As will be shown in Section 9.1.4, by strategically choosing the

recommendation policy, the defender can manipulate an employee’s belief of the

current SP and the chosen AS, thus affecting his perception of the expected utility

and enhancing compliance.

Employee’s Belief Update and Best-Response Action

The received recommendation reveals the defender’s knowledge of the SP and

the chosen AS. An employee can form and update a belief of the unknowns

by observing the recommendations. Denote bY,X ∈ BY,X ⊆ ∆(X × Y) as the

joint prior distribution of the current SP and the chosen AS, i.e., bY,X(y, x) :=

bY (y)ψ(x|y),∀x ∈ X , y ∈ Y. Analogously, we define bX(x) :=
∑

y′∈Y bY,X(y
′, x)

as the marginal prior probability of AS x ∈ X , bY |X(y|x) := bY,X(y, x)/bX(x) as

the conditional prior probability of SP y ∈ Y under AS x ∈ X , and bπS(s) :=∑
x′∈X bX(x

′)π(s|x′) as the probability of recommendation s ∈ S under π ∈ Π,

where bX ∈ BX ⊆ ∆X , bY |X ∈ BY |X , and b
π
S ∈ ∆S.

Following the requirement of transparent criteria in Section 9.1.4, the recom-

mendation policy π ∈ Π is assumed to be common knowledge. The assumption

can be justified by the fact that an employee can learn the recommendation policy
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π ∈ Π based on the repeated observations of the recommendation policy input

(i.e., AS x ∈ X ) and the policy output (i.e., recommendation s ∈ S) after they are

implemented. Thus, for rational employees who adopt Bayesian rules to update

their beliefs, each recommendation s ∈ S under recommendation policy π ∈ Π

results in posterior belief bπY,X(y, x|s) ∈ BπY,X ⊆ ∆(X × Y), i.e.,

bπY,X(y, x|s) =
bY,X(y, x)π(s|x)∑
x′∈X bX(x

′)π(s|x′) ,∀x ∈ X , y ∈ Y . (9.1)

Then, we can obtain the employee’s marginal posterior belief of AS x ∈ X , his

marginal posterior belief of SP y ∈ Y, and the associated conditional posterior

belief under recommendation s ∈ S as bπX(x|s) :=
∑

y∈Y b
π
Y,X(y, x|s) = bX(x)π(s|x)

bπS(s)
∈

BπX ⊆ ∆X , bπY (y|s) :=
∑

x∈X b
π
Y,X(y, x|s) ∈ ∆Yπ ⊆ ∆Y, and bπY |X(y|x, s) :=

bπY,X(y, x|s)/bπX(x|s), respectively. Since bπY |X(y|x, s) = bY |X(y|x),∀s ∈ S, these

recommendations under policy π ∈ Π have no impact on the conditional probability

bπY |X . However, as it does not hold in general that bπY,X = bY,X , b
π
X = bX , b

π
Y =

bY ,∀s ∈ S, the recommendation mechanism (i.e., π ∈ Π and s ∈ S) can change the

employees’ marginal beliefs of the current SP and the implemented AS as well as

their joint beliefs. We summarize the above observations in Lemma 3.

Lemma 3 (Invariance of Conditional Belief). A recommendation policy π ∈ Π

has no impact on bπY |X .

With a recommendation policy π ∈ Π, the employee takes a best-response action

denoted by a∗π,s ∈ A to maximize his posterior utility under recommendation s ∈ S,

i.e.,

a∗π,s ∈ argmax
a∈A

Ey,x∼bπY,X(·|,s)[vU(y, x, a)]. (9.2)

Letting v̄p(x, a) :=
∑

y∈Y bY |X(y|x)vp(y, x, a),∀x ∈ X for p ∈ {U,D} be an em-

ployee’s expected incentive and the defender’s expected security objective, respec-
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tively, we obtain

Ey,x∼bπY,X(·|,s)[vp(y, x, a)] =
∑
x∈X

bπX(x|s)v̄p(x, a),∀s ∈ S. (9.3)

We refer to a∗π,s ∈ A as an action induced by recommendation policy π ∈ Π under

recommendation s ∈ S, which is in general different from the employee’s initial

compliance status a0 ∈ A in Section 9.1.4. For a given π, not all recommendations

induce a compliant action. However, by strategically choosing the recommendation

policy, the defender can improve compliance on average. We formally quantify the

improvement of compliance and its average impact on the corporate security in

Section 9.1.4.

Trustworthiness of the Recommendation Scheme

Following Section 9.1.4, the defender’s recommendation s ∈ S from a recom-

mendation policy π ∈ Π may not be trusted by an employee; i.e., the recommended

action is not a best-response action. We formalize the definitions of trustworthy

recommendations and trustworthy recommendation policies in Definitions 22 and

23, respectively.

Definition 22 (Trustworthy Recommendations). A recommendation sk ∈

S, k ∈ K, under a recommendation policy π ∈ Π is trustworthy (resp. untrustwor-

thy); i.e., the policy π is trusted by an employee with an incentive v̄U , if the induced

action follows (resp. does not follow) the recommended action ak ∈ A, i.e., ak ∈

(resp. /∈) argmaxa∈A Ex∼bπX(·|,s)[v̄U(x, a)].

Remark 13 (Compliance and Trustworthiness). Following Definition 22, an

employee complies with a recommendation (i.e., takes the recommended action)
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only if it is trustworthy.

Definition 23 (Trustworthy Recommendation Policies). Recommendation

policies under which recommendation sk ∈ S, k ∈ K, is trustworthy (resp. untrust-

worthy) formulate the k-th Partially Trustworthy (PT) (resp. Partially Untrust-

worthy (PU)) policy set Πk
pt ⊆ Π (resp. Πk

pu ⊆ Π). A recommendation policy π ∈ Π

is Completely Trustworthy (CT) (resp. Completely Untrustworthy (CU)) if all rec-

ommendations under π are trustworthy (resp. untrustworthy). All CT (resp. CU)

recommendation policies formulate the CT (resp. CU) policy set Πct := ∩Kk=1Π
k
pt

(resp. Πcu := ∩Kk=1Π
k
pu).

Different recommendation policies reveal varied amounts information about

the AS and the SP, which consequently affect the employee’s compliance status.

Two extreme cases are defined in Definition 24. Let the optimal action of an

employee U or the defender D at AS x ∈ X and SP y ∈ Y be given by ãmaxp (y, x) ∈

argmaxa∈A vp(y, x, a). Analogously, let a
max
p (x) ∈ argmaxa∈A v̄p(x, a) for all x ∈ X

and p ∈ {U,D}. A zero-information recommendation policy, denoted by πz ∈ Π,

recommends the same actions as an employee’s initial compliance status in Section

9.1.4 regardless of the chosen AS. Hence πz does not change the employee’s belief,

i.e., bπzX (x|s) = bX(x),∀s ∈ S,∀x ∈ X , and does not bring new information to

the employee. Meanwhile, a full-information recommendation policy denoted by

πf ∈ Π recommends optimal action amaxU (x) under the chosen AS x ∈ X . Remark

14 shows that it is feasible for the defender to implement CT recommendation

policies regardless of ZETAR settings in Sections 9.1.1 to 9.1.3.

Definition 24 (Zero- and Full-Information Recommendation Policy). A rec-

ommendation policy πz ∈ Π contains zero information if πz(s
k|x) = 1{ak=a0},∀k ∈
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K,∀x ∈ X . A recommendation policy πf ∈ Π contains full information if

πf (s
k|x) = 1{ak=amax

U (x)},∀k ∈ K,∀x ∈ X .

Remark 14 (Feasibility). Following Definition 24, zero- and full-information

recommendation policies are CT, i.e., πz, πf ∈ Πct. Thus, Πct is nonempty regardless

of ZETAR settings.

Defender’s Optimal Recommendation Policy

Following (9.2) and (9.3), an employee’s expected utility defined in (9.4) repre-

sents the employee’s Acquired Satisfaction Level (ASaL) under recommendation

policy π ∈ Π.

JU(π, bX , v̄U) :=
∑
s∈S

bπS(s)Ey,x∼bπY,X(·|,s)[vU(y, x, a
∗
π,s)]. (9.4)

Since an employee’s action induced by zero-information policy πz is his initial-

compliance action a0 ∈ A, JU(π, bX , v̄U) represents the employee’s Innate Satisfac-

tion Level (ISaL). To capture the average impact of an employee’s compliance status

on corporate security under different recommendations, we define the defender’s

Acquired Security Level (ASeL) under recommendation policy π ∈ Π as

J̃D(π, bY,X , vD, vU) := Ey,x∼bY,X(·)Es∼π(·|x)[vD(y, x, a∗π,s)]

=
∑
x∈X

bX(x)
∑
s∈S

π(s|x)v̄D(x, a∗π,s) := JD(π, bX , v̄D, v̄U). (9.5)

Since an employee’s best-response action a∗πz ,s ∈ A remains the same as a0 ∈ A

in Section 9.1.4 under all recommendations s ∈ S, a zero-information recom-

mendation policy πz ∈ Πct has no impact on the employee’s compliance. Hence

JD(πz, bX , v̄D, v̄U) quantifies the impact of an employee’s initial compliance status

and represents the defender’s Initial Security Level (ISeL). The difference in the
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defender’s security level JacelD (π, bX , v̄D, v̄U ) := JD(π, bX , v̄D, v̄U )−JD(πz, bX , v̄D, v̄U )

measures the average impact of the employee’s compliance status changes (under

recommendation policy π ∈ Π) on the corporate security, and we refer to JacelD as

the Average Compliance Enhancement Level (ACEL) in Definition 25.

Definition 25 (Average Compliance Enhancement Level). For an em-

ployee with incentive v̄U and the defender with security objective v̄D, we define

JacelD (π, bX , v̄D, v̄U) ∈ R as the Average Compliance Enhancement Level (ACEL)

under the prior statistic bX ∈ BX defined in Section 9.1.4 and recommendation

policy π ∈ Π defined in Section 9.1.4.

The defender’s goal is to design the optimal recommendation policy π∗ ∈ Π that

maximizes ACEL, where Jacel,∗D denotes the optimal ACEL, i.e., Jacel,∗D (bX , v̄D, v̄U ) :=

JacelD (π∗, bX , v̄D, v̄U) = maxπ∈Π J
acel
D (π, bX , v̄D, v̄U) ≥ 0. The optimal ACEL mea-

sures the maximum improvement of an employee’s compliance and thus shows how

persuadable the employee is under the recommendation scheme.

Remark 15 (Scoring Metrics). The ISeL JD(πz, bX , v̄D, v̄U) and the optimal

ACEL Jacel,∗D (bX , v̄D, v̄U ) provide scores to quantify how compliant and persuadable,

respectively, an employee with incentive v̄U is under security objective v̄D.

9.2 Computational Framework of ZETAR

In this section, we formulate the design of ZETAR into mathematical program-

ming problems, where the defender has complete information of an employee’s

incentive v̄U .
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9.2.1 Level of Recommendation Customization

As illustrated in Section 9.1.2 and 9.1.4 and also in Fig. 7.1, the defender

determines a unified audit policy to inspect all employees’ behaviors yet designs

customized recommendation policies. Since the difference in these recommen-

dation policies can lead to the perceptions of unfairness and distrust [213], the

defender needs to strike a balance between the optimal ACEL and the Level

of Recommendation Customization (LoRC). We let η ∈ R+ be the defender’s

LoRC, πd ∈ Π be a default recommendation policy, and the KL divergence

KL(π||πd) :=
∑

k∈K,x∈X π(s
k|x) log π(sk|x)

πd(sk|x)
be the measure of policy difference, re-

spectively. If πd(s
k|x) = 0, then π(sk|x) = 0 by default, and π(sk|x) log π(sk|x)

πd(sk|x)
= 0

as limz→0+ z log z = 0.

9.2.2 Primal Mathematical Programming

Without loss of generality, the defender can narrow the policy search space to

Πct ⊆ Π to achieve the optimal ACEL [109], i.e.,

Jacel,∗D (bX , v̄D, v̄U) = max
π∈Πct

JacelD (π, bX , v̄D, v̄U).

Under a CT recommendation policy, the employee complies to the recommenda-

tion and chooses ak ∈ A when the recommendation is sk ∈ S,∀k ∈ K. Thus,

maxπ∈Πct J
acel
D (π, bX , v̄D, v̄U ) = maxπ∈Πct

∑
x∈X bX(x)

∑
k∈K π(s

k|x)v̄D(x, ak). For a
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LoRC η, we formulate the following convex program denoted by Pη.

[Pη] : rη = max
π∈Π

∑
x∈X

bX(x)
∑
k∈K

π(sk|x)v̄D(x, ak)−
KL(π||πd)

η

(a). π(sk|x) ≥ 0,∀k ∈ K, ∀x ∈ X ,

(b).
∑
k∈K

π(sk|x) = 1,∀x ∈ X ,

(c).
∑
x∈X

bX(x)π(s
k|x)[v̄U(x, ak)− v̄U(x, al)] ≥ 0,∀k, l ∈ K.

Let π∗
η ∈ Πct and rη be the maximizer and the optimal value of Pη, respectively,

for all η ∈ R+. Constraints (a), (b) explicitly describe the set Π, and constraint

(c) limits the recommendation policy to be CT defined in Definition 23. All

recommendation policies that satisfy constraints (a), (b), (c) compose the set

Πct ⊆ Π. Due to the feasibility of CT policies in Remark 14 and the boundedness of

vD, the program Pη is feasible and bounded for all η ∈ R+. When the defender aims

to design CT recommendation policies closest to the default policy πd ∈ Π (i.e.,

η → 0+), then π∗
0 = πd if and only if πd ∈ Πct. As the LoRC η increases, the defender

focuses more on compliance enhancement, and the optimizer of P∞ coincides with

π∗ that achieves the optimal ACEL Jacel,∗D , i.e., π∗
∞ = π∗. By specifying al ∈ A

in constraint (c) of Pη as the initial-compliance action a0 ∈ A, we prove that CT

policies never decrease an employee’s satisfaction level in Proposition 5.

Proposition 5 (Trustworthiness Promotes Satisfaction). An employee’s

ASaL JU(π, bX , v̄U) is not lower than his ISaL JU(πz, bX , v̄U) for all π ∈ Πct and

bX ∈ BX .

Proof. An employee’s ASaL in (9.4) under a CT recommendation policy π ∈ Πct

can be represented as JU (π, bX , v̄U ) =
∑

s∈S b
π
S(s) ·maxa∈A

∑
x∈X b

π
X(x|s)v̄U (x, a) =∑

x∈X bX(x)
∑

k∈K π(s
k|x)v̄U(x, ak). Based on constraint (c) of Pη, we arrive at
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the result
∑

x∈X bX(x)π(s
k|x)[v̄U(x, ak) − v̄U(x, a0)] ≥ 0 for all k ∈ K and π ∈

Πct. Hence, JU(π, bX , v̄U) ≥
∑

x∈X bX(x)v̄U(x, a0) = maxa∈A
∑

x∈X b(x)v̄U(x, a) =

JU(πz, bX , v̄U).

Remark 16 (Win-Win Situation). Proposition 5 shows that an employee’s ASaL

is not lower than his ISaL if a recommendation policy is CT. Based on Remark 14,

the defender’s ASeL is not lower than her ISEL under the optimal recommendation

policy, i.e., Jacel,∗D (bX , v̄D, v̄U) ≥ 0. Thus, the optimal policy achieves a win-win

situation between the defender and employees by promoting cyber hygiene and

employees’ satisfaction.

9.2.3 Dual Mathematical Programming

Let αη(s
k, x) ≥ 0, βη(x) ∈ R, and λη(s

k, al) ≥ 0 denote the dual variables

of the constraints (a), (b), and (c) in Pη, respectively. Define shorthand no-

tation β̄η(s
k, x, λη) := v̄D(x, a

k) +
∑

al∈A λη(s
k, al)[v̄U(x, a

k) − v̄U(x, a
l)], where

λη(s
l, al),∀l ∈ K, can take any finite values. The dual problem is denoted

as Dη. The strong duality proved in Proposition 6 yields the bounds for the

optimal value rη of the primal problem Pη in Proposition 7. Define α∗
η(s

k, x),

β∗
η(x), and λ∗η(s

k, al) as the optimal dual variables and the shorthand notation

r :=
∑

x∈X [maxk∈K bX(x)β̄η(s
k, x, λη) + log(πd(s

k|x))/η].

[Dη] : min
[βη(x)∈R]x∈X ,[λη(sk,al)∈R0+]k,l∈K

∑
x∈X

[βη(x) +
1

η
]

(a).
∑
x∈X

[v̄U(x, a
k)− v̄U(x, al)]bX(x)πd(sk|x)

· eη[bX(x)β̄η(sk,x,λη)−βη(x)] ≥ 0,∀k, l ∈ K,

(b).
∑
k∈K

πd(s
k|x)eη[bX(x)β̄η(sk,x,λη)−βη(x)]−1 = 1,∀x ∈ X .
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Proposition 6 (Strong Duality). For all η ∈ R+, Dη is the dual problem of Pη,

and the optimal value of Dη is rη.

Proof. Since all constraints in Pη are linear, Slater’s condition reduces to the

feasibility of Dη [20], and strong duality holds. Thus, Pη and Dη achieve the

same optimal value. Setting the gradient of the Lagrangian function of Pη con-

cerning π to 0 yields 1
η
(log π(sk|x)

πd(sk|x)
+ 1) = bX(x)v̄D(x, a

k) + αη(s
k, x) − βη(x) +∑

l∈K λη(s
k, al)bX(x)[v̄U(x, a

k)− v̄U(x, al)], for all k ∈ K, x ∈ X , which leads to

π∗
η(s

k|x) = πd(s
k|x) · eη[bX(x)β̄η(sk,x,λη)+αη(sk,x)−βη(x)]−1. (9.6)

Since π∗
η(s

k|x) in (9.6) is non-negative for all k ∈ K, x ∈ X , constraint (a) of Pη
holds. Moreover, the complementary slackness implies the optimal dual variables

α∗
η(s

k, x) = 0,∀k ∈ K, x ∈ X . Plugging π∗
η(s

k|x) in (9.6) into constraints (b) and (c)

of Pη leads to constraints (a) and (b) of Dη, respectively. Then, by strong duality,

Dη minimizes the Lagrangian function L(π∗
η, α

∗
η, βη, λη) =

∑
x∈X [βη(x) + 1/η] over

dual variables βη(x) ∈ R, λη(sk, al) ∈ R0+,∀k, l ∈ K, x ∈ X .

Proposition 7 (Bounds of the Optimal Value). The lower and upper bounds

of rη are r and r + log(K)/η, respectively.

Proof. Constraint (b) in Dη is equivalent to the log-sum-exp expression: βη(x) =

1
η
log(

∑
k∈K πd(s

k|x)eηbX(x)β̄η(sk,x,λη)−1). Therefore, maxk∈K ηbX(x)β̄η(s
k, x, λη)− 1+

log(πd(s
k|x)) ≤ ηβη(x) ≤ maxk∈K ηbX(x)β̄η(s

k, x, λη)− 1 + log(πd(s
k|x)) + log(K)

for all x ∈ X . Since strong duality holds, we obtain the bounds for rη in Pη.

Following (9.6) and Proposition 7, the optimal policy π∗
η has the closed-form

expression in (9.7) concerning the optimal dual variables λ∗η(s
k, al) ∈ R0+, l, k ∈ K,
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and the default recommendation policy πd ∈ Π; i.e., for all x ∈ X , sk ∈ S, k ∈ K,

π∗
η(s

k|x) = πd(s
k|x) · eηbX(x)β̄η(sk,x,λ∗η)∑

k∈K πd(s
k|x) · eηbX(x)β̄η(sk,x,λ∗η)

. (9.7)

9.2.4 Interpretation of ZETAR from Employees’ Perspec-

tives

When ZETAR designs a fully customized recommendation policy (i.e., LoRC η

goes to infinity), then the dual problem D∞ is a Linear Program (LP) as shown in

Proposition 8. Define β̂∞(x) := β∞(x)/bX(x) where β̂∞(x) = 0 if bX(x) = 0.

Proposition 8. When LoRC η goes to infinity, the dual problem D∞ degenerates

to the following Linear Program (LP):

[D∞] : min
[β̂∞(x)∈R]x∈X ,[λ∞(sk,al)∈R0+]k,l∈K

∑
x∈X

bX(x)β̂∞(x)

s.t. β̂∞(x) ≥ β̄∞(sk, x, λ∞),∀k ∈ K,∀x ∈ X .

Proof. When η → ∞, the upper and lower bounds for βη(x) in Proposition 7

attain the same value, which implies βη(x) = maxk∈K ηbX(x)β̄η(s
k, x, λη). Thus,

constraint (a) of Dη is feasible. Constraint (b) and the objective function of the

convex program Dη are equivalent to the constraint and the objective function of

the LP D∞, respectively.

The dual problem D∞ provides an interpretation of ZETAR with fully cus-

tomized recommendation policies from an employee’s perspective; i.e., each employee

aims to minimize his effort to satisfy the security objective of the corporate network.

Variable λ∞(sk, al) represents the employee’s frequency to take action al ∈ A under

recommendation sk ∈ S. The variable β̄∞(sk, x, λ∞) represents the mixed security

objective of the corporate network under AS x ∈ X and recommendation sk ∈ S,
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which involves the sum of the defender’s utility v̄D and the employee’s expected

utility, i.e.,
∑

al∈A λ∞(sk, al)[v̄U(x, a
k)− v̄U(x, al)]. The variable β̂∞(x) represents

the employee’s effort at AS x ∈ X , and the effort is required to satisfy the security

objective at each AS for all recommendations. An employee who prioritizes con-

venience over security chooses the rate of actions to minimize his expected effort∑
x∈X bX(x)β̂∞(x).

9.3 Characterization of Trust and Compliance

Section 9.2 provides a unified computational framework to design the optimal

CT recommendation policy under any LoRC. In this section, we consider fully

customized recommendation policies, i.e., η =∞. We characterize the invariance of

an employee’s compliance status and the defender’s optimal recommendation policy

under linear utility transformations in Section 9.3.1. In Section 9.3.2, we provide

a geometric characterization of the CT policy set based solely on an employee’s

incentive vU . The characterizations are useful to develop efficient algorithms

in Section 9.4 when employees’ incentives are unknown. In Section 9.3.3, we

characterize the optimal ACEL under different levels of misalignment between the

defender’s security objective vD and an employee’s incentive vU .

9.3.1 Impact of Linear Utility Transformations

We define the linear utility transformation for the defender and an employee in

Definition 26. Following Remark 13, if a recommendation s ∈ S is trustworthy (or

untrustworthy) to both two employees, then they have the same compliant status

under s. Lemma 4 illustrates the preservation of an employee’s compliance status
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under linear transformations of vU . The proof directly follows from Definition 22.

Definition 26 (Linear Utility Transformation). Define the linear trans-

formation of a player’s utility with a scaling factor ρsap ∈ R and translation

factors [ρtrp (y, x) ∈ R]x∈X ,y∈Y as vltp (y, x, a) := ρsap vp(y, x, a) + ρtrp (y, x) for all

x ∈ X , y ∈ Y , a ∈ A, p ∈ {D,U}.

Lemma 4 (Preservation of Compliance Status). Interacting with the same

defender, two employees with incentives vU and vltU , respectively, have the same

compliance status for all recommendation s ∈ S under any recommendation policy

π ∈ Π. Moreover, the defender applies the same optimal recommendation policy to

both employees.

Lemma 5 characterizes ZETAR from the perspective of linear systems; i.e., a

linear transformation of vD results in a linear transformation of the defender’s ASeL

in (9.5) and the ACEL in Definition 25 for any recommendation policy π ∈ Π.

The proof directly follows from (9.5) and the fact that maxπ∈Π JD(π, bX , v̄
lt
D, v̄U ) =

maxπ∈Π JD(π, bX , v̄D, v̄U).

Lemma 5 (Preservation of Linearity). Interacting with the same employee, the

ASeL of two defenders with security objectives vD and vltD are linearly dependent,

i.e., JD(π, bX , v̄
lt
D, v̄U) = ρsaD JD(π, bX , v̄D, v̄U) +

∑
x∈X

∑
y∈Y bY,X(y, x)ρ

tr
D(y, x), for

all π ∈ Π. Moreover, the two defenders use the same optimal recommendation

policy.

Remark 17 (Policy Invariance). Lemmas 4 and 5 show that linear utility

transformation does not affect the optimal recommendation policy. The structures

of an employee’s incentive and the defender’s security objective play more critical

roles in compliance status and ASeL than their absolute values.
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9.3.2 Geometric Characterization of CT Sets, ASaL, and

ASeL

We define the following notations for the matrix representations of recommenda-

tion policies and utilities in Sections 9.3.2 and 9.4. Define v̂kp := [bX(x
1)v̄p(x

1, ak),

bX(x
2)v̄p(x

2, ak), · · · , bX(xI)v̄p(xI , ak)]T ∈ R1×I , p ∈ {D,U}, for all k ∈ K. For

each recommendation sk ∈ S, k ∈ K, and the shorthand notation π̂k,i := π(sk|xi),

we can define an I-dimension vector π̂k = [π̂k,1, · · · , π̂k,I ] ∈ Π̂k. By definition,∑K
k=1 π̂

k = [1, 1, · · · , 1] ∈ RI . Then, a recommendation policy π ∈ Π has an

equivalent matrix form as π̂ := [π̂1, · · · , π̂K ]T ∈ Π̂. Analogously, the k-th PT, k-th

PU, and CT recommendation policies in matrix forms compose sets Π̂k
pt, Π̂

k
pu, and

Π̂ct, respectively. In Proposition 9, we identify π̂k ∈ Π̂k as the sufficient component

of π̂ ∈ Π̂ to determine the trustworthiness of recommendation sk ∈ S.

Proposition 9 (Minimal Sufficiency for Trustworthy Recommendations).

Policy vector π̂k ∈ Π̂k is the minimal sufficient component of the policy matrix

π̂ ∈ Π̂ to determine the trustworthiness of recommendation sk ∈ S.

Proof. Based on (9.2) and Definition 22, a recommendation sk ∈ S, k ∈ K, is

trustworthy if and only if π̂k[v̂kU − v̂lU ] ≥ 0,∀l ∈ K (i.e., the matrix representation

of constraint (c) in Pη).

Proposition 9 leads to the policy separability principle in Remark 18; i.e., the

defender can design the k-th policy vector π̂k ∈ Π̂k separately for all k ∈ K to learn

the k-th PT policy set. The policy separability contributes to efficient CT policy

set learning algorithms in Section 9.4. We characterize an employee’s ASaL, the

convexity of the CT policy set, and the defender’s ASeL in Lemmas 6-8, respectively.

Section 9.5.3 illustrates these characterizations when I = J = K = 2.
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Remark 18 (Policy Separability). The defender can determine the k-th PT

policy set, i.e., Π̂k
pt, independently from other PT policy sets Π̂k′

pt,∀k′ ∈ K \ {k}, to

determine CT policy set Π̂ct.

Lemma 6 (PWL and Convex of ASaL). ASaL JU(π, bX , v̄U) is PieceWise

Linear (PWL) and convex in π̂k ∈ Π̂k,∀k ∈ K.

Proof. Following (9.4), we can represent an employee’s ASaL as JU(π, bX , v̄U) =∑
k∈K maxa∈A[

∑
x∈X bX(x)π(s

k|x)v̄U (x, a)]. Since
∑

x∈X bX(x)π(s
k|x)v̄U (x, a) is an

linear function in π̂k ∈ Π̂k,∀k ∈ K, and a ∈ A, the point-wise maximum of a

group of linear functions in (9.4) leads to a PieceWise Linear (PWL) and convex

function concerning π̂k ∈ Π̂k,∀k ∈ K. Then, the sum of a group of PWL and

convex functions remains PWL and convex.

Denote Ckl := {π̂ ∈ Π̂|π̂k[v̂lU − v̂hU ] ≥ 0, ∀h ∈ K} as the set of recommenda-

tion policies that induce action al ∈ A under recommendation sk ∈ S. Define

C{l1,··· ,lK} := ∩Kk=1Cklk as the set of recommendation policies that induce action

alk ∈ A under recommendation sk ∈ S for all k ∈ K. Within each (possibly

empty) set C{l1,··· ,lK},∀l1, · · · , lK ∈ K, we can represent the defender’s ASeL in (9.5)

equivalently as the matrix form ĴD(π̂, v̂D, vU) :=
∑

k∈K π̂
kv̂lkD , ∀π̂ ∈ C{l1,··· ,lK}.

Lemma 7. The KK sets C{l1,··· ,lK}, ∀l1, · · · , lK ∈ K, are mutually exclusive and

convex. The union of these sets composes the entire recommendation policy set, i.e.,

Π̂ = ∪l1,··· ,lK∈KC{l1,··· ,lK}. The k-th PT policy set Ckk ,∀k ∈ K, and the CT policy set

Π̂ct = C{1,··· ,K} = ∩Kk=1Ckk are convex.

Proof. The convexity of set Ckl directly follows its definition. The properties of the

mutual exclusiveness and the union directly come from the definition of C{l1,··· ,lK}.
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Definition 23 leads to Π̂ct = ∩Kk=1Ckk . Since the intersection of any collection of

convex sets is convex, sets C{l1,··· ,lK} and Π̂ct are convex.

Lemma 8 (PWL of ASeL). ASeL ĴD(π̂, v̂D, vU) is (possibly discontinuous)

piecewise linear concerning π̂k ∈ Π̂k,∀k ∈ K.

Proof. Based on Lemma 7, the entire recommendation policy set Π̂ is divided into

KK mutually exclusive (possibly empty) sets determined by an employee’s incentive

vU . Within each set C{l1,··· ,lK}, the defender’s ASeL ĴD(π̂, v̂D, vU ) in matrix form is

linear in π̂k ∈ Π̂k,∀k ∈ K.

9.3.3 Optimal ACEL under Incentive Misalignment

We first classify the insiders into three incentive categories in Definition 27 based

on the alignment of their incentives with the defender’s security objective. Denote

χ(K) := [χ(1), χ(2), · · · , χ(K)] as a permutation of set K, i.e., χ(k) ∈ K,∀k ∈ K,

and χ(k) ̸= χ(k′) if k ̸= k′,∀k, k′ ∈ K.

Definition 27 (Incentive Categories). Consider the defender with security objec-

tive vD. An insider is categorized as amenable (resp. malicious) if he shares the same

(resp. opposite) preference ranking with the defender concerning actions for each SP

and AS; i.e., for any given x ∈ X , y ∈ Y, if vU (y, x, aχ(1)) ≥ vU (y, x, a
χ(2)) ≥ · · · ≥

vU(y, x, a
χ(K)), then vD(y, x, a

χ(1)) ≥ (resp. ≤)vD(y, x, aχ(2)) ≥ (resp. ≤) · · · ≥

(resp. ≤)vD(y, x, aχ(K)). An insider is self-interested if he is neither amenable nor

malicious.

An amenable insider has a strong sense of responsibility to enhance security

and prioritizes security over convenience. A malicious insider, e.g., a disgruntled

employee or an employee whose credentials have been stolen, can misbehave or
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sabotage corporate security on purpose. Self-interested insiders represent the

majority of employees who are willing to follow security rules when there is no

conflict of interests. Following Definition 26 and Remark 17, linear transformations

of a malicious, self-interested, or amenable employee’s incentive do not change his

incentive category. Lemma 9 characterizes the optimal recommendation policy and

the ACEL when an employee’s incentive and the defender’s security objective are

linearly dependent.

Lemma 9. Consider linearly dependent incentives of an employee and the defender

with a scaling factor ρsaD,U ∈ R and translation factors [ρtrD,U(y, x) ∈ R]y∈Y,x∈X , i.e.,

vD(y, x, a) = ρsaD,UvU(y, x, a) + ρtrD,U(y, x) for all y ∈ Y , x ∈ X , a ∈ A. Then, the

following two statements hold.

1. Jacel,∗D (bX , v̄D, v̄U) = 0, ∀bX ∈ BX , if and only if ρsaD,U ≤ 0. Zero-information

recommendation policy πz ∈ Πct achieves the optimal ACEL.

2. JacelD (π, bX , v̄D, v̄U) ≥ 0,∀π ∈ Π,∀bX ∈ BX , if and only if ρsaD,U > 0. Full-

information recommendation policy πf ∈ Πct achieves the optimal ACEL, and

the following holds: Jacel,∗D (bX , v̄D, v̄U) = ρsaD,U
∑

x∈X bX(x)maxa∈A v̄U(x, a)−

ρsaD,U maxa∈A
∑

x∈X bX(x)v̄U(x, a).

Proof. Under πz ∈ Πct and the linear dependency condition, the ASeL in (9.5)

becomes J̃D(πz, bY,X , vD, vU ) =
∑

y∈Y,x∈X bY,X(y, x)[ρ
sa
D,UvU (y, x, a0) + ρtrD,U (y, x)] =

ρsaD,U maxa∈A
∑

y∈Y,x∈X bY,X(y, x)vU (y, x, a) +
∑

y∈Y,x∈X bY,X(y, x)ρ
tr
D,U (y, x). Based

on the concavification technique in [109], J̃D(π
∗, bY,X , vD, vU ) is the concave closure

of J̃D(πz, bY,X , vD, vU ) over bY,X ∈ BY,X . As maxa∈A
∑

y∈Y
∑

x∈X bY,X(y, x)vU (y, x, a)

is PWL and convex concerning bY,X(y, x), ∀y ∈ Y , x ∈ X , J̃D(πz, bY,X , vD, vU) is

PWL and convex (resp. concave) in bY,X ∈ BY,X if and only if ρsaD,U > 0 (resp.
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ρsaD,U ≤ 0). Then, the convex hull of a concave function is itself, and the opti-

mal ACEL equals 0. Meanwhile, the convex hull of a convex function depends

only on the vertices of the convex set BY,X , i.e., vD(y, x, ãmax(y, x)),∀x ∈ X , y ∈

Y. We arrive at the result: J̃D(π
∗, bY,X , vD, vU) =

∑
x∈X bX(x)v̄D(x, a

max
U (x)) =

ρsaD,U
∑

x∈X bX(x)maxa∈A v̄U(x, a) +
∑

y∈Y,x∈X bY,X(y, x)ρ
tr
D,U(y, x), under the opti-

mal recommendation policy πf ∈ Πct.

Remark 19. Since a recommendation policy π ∈ Π has impact on bπY,X as

shown in Lemma 3, the incentive v̄D is not a constant as bY changes. Thus,

J̃D(π
∗, bY,X , vD, vU) is linear in bY,X ∈ BY,X but not bX ∈ BX (or bY ∈ ∆Y) in

general. If mapping ψ ∈ Ψ is non-stochastic, then ZETAR degenerates to the

Bayesian persuasion model in [109], and JD(π
∗, bX , v̄D, v̄U) is linear in bX ∈ BX

(or bY ∈ ∆Y).

According to Definition 27, an insider is amenable if ρsaD,U > 0 and malicious

if ρsaD,U ≤ 0. Therefore, Lemma 9 provides a closed-form solution of the optimal

ACEL for malicious and amendable insiders. We extend the discussion on the

optimal ACEL concerning amenable and malicious insiders in Proposition 10 and

11, respectively. For an amendable employee, Proposition 10 shows that within the

entire action preference, the optimal action is the decisive factor.

Proposition 10. If the incentives of an employee and the defender share the same

optimal action ãmax(y, x) ∈ A for each AS x ∈ X and SP y ∈ Y, then for all

bY,X ∈ BY,X , full-information recommendation policy πf ∈ Πct achieves the optimal

ACEL, and

J∗
D(bX , v̄D, v̄U) = J∗

D(bX , v̄U , v̄U)−
∑
x∈X

bX(x)δ(x), (9.8)
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where J∗
D(bX , v̄U , v̄U) =

∑
x∈X bX(x)maxa∈A v̄U(x, a) and δ(x) := v̄U(x, a

max(x))−

v̄D(x, a
max(x)),∀x ∈ X . Moreover, JacelD (π, bX , v̄D, v̄U) ≥ 0,∀π ∈ Π, bX ∈ BX .

Proof. Based on Lemma 9, if we construct v0D := vU , then J̃D(πz, bY,X , v
0
D, vU)

is PWL and convex in bY,X ∈ BY,X , and J̃D(π
∗, bY,X , v

0
D, vU) only depends on

v0D(y, x, ã
max(y, x)),∀x ∈ X , y ∈ Y, for all bY,X ∈ BY,X . Thus, we can con-

struct v1D from v0D to make J̃D(π
∗, bY,X , v

1
D, vU) = J̃D(π

∗, bY,X , v
0
D, vU) as long as

v1D(y, x, ã
max(y, x)) = v0D(y, x, ã

max(y, x)),∀y ∈ Y , x ∈ X .

If an employee with incentive vU and the defender with security objective vD

prefer the same optimal action for each AS and SP, we can construct v̄eqD (x, a) :=

v̄D(x, a) + δ(x) such that v̄eqD (x, a
max(x)) = v̄U(x, a

max(x)),∀x ∈ X . Then, we

have J∗
D(bX , v̄

eq
D , v̄U) = J∗

D(bX , v̄U , v̄U). Based on Lemma 5, J∗
D(bX , v̄

eq
D , v̄U) =

J∗
D(bX , v̄D, v̄U) +

∑
x∈X δ(x), which leads to (9.8). Since JD(π, bX , v̄

eq
D , v̄U) ≥

JD(πz, bX , v̄
eq
D , v̄U),∀π ∈ Π, bX ∈ BX , based on Lemma 9, Lemma 5 leads to

JD(π, bX , v̄D, v̄U) ≥ JD(πz, bX , v̄D, v̄U).

Remark 20 (Sufficiency under Aligned Action Preference). Proposition

10 shows that if an employee and the defender share the same optimal action

ãmax(y, x) ∈ A for each AS x ∈ X and SP y ∈ Y, then vD(y, x, ã
max(y, x)), ∀x ∈

X , y ∈ Y, are the minimal sufficient component of the defender’s security objective

vD to determine the defender’s optimal ASeL.

Remark 21 (Simplified ZETAR Problem). When vD = vU , the principal-agent

problem J̃D(π
∗, bY,X , vU , vU) is equivalent to a single-agent decision problem that

directly solves
∑

x∈X bX(x)maxa∈A v̄U(x, a). Thus, Proposition 10 contributes to

an efficient computation of the defender’s optimal ASeL when she shares the same

ãmax with an employee.
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Remark 22 (Full Information Disclosure to Amendable Employees). The

defender should share full information (i.e., adopt πf ∈ Πct) with amendable

employees. By synchronizing information with compliant employees, the defender

encourages amendable employees to contribute to corporate security.

For malicious employees, we first introduce a class of invariant perturbations

of the defender’s security objective that achieve the same optimal ACEL of

Jacel,∗D (bX , v̄D, v̄U) = 0 in Proposition 11. Define shorthand notation amin(y, x) ∈

argmina∈AvD(y, x, a) for all x ∈ X , y ∈ Y .

Proposition 11 (Compliance Equivalency under Security Objective Per-

turbations). We construct vipD as a copy of v̄D with the following revision: for

each xi ∈ X , i ∈ I, y ∈ Y, if amin(y, xj) ̸= amin(y, xi), then vipD(y, x
j, amin(y, xi)) ≤

vD(y, x
j, amin(y, xi)),∀j ∈ I \ {i}. If there exist ρsaD,U < 0 and ρtrD,U(y, x) ∈ R such

that vD(y, x, a) = ρsaD,UvU(y, x, a) + ρtrD,U(y, x) for all y ∈ Y , x ∈ X , a ∈ A, then

J∗
D(bX , v̄

ip
D , v̄U) = J∗

D(bX , v̄D, v̄U).

Proof. Lemma 9 shows that function J̃D(π
∗, bY,X , vD, vU) as the concave closure

of J̃D(πz, bY,X , vD, vU) is PWL and concave in bY,X ∈ BY,X if ρsaD,U < 0. Based

on the geometry, changing vD to vipD does not affect the concave closure (yet

π∗ ∈ Π can change and does not contain zero information), i.e., J∗
D(bX , v̄

ip
D , v̄U) =

J∗
D(bX , v̄D, v̄U).

Remark 22 provides the defender with the guidance of full-information disclosure

to amendable employees. Based on Lemma 9 and Proposition 10, it is natural to

conjecture that the defender should disclose zero information to malicious employees.

However, it does not hold, and we present a counterexample in Proposition 11; i.e.,

although an employee with incentive vU is malicious to both the defender with
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security objective vD and the one with vipD , zero information recommendation policy

is not the optimal policy for the defender with vipD . Thus, Proposition 11 leads to

the strategic information disclosure guideline in Remark 23. It further shows that

ZETAR can improve an insider’s compliance even if he is malicious based on the

incentive categorization in Definition 27.

Remark 23 (Strategic Information Disclosure to Malicious Insiders). The

defender should disclose information strategically rather than hide information (i.e.,

adopting πz ∈ Π) even when the employee is malicious and tends to take an action

that results in the least utility to the defender.

9.4 Feedback Design for Unknown Incentives

When the defender knows an employee’s incentive vU , we can use primal and

dual convex programs in Section 9.2 to compute the optimal recommendation policy

π∗
η for a given LoRC η ∈ R0+. In practice, however, employees’ incentives usually

remain unknown to the defender, and the defender may not be able to formulate

constraint (c) in Pη to determine the CT policy set. To this end, we provide

a feedback design approach in Section 9.4 for the defender to learn the optimal

recommendation policy based on the employees’ responses to recommendations,

as shown in Fig. 7.1. In the proposed learning algorithms, the defender needs no

prior knowledge nor trust in an employee’s incentives. The zero-trust audit of all

employees provides the defender with their behaviors to learn incentives.

A straightforward feedback learning paradigm optimizes the defender’s ASeL

JD(π, bX , v̄D, v̄U) over all recommendation policies in set Π̂ directly. For a new

employee with an unknown incentive, the defender at stage m ∈ {1, 2, · · · } recom-
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mends actions according to a recommendation policy π̂m ∈ Π̂. Then, the defender

observes the employee’s responses to these recommendations and evaluates her

ASeL. At stage m+ 1, the defender uses her ASeL evaluation to update the rec-

ommendation policy from π̂m ∈ Π̂ to π̂m+1 ∈ Π̂. The update rule depends on

bespoke optimization methods (e.g., simulated annealing, Bayesian optimization,

and reinforcement learning). The above learning paradigm is universal yet inefficient

and does not guarantee global optimality. In Algorithms 8 and 9, we design efficient

feedback learning algorithms by exploiting the ZETAR features characterized in

Section 9.3. In particular, the defender only learns the CT policy set Π̂ct and

then uses the primal convex program Pη in Section 9.2 to compute the optimal

recommendation policy π̂∗
η and the optimal ACEL Jacel,∗D . The defender can achieve

it as she knows her security objective vD to compute the objective function in Pη.

Based on Definition 23, we only need to learn all the PT policy sets Π̂k
pt, ∀k ∈ K,

to determine the CT policy set.

Following the matrix representation in Section 9.3.2, the k-th row vector π̂k ∈

Π̂k of a recommendation policy π̂ ∈ Π̂ can be equivalently represented a point,

denoted by (p1k, · · · , pIk), in the unit hypercube of dimension I, where the coordinate

pik = π̂k,i ∈ [0, 1],∀k ∈ K, i ∈ I. We refer to a point in the k-th hypercube as a k-th

PT point if it represents the k-th row vector π̂k of a k-th PT recommendation policy

π̂ ∈ Π̂k
pt. Since the k-th row π̂k of π̂ is sufficient to determine whether π̂ is PT based

on Proposition 9, learning the k-th PT set Π̂k
pt is equivalent to determining the region

formulated by the k-th PT points. We refer to the region as the k-th PT region,

which is a convex polytope in the k-th hypercube of dimension I based on Lemma

7. Since a convex polytope can be uniquely represented by its vertices, we develop

the following two algorithms to obtain the vertex representation (V-representation)
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of these regions. Due to the policy separability principle in Remark 18, we can

determine the V-representation of the k-th PT region independently for each k ∈ K.

For any point (p1k, · · · , pIk) of the k-th hypercube, we define Ω(p1k, · · · , pIk) ⊆ Π̂ as

the set of recommendation policies whose k-th row vectors satisfy π̂k = [p1k, · · · , pIk].

In Algorithm 8, we determine the whether the 2I vertices of the k-th hypercube

are k-th PT points. Let V k := {(p1k, · · · , pIk)|pik ∈ {0, 1},∀i ∈ I} be the set of

these 2I vertices. Among these 2I vertices, the k-th PT ones compose the k-th PT

cube-vertex set denoted as V k
pt ⊆ V k.

Algorithm 8: Algorithm to learn the k-th PT cube-vertex set V k
pt for a

given employee.

91 Initialize the k-th PT cube-vertex set V k
pt ← ∅;

92 foreach vertex (p1k, · · · , pIk) ∈ V k do
93 while sk has not been recommended, i.e., k′ ̸= k do
94 Recommend sk

′ ∈ S randomly based on a recommendation policy
π̂ ∈ Ω(p1k, · · · , pIk);

95 if recommendation sk induces ak ∈ A then V k
pt ← V k

pt ∪ {(p1k, · · · , pIk)};
96 Return the k-th PT cube-vertex set V k

pt;

In Algorithm 9, we determine the vertex coordinates of the k-th PT region. As

a convex polytope, the region contains a finite set of polytope-vertices defined as

V̄ k
pt. Since the k-th PT region is determined by a hyperplane in the k-th hypercube,

its vertices are on the edges, and it contains all the elements in the k-th PT

cube-vertex set V k
pt as shown in the initialization step in line 7. Each cube-vertex

(p1k, · · · , pIk) ∈ V k
pt has I neighboring cube-vertices, and the coordinate of its i-th

neighboring cube-vertex is (p1k, · · · , pi−1
k , 1−pik, pi+1

k , · · · , pIk). After we select a k-th

PT cube-vertex in line 8, we search over its I neighboring cube-vertices in line 9. If

the neighboring vertex is also k-th PT, then the points on the edge of these two

cube-vertices are both k-th PT. If the neighboring vertex is not k-th PT as shown
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in line 10, then there is an additional polytope-vertex on the edge of these two

cube-vertices. As shown in lines 11 − 17, we use the binary search to learn the

coordinate of this additional polytope-vertex and add it to the k-th polytope-vertex

set V̄ k
pt in line 18. In particular, the binary search adopts an accuracy ϵ > 0 used in

the stopping criteria shown in line 12. For the worst case where a polytope-vertex

is close to a cube-vertex, we need N ∈ Z+ iterations to reach the stop criteria, i.e.,

(1/2)N ≤ ϵ, which leads to N ≥ log2(1/ϵ). Since an I-dimensional hypercube has

2n−1n edges, Algorithm 9 is guaranteed to stop within 2n−1n log2(1/ϵ) steps.

Algorithm 9: Algorithm to learn the polytope-vertex set V̄ k
pt for a given

employee.

97 Initialize V̄ k
pt ← V k

pt, and accuracy ϵ > 0;

98 foreach k-th PT vertex (p1k, · · · , pIk) ∈ V k
pt do

99 for i← 1 to I do
100 if (p1k, · · · , pi−1

k , 1− pik, pi+1
k , · · · , pIk) /∈ V k

pt then
101 lb← 0 and ub← 1;
102 while ub− lb > ϵ do
103 Recommend s ∈ S randomly based on

π̂ ∈ Ω(p1k, · · · , pi−1
k , lb+ub

2
, pi+1

k , · · · , pIk);
104 if s = sk and pik = 0 then
105 if Employee takes action ak ∈ A then lb = lb+ub

2
else

ub = lb+ub
2

;

106 else s = sk and pik = 1
107 if Employee takes action ak ∈ A then ub = lb+ub

2
else

lb = lb+ub
2

;

108 V̄ k
pt ← V̄ k

pt ∪ {(p1k, · · · , pi−1
k , lb+ub

2
, pi+1

k , · · · , pIk)};

109 Return the k-th PT polytope-vertex set V̄ k
pt;

After we obtain the V-representation of the k-th PT policy set, i.e., V̄ k
pt, for

each k ∈ K, we can use facet enumeration methods (e.g., [11]) to obtain the

half-space representation (H-representation) that can be directly used to construct
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the constraints in the primal convex program Pη,∀η ∈ R+, in π̂ ∈ Π̂. We provide a

graphical illustration in Section 9.5.2 when I = J = K = 2.

9.5 Case Study

In this section, we illustrate the design of ZETAR in Fig. 7.1 under fully

customized recommendation policies (i.e., η = ∞) to improve compliance for

employees with different incentives.

9.5.1 Model Description

Following Fig. 9.2, we consider the binary security posture, i.e., Y = {yhr, ylr},

where yhr and ylr represent the high-risk SP and the low-risk SP, respectively.

For illustration purposes, we consider binary audit schemes, i.e., X = {xsa, xta},

where xsa and xta represent stringent audit and tolerant audit, respectively. The

employee’s behaviors are categorized into binary actions, i.e., A = {aic, aco}, where

aic and aco represent non-compliant and compliant behaviors, respectively. Since

employees have different risk attitudes toward gains and losses, we introduce a risk

perception function κγ with parameter γ := [γd, γs], where κ
γ(v) := vγd , v ≥ 0, and

κγ(v) := −γs(−v)γd , v < 0.

Employee’s Intrinsic and Extrinsic Incentives

As shown in Table 9.1, we separate an employee’s incentive vγU under κγ into

intrinsic incentive vU,I and extrinsic incentive vγU,E. The extrinsic incentive in

Table I(a) is independent of SP and captures the impact of AS on compliance.

Compliant action aco ∈ A introduces a compliance cost ccoU ∈ R+ to an employee
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vγU,E xsa xta

aic κγ(−cicD) 0
aco κγ(rcoD )− ccoU −ccoU
(a) Extrinsic incentive.

vU,I yhr ylr

aic chrU clrU
aco rhrU rlrU

(b) Intrinsic incentive.

Table 9.1: Employee’s utility vγU = vU,I + vγU,E.

regardless of the AS. For example, an employee compliant with the air-gap rule

has to spend additional time and effort to transfer data using a CD rather than a

USB. Under AS xsa ∈ X , the defender introduces a reward rcoD ∈ R+ and a penalty

cicD ∈ R+ to compliant action aco and non-compliant action aic, respectively. We

assume that the tolerant audit scheme xta introduces a reward and penalty of 0

to aco and aic, respectively. The intrinsic incentive in Table I(b) is independent of

AS and captures an employee’s internal inclination to comply under different SP

realizations. Under high-risk SP yhr (resp. low-risk SP ylr), an employee receives an

intrinsic penalty (e.g., the guilty of misconduct) denoted by chrU (resp. clrU ) to take

non-compliant action aic and an intrinsic reward (e.g., the gratification of being

compliance-seeking) denoted by rhrU (resp. rlrU ) to take compliant action aco. Based

on Lemma 4, we can choose ρtrU (y
hr, x) = −rhrU and ρtrU (y

lr, x) = −rlrU for all x ∈ X

without affecting the employee’s compliance and the optimal recommendation

policy π∗ ∈ Π. Thus, without loss of generality, we calibrate rhrU = rlrU = 0 and

chrU , c
lr
U ∈ R and characterize the following three compliance attitudes of employees

in Definition 28.

Definition 28 (Compliance Attitudes). An employee is said to be compliance-

seeking, compliance-averse, and compliance-neutral if both chrU and clrU are positive,

negative, and zero, respectively.
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Defender’s Security Objective

Table 9.2 illustrates the defender’s security objective vD. Following Section 9.1.2,

stringent audit increases employees’ pressures and reduces their working efficiency.

We capture the efficiency reduction with a cost ccaD ∈ R+. When an employee takes

a non-compliant action aic, the stringent audit xsa requires an immediate correction

from the employee to patch the induced vulnerability, which yields a reward of

rcaD ∈ R+ in Table 9.2 regardless of the SP realizations. Meanwhile, the tolerant

audit xta introduces no cost of efficiency reduction but additional risks of insider

threats captured by the cost chrD ∈ R+ in Table II(a) and clrD ∈ R+ in Table II(b)

under high-risk SP yhr and low-risk SP ylr, respectively. When an employee takes

a compliant action aco, the risk of insider threats is reduced to a minimum and is

represented as the defender’s payoff rsaD ∈ R.

vD xsa xta

aic rcaD − ccaD −chrD
aco −ccaD rsaD

(a) vD at high-risk SP.

vD xsa xta

aic rcaD − ccaD −clrD
aco −ccaD rsaD

(b) vD at low-risk SP.

Table 9.2: Defender’s utility vD at two SP states.

9.5.2 Graphical Illustration of Learning Algorithms

In this case study, the defender has no prior knowledge of an employee’s risk and

compliance attitudes. Moreover, the defender assigns no prior trust to the employees

and applies the algorithms in Section 9.4 to learn their incentives. Fig. 9.3a and

Fig. 9.3b illustrate the Algorithms under compliance-seeking and compliance-averse

employees, respectively. Since K = 2, the recommendation policy π̂ ∈ Π̂ can be

equivalently represented as a point (p1, p2) in the unit hypercube of dimension I = 2
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(i.e., a unit square), where p1 = π(sic|xsa), p2 = π(sic|xta) as shown in Section 9.4.

In the hypercube space illustrated by Fig. 9.3, the green and blue regions represent

the CT and CU policy sets, respectively.

0
0

1

1

𝑝!

𝑝"

(a) Compliance-seeking insiders.

0
0

1

1

𝑝!

𝑝"

(b) Compliance-averse insiders.

Figure 9.3: The blue upward and the red downward triangles represent the CT
and CU recommendations policies, respectively. The green (resp. blue) region
with horizontal (resp. vertical) lines represents the CT (resp. CU) policy sets,
respectively. The orange lines show the steps of the binary search in Algorithm 9.

Algorithm 8 determines whether the four vertices of the hypercube are the 1-st

PT or not, which are illustrated by the blue upward and red downward triangles,

respectively, in Fig. 9.3. Algorithm 9 further determines the additional polytope-

vertex (represented by the blue circle in Fig. 9.3) of the 1-st PT polytope in green.

From each blue triangle (line 8), if a neighboring cube-vertex (line 9) is also a blue

triangle, then no additional polytope-vertices are needed to determine the green

region (line 10). If the neighboring cube-vertex is red, then binary search is applied

to determine the additional polytope-vertex. In Fig. 9.3a (resp. Fig. 9.3b), from

the blue cube-vertex (0, 1), the red neighboring cube-vertex is (1, 0) (resp. (0, 0)),

and the binary search adopts line 15 (resp. line 17). We use the orange lines in Fig.

9.3b to illustrate the binary search process, i.e., line 11 to 17 in Algorithm 9. The
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first step of the binary search (represented by the longest orange line) evaluates

the recommendation policy represented by the point (0, 1/2), and the policy is not

the 1-st PT. Thus, we update the lower bound lb based on the else condition in

line 16 of Algorithm 9. The second step (represented by the second-longest orange

line) evaluates the recommendation policy represented by the point (0, 3/4), and

the policy is the 1-st PT. Thus, we update the upper bound ub based on the then

condition in line 14. The third step (represented by the third-longest orange line)

evaluates the recommendation policy represented by the point (0, 5/8), and the

policy is not the 1-st PT. Thus, we update the lower bound again. We repeat the

above process of binary search until ub− lb ≤ ϵ as shown in line 12, and we find

the additional polytope vertex represented by the blue circle in Fig. 9.3b. After

we obtain all the vertices of the polytope that represent the CT policy set, we can

use facet enumeration methods to obtain the H-representation and construct the

constraints of Pη concerning p1, p2 ∈ [0, 1]. For example, if the coordinate of the

blue circle in Fig. 9.3b is (0, w), w ∈ [0, 1], then the constraint is p2 ≥ (1−w)p1+w.

9.5.3 Numerical Results

We choose ψ(xsa|yhr) = 0.8 and ψ(xsa|ylr) = 0.3; i.e., the audit firm chooses a

stringent audit with probability 0.8 and 0.3 under high-risk SP yhr and low-risk SP

ylr, respectively.

Compliance Threshold

Following Section 9.1.4, we investigate the initial compliance of an employee with

three compliance attitudes in Definition 28 and different risk perception parameters
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γ. Define tze ∈ R as the zero of the function

f(bY (y
hr)) :=

∑
y∈Y

bY (y)
∑
x∈Y

ψ(x|y)[vU(y, x, a1)− vU(y, x, a2)].

Let tbt := max {min {tze, 1}, 0} be the belief threshold of an employee. For binary

actions, an insider adopts a threshold policy where a0 = aco if bY (y
hr) ≥ tbt and

a0 = aic if bY (y
hr) < tbt. Fig. 9.4 illustrates the belief threshold versus the non-

compliance penalty cicD ∈ R+. The plots show that increasing penalty cicD can make

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

(a) Insiders with three compliance attitudes
under γd = γs = 1.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

(b) Compliance-neutral insiders under dis-
torted risk perceptions.

Figure 9.4: Insiders’ belief thresholds tbt ∈ [0, 1] to compliant actions versus the
value of non-compliance penalty cicD ∈ R+.

insiders more likely to take compliant action aco (i.e., a smaller belief threshold).

Fixing the penalty value, compliance-averse (resp. compliance-seeking) insiders

are the least (resp. most) likely to comply, i.e., the largest (resp. smallest) belief

thresholds, among insiders with three compliance attitudes, as shown in Fig. 9.4a.

In Fig. 9.4b, a larger γs in red represents a higher degree of loss aversion, which

makes an insider more likely to comply. A small γd in blue enhances the effect

of diminishing sensitivity, which makes a large penalty less effective to induce
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compliant behaviors.

Impacts of Recommendation Policies

Here, we specify b(yhr) = 0.2 and cicD = 10 to inspect the impact of recommenda-

tion policies on an employee’s behaviors. Fig. 9.5 illustrates the impact of different

recommendation policies π̂ ∈ Π̂ on the ACEL under insiders with two compliance

attitudes, which corroborate the PWL property in Lemma 8. Different compli-

ance attitudes only affect the policy set partition denoted by Ckl ,∀l, k ∈ {ic, co},

following Section 9.3.2. In Fig. 9.5a, the policy sets (also illustrated in Fig. 9.3a)

illustrated by the contour plots on the xy-plane are sets Cic,co, Cco,co, and Cco,ic,

respectively, from left to right. In Fig. 9.5b, the policy sets (also illustrated in Fig.

9.3b) illustrated by the contour plots on the xy-plane are sets Cic,co, Cic,ic, and Cco,ic,

respectively, from left to right. These policy sets are convex as shown in Lemma 7.

The sets Cic,co and Cco,ic are CT and CU, respectively.

Fig. 9.5 illustrates that an improper recommendation policy may lead to a

negative ACEL, but the optimal ACEL represented by the red star is always non-

negative, as shown in Section 9.1.4. For compliance-seeking insiders, the defender’s

ISeL JD(πz, bX , v̄D, v̄U) and the optimal ASeL JD(π
∗, bX , v̄D, v̄U) are both 1.8. For

compliance-averse insiders, the defender’s ISeL JD(πz, bX , v̄D, v̄U) and the optimal

ASeL JD(π
∗, bX , v̄D, v̄U) are −0.64 and 0.73, respectively.

Remark 24 (Adaptivity and Structural Improvement). The above results

show that ZETAR can well adapt to insiders with different compliance attitudes

and achieve a structural improvement of compliance (from a negative ISeL to a

positive ASeL) for compliance-averse insiders.
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(a) Compliance-seeking insiders. (b) Compliance-averse insiders.

Figure 9.5: ACEL JacelD (π, bX , v̄D, v̄U) versus π(sic|xsa) ∈ [0, 1] in x-axis and
π(sic|xta) ∈ [0, 1] in y-axis when γd = γs = 1.

The Optimal ACEL

We illustrate the impacts of the optimal recommendation policy π∗ on the

defender’s and an employee’s utilities under different likelihoods of the high-risk

SP In Fig. 9.6. Following Section 9.5.3, the belief threshold tbt ∈ [0, 1], represented

by the vertical dashed black lines, divides the entire prior belief region into the

compliant region bY (y
hr) ∈ [tbt, 1] on the right and non-compliant region bY (y

hr) ∈

[0, tbt) on the left, where an employee takes aco and aic, respectively. Under the

compliant regions, an employee tends to take compliant actions, resulting in zero

ACEL and zero-information recommendation policy π∗(sic|xsa) = π∗(sic|xta) = 0.

Under the non-compliant regions where an employee tends not to comply, the

optimal recommendation policy induces positive ACEL. The defender’s ISeL in

compliant regions is larger than the one in non-compliant regions as shown by the

blue lines in the two regions. As an insider changes from being compliance-averse

to compliance-seeking, his ASaL in black decreases in the non-compliant region, the

belief threshold reduces (also illustrated in Fig. 9.4), and the peak of the optimal
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Figure 9.6: Utilities, the optimal ACEl, and the optimal recommendation policies in
the first, second, and third rows, respectively, versus prior statistic bY (y

hr) ∈ [0, 1]
concerning insiders with three compliance attitudes under γs = γd = 1. The
defender’s ISeL JD(πz, bX , v̄D, v̄U), her optimal ASeL JD(π

∗, bX , v̄D, v̄U), and an
employee’s optimal ASaL JU(π

∗, bX , v̄U) are in blue, red, and black, respectively.
Two elements of the optimal recommendation policy, π∗(sic|xsa) and π∗(sic|xta),
are illustrated in orange and pink, respectively. The vertical dashed black lines
represent the belief threshold tbt ∈ [0, 1].

ACEL increases. The orange and pink lines illustrate that a large ACEL results

from a more distinguished recommendation policy, i.e., a larger difference between

π∗(sic|xsa) and π∗(sic|xta). Moreover, the defender can recommend compliant

actions, i.e., sco, with a high probability as an insider changes from compliance-

averse to compliance-seeking. Despite the linearity of the defender’s ISeL in blue,

her optimal ASeL in red and the optimal ACEL in brown are nonlinear in bY , as

shown in Remark 19. In Fig. 9.6, we further observe that an employee’s ISaL

coincides with his optimal ASaL, both represented by the black solid lines for all

bY (y
hr) ∈ [0, 1], which corroborates Proposition 5.
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Chapter 10

Duplicity Game: Integrated

Mechanism Design for Insider

Threat Mitigation

Cyber deception technologies, e.g., honeypots, can be used to mitigate insider

threats. The design of successful defensive deception relies on a formal approach

that quantifies the strategic interactions of the three classes of players, including

a defender, users, and adversaries. A useful framework to design cyber deception

mechanisms needs to capture three main features. First, the defender, the users, and

the adversaries are strategic players with clear but imperfectly aligned objectives

or incentives. Second, the defender cannot distinguish adversaries from the normal

users. For example, the defender does not know who is an adversarial insider

when designing a security policy for the network. Apart from this, the defender

cannot distinguish the type of users in the network concerning their objectives,

resources, and trust values. Third, a sophisticated adversary behaves stealthily and
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intelligently, e.g., by conducting successful reconnaissance or acting like a normal

user to gain access or trust.

In this work, we propose Duplicity Games (DG) as a mechanism design frame-

work for defensive deception to elicit desirable security outcomes when a defender,

normal users, and adversaries interact to attain their individual objectives. A

DG is a two-stage game between a defender and a normal/adversarial user with

two-sided asymmetric information. The defender, or the defensive deceiver, has

private information of the system state. The user has a private type, which char-

acterizes the user’s objectives, trustworthiness, and attributes, e.g., normal or

adversarial. At the first stage of the game, the defender designs three composable

components of the mechanism, i.e., a generator, an incentive modulator, and a

trust manipulator. The generator is a mechanism that stochastically generates

signals or security policies based on the system’s private information and system

constraints. The modulator reshapes the user’s incentive by creating constrained

utility transfers between two players. The manipulator distorts the user’s prior

belief over the unknowns. These three components are together referred to as

the GMM mechanism. After the mechanism is designed and implemented, the

user observes the security policies, updates his trust through the Bayesian rule,

and then responds to the GMM mechanism by taking an action that serves his

objective. The optimal design of the GMM mechanisms anticipates the behaviors

of different types of users under a given set of security policies and elicits desirable

security behaviors. The GMM mechanisms we introduce here represent a class

of multi-dimensional security mechanisms that control the security policies, the

(dis)incentives, and the digital footprints (e.g., feature patterns and configurations

of honeypots and normal servers).
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10.1 Duplicity Game Model

We present a motivating example of insider threat mitigation in Section 10.1.1.

Then, we present the structure of DG in Section 10.1.2 and the timeline of the

GMM mechanism design in Section 10.1.3, respectively. Finally, we illustrate the

relation of the DG-GMM mechanism to the Bayesian persuasion framework in

Section 10.1.4.

10.1.1 Motivating Example of Insider Threat Mitigation

Insider threats have been a long-standing problem in cybersecurity. Due to

their information, privilege, and resource advantages over external attackers, insider

threats can circumvent classical defense techniques such as intrusion prevention and

detection systems. As a result, defensive deception methods, such as honeypots,

have been used for insider threat detection and mitigation (see e.g., [200, 224]).

Theoretically, honeypots are assumed to achieve a zero false-positive rate and low

false-negative rate by generating decoys accessed only by attackers. This assumption

may not hold for insider threats. On the one hand, non-adversarial insiders who are

curious or error-prone can access honeypots, which intensifies alert fatigue. On the

other hand, adversarial insiders can access the internal information and fingerprint

honeypots [35, 148] using features such as open ports, protocols, and error responses.

To address these two challenges, we need to configure the honeypot and the normal

servers strategically. The configuration needs to elicit desirable behaviors from

both adversarial and non-adversarial insiders even though they have the same

insider information. This work introduces three configuration methods that can

be used independently or jointly; i.e., configure the feature pattern adaptively
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(see Example 4 for details), prolong or shorten the authentication time to change

insiders’ incentives, and misreport the percentage of honeypots to make use of the

insiders’ trust.

Categorization of Insiders’ Motives

An insider’s motive can be roughly classified into seven subcategories based on

the VERIS Community Database (VCDB) [217]. We divide these subcategories of

motives into three classes of motives: selfish, adversarial, and unintentional. They

make up 12%, 26%, and 62%, respectively. The class of selfish motives includes

fun, convenience, fear, or ideology. The adversarial motives include espionage,

financial gain, or grudge. The category of unintentional motives refers to the

negligent insiders who take no notice of the deceptive configuration and make

habitual decisions. The incentives of unintentional insiders are often uncontrollable

through incentives. Our incentive design mechanism here focuses on the class of

the selfish insiders, who seek self-interest, and the adversarial ones, who seek to

sabotage the organization.

Corporate Network with Insiders and Honeypots

Fig. 10.1 illustrates a corporate network with honeypots (denoted by xH) and

normal servers (denoted by xN) as nodes. The Security Operation Center (SOC),

or the defender, can privately determine the percentage, the location, and the

configuration of honeypots in the corporate network. The goal of the defender

is to elicit desirable behaviors from the selfish insiders (denoted by θg) and the

adversarial insiders (denoted by θb). Both types of insiders can take harmful actions

intentionally yet for different reasons or motives. For example, selfish insiders may
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Figure 10.1: An example corporate network consists of normal servers and honeypots.
The light blue background shows the region of the internal network.

violate security rules and abuse their privileges to save time and effort in finishing

their tasks. They do not seek to sabotage the organization as the adversarial ones

do. For each node in the corporate network, an insider can either access it (denoted

by action aAC) or not (denoted by action aDO).
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Figure 10.2: Timeline for the GMM mechanism design.

10.1.2 Game Elements

The DG consists of four elements; i.e., the basic game (X ,Θ,A, vD, vU , b ∈ ∆X ),

the belief statistics (bD(·|x) ∈ ∆Θ, bU(·|θ) ∈ ∆X ), the information structure

(S, π ∈ Π), and the utility transfer (γ, c ∈ C).
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Basic Game

The DG consists of two players i ∈ {D,U}, a defender i = D (hereafter she)

and a user i = U (hereafter he). Define the finite sets of N states, M types, and K

actions as X := {x1, · · · , xN}, Θ := {θ1, · · · , θM}, and A := {aDO, a1, · · · , aK−1},

respectively. Action aDO ∈ A is the drop-out action. It indicates that the user

chooses not to participate in the game and takes no action.

The game has two-sided asymmetric information. The defender can privately

observe or know the realization of the state x ∈ X from a probability distribution

b ∈ ∆X . For example, in the corporate network in Fig. 10.1, b(xH) and b(xN)

represent the percentages of honeypots and normal servers, respectively. The user

does not know each node’s state, i.e., whether a honeypot or a normal server. The

user has a private type θ ∈ Θ that represents his motive, capacity, rationality, or

risk perception. The user’s behaviors are abstracted as an action a ∈ A. The

defender can observe the user’s action by monitoring and logging but she cannot

observe the user’s type; e.g., whether the user accesses the confidential data by

accident (i.e., the unintentional type), out of self-interest (i.e., the selfish type), or

for adversarial purposes (i.e., the adversarial type). The utility functions of the

defender and the user, denoted by vi : X ×Θ×A 7→ R, i ∈ {D,U}, depend on the

state, type, and action.

Belief Statistics

The user’s initial belief of the state under type θ ∈ Θ is bU (·|θ) ∈ ∆X . Since the

user does not know the true state distribution b(·), his perceived state distribution

bU can be different from the true one. The defender’s belief of the user’s type

at state x ∈ X is bD(·|x) ∈ ∆Θ. In the game, the defender can design b and bU
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through a virtual trust manipulator. For example, the defender can determine the

percentage of honeypots to be b(xH) but report the percentage as bU(x
H |θ) to the

type-θ users who determine the percentage of honeypots based on the report without

additional information. The trust manipulator is overt if the user’s perceived state

distribution equals the true one for all types, i.e., bU(x|θ) = b(x),∀x ∈ X ,∀θ ∈ Θ.

Otherwise, the trust manipulator is said to be covert as the defender stealthily

manipulates users’ initial beliefs.

Information Structure

The information structure consists of a finite set of signals S and a generator

π ∈ Π : X 7→ ∆S. With a slight abuse of notation, we use π(s|x) to represent the

probability of signal s ∈ S at state x ∈ X . In Example 4 below, the signal can be

interpreted as the feature patterns, including protocols, ports, the response time,

and the error response.

Example 4 (Dynamic Feature Pattern Configurations). To defend against

honeypot fingerprinting, dynamic [195] and adaptive [88, 218] configurations have

been adopted in honeypots. The SOC can also configure normal servers and disguise

them as honeypots by generating honeypot-related features [183].

Suppose that there are J features that both honeypots and normal servers can

generate. Denote the value of feature j ∈ {1, · · · , J} by ej ∈ E j, where E j is a finite

set. For example, the error response feature can take a binary value ej ∈ E j = {0, 1}

based on whether an abnormal error message appears under intentionally erroneous

requests [148]. We refer to the tuple of J features as the feature pattern denoted by

s = (e1, · · · , eJ) ∈ S :=
∏J

j=1 E j. Then, the feature pattern of each node changes

dynamically accordingly to the generator π ∈ Π; i.e., a honeypot and a normal server



329

generate feature pattern s ∈ S with frequency π(s|xH) and π(s|xN), respectively.

Insiders can use these feature patterns as the digital footprint to fingerprint a node’s

state, either a honeypot or a normal server. The DG still applies to the case when

the SOC cannot configure normal server. In that case, the decision variable π(·|xN )

will be taken as fixed.

Utility Transfer

The utility transfer consists of a scaling factor γ ∈ [0,∞) and an incentive

modulator c ∈ C : A 7→ R which modifies the utilities of the defender and the

user to be v̂D(x, θ, a) = vD(x, θ, a) + γc(a) and v̂U(x, θ, a) = vU(x, θ, a) − c(a),

respectively, for all x ∈ X , θ ∈ Θ, a ∈ A. Besides monetary (dis)incentives,

c(a) can also represent the additional cost or benefit of taking action a ∈ A. For

example, it captures the authentication time to access a normal server or a honeypot.

The defender can determine the authentication time to incentivize the user (i.e.,

c(a) < 0) or disincentivize him (i.e., c(a) > 0) to take the action a ∈ A. Although

the modulator c is type-independent, its influence on users is type-dependent.

For example, a curiosity-driven insider may lose interest and give up accessing

confidential data under a long authentication delay or a convoluted multi-factor

authentication process. However, an adversarial insider can be persistent if the data

access leads to a comparably high financial return. Definition 29 defines a special

utility structure where one action ak ∈ A yields the highest benefit for the user of

type θ ∈ Θ regardless of the state values. For a user with a dominant action, a

generator does not influence the user’s belief and action.

Definition 29. An action ak ∈ A dominates (resp. is dominated) under type θ ∈ Θ

if v̂U(x, θ, ak) ≥ (resp. ≤)v̂U(x, θ, a),∀a ∈ A,∀x ∈ X .
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10.1.3 Timeline for the GMM Mechanism Design

As shown in Fig. 10.2, the GMM mechanism design in DGs has two stages to

achieve the intended outcomes of the defensive deception. At stage one, the defender

designs (resp. observes) the generator π ∈ Π, the manipulator b ∈ ∆X , bU(·|θ) ∈

∆X ,∀θ ∈ Θ, and the modulator c ∈ C if these components can (resp. cannot) be

designed. Based on the realized state value x, the generator generates a signal s ∈ S

with probability π(s|x). In the insider threat example, the defender configures

the feature pattern s with probability π(s|xH) (resp. π(s|xN)) when the node is a

honeypot (resp. normal server). At stage two, the user of type θ ∈ Θ receives the

signal s ∈ S and obtains his posterior belief bπU of the state using the Bayesian rule,

i.e.,

bπU(x|θ, s) :=
bU(x|θ)π(s|x)∑

x′∈X bU(x
′|θ)π(s|x′) ,∀x ∈ X . (10.1)

Then, the user of type θ ∈ Θ takes a best-response action denoted by a∗θ(b
π
U) ∈ A

to maximize his expected posterior utility under the posterior belief bπU , i.e.,

a∗θ(b
π
U) ∈ argmax

a∈A
Ex∼bπU (·|θ,s)[v̂U(x, θ, a)]. (10.2)

The utility of the users is a way to capture the user behavior a∗θ. For example,

a∗θ can represent how an insider routinely follows the security rules or abuses his

privilege for personal gain. The defender’s goal is to determine the optimal GMM

mechanism to proactively prevent undesirable user behaviors and improve the

security posture. This objective is achieved by maximizing her expected posterior

utility v̄D that captures the outcomes of the user’s behaviors, i.e., v̄D(π, b, bU , c) :=

Ex∼b(·)Es∼π(·|x)Eθ∼bD(·|x)[v̂D(x, θ, a
∗
θ(b

π
U ))]. Different generators provide the user with

different amounts of information about the state. Two extreme cases are defined
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in Definition 30. A signal from a zero-information generator denoted by π0 ∈ Π

does not change the user’s belief, i.e., bπ
0

U (x|θ, s) = bU (x|θ),∀s ∈ S, ∀x ∈ X ,∀θ ∈ Θ.

Meanwhile, a signal from a full-information generator deterministically reveals the

state to the user.

Definition 30 (Zero- and Full-Information Generators). A generator π ∈ Π

contains zero information if π(s|x) = π(s|x′),∀s ∈ S,∀x, x′ ∈ X . It contains full

information if the mapping π : X 7→ S is injective.

Readers can refer to Section 10.4 for a case study of insider threat that illustrates

the two-stage GMM design.

10.1.4 Relation to Bayesian Persuasion

DG-GMM mechanism design is a generalized class of the Bayesian persuasion

framework [109] with heterogeneous receivers, two-sided asymmetric information,

and a joint design of information, incentive, and trust. If the user’s type set Θ is a

singleton and the defender cannot design the modulator and the manipulator, then

DG-GMM degenerates to the Bayesian persuasion framework. The consolidation

of the modulator and the manipulator into the mechanism gives the defender a

higher degree of freedom to improve the performance in the deception design. It

yet increases the computation complexity as illustrated in Section 10.2 and causes

the violation of Bayesian plausibility in Section 10.1.4.

Violation of Bayesian Plausibility

The concept of Bayesian plausibility has been defined in [109], which states that

the expected posterior belief should equal the prior belief for all π ∈ Π. However,
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we show in Lemma 10 that the trust manipulator can violate Bayesian plausibility

when the user of type θ ∈ Θ holds a different initial belief as the defender, i.e.,

∃x ∈ X : b(x) ̸= bU(x|θ).

Lemma 10 (Bayesian Plausibility). For all π ∈ Π and θ ∈ Θ, the user’s expected

posterior probability beU (x|θ) :=
∑

s∈S
∑

x′∈X b(x
′)π(s|x′)bπU (x|θ, s) is always a valid

probability measure yet is Bayesian plausible if and only if the defender and the

user have the same initial belief b(x) = bU(x|θ), ∀x ∈ X .

Proof. A generator π ∈ Π generates s with probability
∑

x′∈X b(x
′)π(s|x′). After

receiving s, the user of type θ obtains his posterior belief bπU(x|θ, s) according to

(10.1). Thus, the expected posterior probability
∑

s∈S
∑

x′∈X b(x
′)π(s|x′)bπU(x|θ, s)

is a valid probability measure over x. The Bayesian plausibility requires beU (x|θ) =∑
s∈S

∑
x′∈X b(x′)π(s|x′)∑

x′∈X bU (x′|θ)π(s|x′)π(s|x)bU(x|θ) = bU(x|θ),∀x ∈ X , under all π ∈ Π, which is

equivalent to the condition b(x) = bU(x|θ),∀x ∈ X .

10.2 GMM Designs by Mathematical Program-

ming

In Section 10.2, we provide an integrated design of the GMM mechanism by

mathematical programming. We first elaborate on the relationship between signals

and the user’s best-response action to introduce the notion of security policies. Each

signal s from generator π ∈ Π updates the user’s belief via (10.1) and consequently

induces the user of type θ ∈ Θ to take the best-response action a∗θ(b
π
U) ∈ A.

Regardless of the signal set S and the generator π, these signals can elicit at most

|A||Θ| = KM distinct outcomes; i.e., the user’s best-response action a∗θ(b
π
U) is a

l if
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his type is θl for all permutations of θl ∈ Θ, al ∈ A. We can aggregate signals in S

based on their elicited actions and divide the entire signal set S into KM mutually

exclusive subsets denoted as S{a1,a2,··· ,aM}, a
l ∈ A, l ∈ {1, 2, ...,M}. Then, the

signals in subset S{a1,a2,··· ,aM} can be interpreted as the security policy that requires

the user of type θl to take action al for all l ∈ {1, 2, · · · ,M}. Without loss of

generality, we use one aggregated signal s{a1,a2,··· ,aM} to represent the signals in the

set S{a1,a2,··· ,aM}. Then, the total number of signals are |S| = KM , and π(·|x) ∈ ∆S

is a probability distribution over KM security policies for each state x ∈ X .

The set Π naturally contains two feasibility constraints, i.e., π(s{a1,··· ,aM}|x) ≥ 0,

∀s{a1,··· ,aM} ∈ S,∀x ∈ X , and
∑

s{a1,··· ,aM}∈S
π(s{a1,··· ,aM}|x) = 1,∀x ∈ X . In

Example 5 below, we continue to use the insider threat scenario in Section 10.1.1

to illustrate how we obtain security policies based on the feature patterns.

Example 5 (Security Policies based on Feature Patterns). For binary action

set A = {aDO, aAC} and binary type set Θ = {θg, θb}, the feature patterns in

Example 4 can be aggregated into KM = 4 categories of security policies. They are

s{aDO,aDO} (i.e., both types of insiders choose aDO), s{aDO,aAC} (i.e., selfish insiders

choose aAC while adversarial insiders choose aDO), s{aAC ,aDO} (i.e., adversarial

insiders choose aAC while selfish insiders choose aDO), and s{aAC ,aAC} (i.e., both

types of insiders choose aAC).

We can rewrite (10.2) as
∑

x∈X b
π
U (x|θl, s{a1,··· ,aM})[v̂U (x, θl, a

l)− v̂U (x, θl, ah)] ≥

0, ∀s{a1,··· ,aM} ∈ S,∀ah ∈ A,∀θl ∈ Θ, concerning security policies. The defender’s ex-

pected posterior utility v̄D(π, b, bU , c) can be equivalently represented as
∑

x∈X b(x)∑
s{a1,··· ,aM}∈S

π(s{a1,··· ,aM}|x)
∑

θl∈Θ bD(θl|x)v̂D(x, θl, al). Replacing bπU with (10.1),

we formulate the GMM mechanism design as the following constrained optimization
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COP.

(COP): r := sup
π∈Π,b,bU ,c∈C

v̄D(π, b, bU , c)

(IC)
∑
x∈X

[v̂U(x, θl, a
l)− v̂U(x, θl, ah)]π(s{a1,··· ,aM}|x)

bU(x|θl) ≥ 0,∀s{a1,··· ,aM} ∈ S, ∀ah ∈ A,∀θl ∈ Θ.

(MF) c(aDO) = 0.

The decision variables π, b, bU , and c are vectors of dimension N×KM , N , N×M ,

and K, respectively. The feasibility constraint contained in Π and the Incentive-

Compatible (IC) constraint induce N ×KM + 1 and KM ×K ×M constraints,

respectively.

Denote b∗, b∗U , π
∗, c∗ as the maximizers of COP and r as the value of the objective

function under the maximizers. The (IC) constraint requires all security policies

from the generator to be compatible with the user’s incentives; i.e., the user receives

the maximum benefit on average when taking the action required by the security

policy. A security policy cannot be generated if it is not incentive-compatible.

Based on the (IC) constraint, we define the credible and the optimal generators in

Definition 31 and enforceable security policies in Definition 32.

Definition 31 (Credible and Optimal Generators). A generator π ∈ Π

is called credible if it satisfies (IC). A credible generator is called optimal if it

maximizes COP.

Definition 32 (Enforceable Security Policies). For a given generator π ∈ Π,

a security policy s{a1,··· ,aM} ∈ S is enforceable (resp. unenforceable) if ∃x ∈ X such

that π(s{a1,··· ,aM}|x) ̸= 0 (resp. π(s{a1,··· ,aM}|x) = 0,∀x ∈ X ).
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The Modulation-Feasible (MF) constraint results from the fact that the defender

cannot modulate the user’s incentive if the user does not participate in the game.

Although the co-domain of c is R, Theorem 6 shows that the optimal utility transfer

c∗ ∈ C has to remain bounded due to the user’s potential threat of taking the drop-

out action aDO. We define the following shorthand notations for Theorem 6, i.e.,

c(θ, a) := maxx∈X vU (x, θ, a)−vU (x, θ, aDO), r̄ = maxx∈X Eθ∼bD [maxa∈A vD(θ, x, a)]

and r = minx∈X Eθ∼bD [mina∈A vD(θ, x, a)].

Theorem 6 (Feasibility and Design Capacity). COP is feasible and bounded.

The upper bound of r is max{maxx∈X Eθ∼bD [vD(x, θ, aDO)], r̄+γmaxa∈A,θ∈Θ c(θ, a)}

and the lower bound is r.

Proof. We first prove the feasibility. Define shorthand notation

a∗,l := argmax
a∈A

Ex∼bU (x|θl)[vU(x, θl, a)− c(a)], ∀l ∈ {1, · · · ,M}

as the optimal action of the user of type θl ∈ Θ under any feasible prior belief

bU(x|θl) and modulator c ∈ C. Then, the zero-information generator, denoted as

π0(s(a∗,1,··· ,a∗,M )|x) = 1, ∀x ∈ X , is a feasible solution to COP.

We prove the boundedness in two steps. We first consider c(a) = 0,∀a ∈ A.

Since all decision variables b, π, bD are probability measures, we obtain the upper

bound r̄ and the low bound r of r. In the second step, we turn the modulator c

into a free decision variable with the (MF) constraint. Since c(a) = 0,∀a ∈ A, is a

feasible solution, the maximum value of COP does not increase. Thus, the value

of r is bounded. To show that the value of r̄ is bounded in step two, we focus on

action aj ∈ A, if it exists, that results in a non-negative maximizer c∗(aj). On the

one hand, if c(θ, aj) ≤ 0,∀θ ∈ Θ, then the drop-out action aDO dominates for all
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types and r = maxb∈∆X Ex∼bEθ∼bD [vD(x, θ, aDO)] ≤ maxx∈X Eθ∼bD [vD(x, θ, aDO)].

On the other hand, if there exists a type θ ∈ Θ where c(θ, aj) > 0 and c∗(aj) ≥

c(θ, aj), then the user of type θ will choose the drop-out action aDO. Thus,

r ≤ γmaxa∈A,θ∈Θ c(θ, a).

The upper and lower bounds provide the design capacity of the GMMmechanism.

COP is unbounded without the (MF) constraint as the defender can arbitrarily

increase (resp. decrease) the value of r by letting c(a) be an arbitrarily large

(resp. small) constant. If c(a) = 0,∀a ∈ A, we can transform COP into a

Linear Program (LP) by introducing the following variables, i.e., η(s{a1,··· ,aM}, x) :=

b(x)π(s{a1,··· ,aM}|x) and ηU(θ, s{a1,··· ,aM}, x) := bU(x|θ)π(s{a1,··· ,aM}|x).

These new variables take non-negative values and satisfy the following con-

straints, i.e.,
∑

x∈X ,s{a1,··· ,aM}∈S
η = 1 and

∑
x∈X ,s{a1,··· ,aM}∈S

ηU = 1,∀θ ∈ Θ. Af-

ter we have solved the LP, we obtain b(x) =
∑

s{a1,··· ,aM}∈S
η(s{a1,··· ,aM}, x) and

bU(x|θ) =
∑

s{a1,··· ,aM}∈S
ηU(θ, s{a1,··· ,aM}, x) for all x ∈ X , θ ∈ Θ.

10.3 Graphical Analysis of GMM Designs

In Section 10.2, we aggregate signals into KM equivalent security policies to

relate them with the user’s best-response action. In Section 10.3, we directly analyze

the posterior belief and the action as each signal uniquely determines a posterior

belief. Throughout Section 10.3, we focus on the overt trust manipulator defined

in Section 10.1.2, i.e., bU(x|θ) = b(x),∀x ∈ X , θ ∈ Θ. Define p0j := b(xj),∀j ∈

{1, · · · , N}, and the common prior belief in the vector form as p0 := [p01, · · · , p0N ].

Since different types of users have the same initial beliefs, the posterior beliefs

are also the same. Denote pj ∈ [0, 1] as the user’s posterior belief under state
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xj ∈ X ,∀j ∈ {1, · · · , N}. Define the belief vector p := [p1, · · · , pN ] and the

utility vector v̂U(θ, a) := [v̂U(x1, θ, a), · · · , v̂U(xN , θ, a)]′ where notation ′ denotes

the matrix transpose. For both the prior and the posterior belief vectors, the total

probability is one, i.e.,
∑N

n=1 p
0
n = 1 and

∑N
n=1 pn = 1.

Section 10.3.1 provides the optimal generator design under the benchmark case

where the defender can neither modify the user’s incentive, i.e., c(a) = 0,∀a ∈ A,

nor manipulate their initial beliefs. Section 10.3.2 incorporates the modulator and

the manipulator into the GMM mechanism design.

10.3.1 Generator Design under the Benchmark Case

We rewrite (10.2) in its matrix form as a∗θ(p) ∈ argmaxa∈A pv̂U(θ, a). Since

pv̂U(θ, a) is an affine function of p for any action a ∈ A, maximizing pv̂U(θ, a)

over a in the convex domain p ∈ ∆X results in a Piece-Wise Linear and Convex

(PWLC) function as summarized in Proposition 12. The proof of convexity follows

directly from the fact that a∗θ(p) is the point-wise maximum of a group of affine

functions over p.

Proposition 12. The user’s expected posterior utility under a give type θ ∈ Θ, i.e.,

maxa∈A pv̂U(θ, a), is continuously PWLC with respect to vector p ∈ ∆X .

We visualize maxa∈A pv̂U(θ, a) under a binary state set in Fig. 10.3. When

N = 2, we can use the first element p1 as the x-axis to uniquely represent the

posterior belief p ∈ ∆X . The four belief thresholds, i.e., 0, tθ1, t
θ
2, and 1, divide the

entire belief region of p1 ∈ [0, 1] into three sub-regions. The user of type θ takes

action aK−1 if his posterior belief belongs to the sub-region p1 ∈ [0, tθ1], action a1

if p1 ∈ [tθ1, t
θ
2], and action aDO if p1 ∈ [tθ2, 1]. Although action a2 is not dominated
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under type θ based on Definition 29, it is inactive over p1 ∈ [0, 1].
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Figure 10.3: The expected posterior utility of the user of type θ ∈ Θ versus posterior
belief p1 ∈ [0, 1]. The solid lines represent the utility maxa∈A

∑N
n=1 pnv̂U(xn, θ, a)

as a PWLC function of p1.

For a high-dimensional state space N ≥ 3, the user’s entire belief region ∆X

is an N − 2 simplex. For each type θ, we can divide the entire belief region into

at most K sub-regions Cθai := {p ≥ 0|p′[v̂U(θ, ai)− v̂U(θ, aj)] ≥ 0,∀aj ∈ A. Then,

∆X = ∪i∈{DO,1,··· ,K−1}Cθai . If the posterior belief falls into the sub-region Cθai , the

user of type θ takes ai as his best-response action. Take Fig. 10.3 as an example,

CθaDO
is the interval [tθ2, 1] and Cθa2 is the empty set. As a direct result of the definition

of convexity, sets Cθai ,∀i ∈ {DO, 1, · · · , K − 1}, are convex and connected.

We have illustrated the belief region partition under any given type θ ∈ Θ.

Since the user has M possible types, we further divide the belief region into finer

sub-regions. Let C{a1,··· ,aM} := Cθ1a1 ∩ · · · ∩ C
θM
aM

be the sub-region of the posterior

belief under which the best-response action of the user of type θl,∀l ∈ {1, · · · ,M},

is action al ∈ A. In particular, define Cl,hi,j := Cθlai ∩ Cθhaj as the belief region where

the user takes action ai when his type is θl and aj when his type is θh for all

i, j ∈ {DO, 1, · · · , K − 1} and l ≠ h,∀l, h ∈ {1, · · · ,M}. Based on the definition,

Cl,hi,j ≡ Ch,lj,i . Since the intersection of any collection of convex sets is convex,
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C{a1,··· ,aM} and Cl,hi,j are all convex and connected sets, i.e., convex polytopes. We

visualize these convex polytopes in Fig. 10.4 when there are two types M = 2,

two actions K = 2, and three states N = 3. The belief region ∆X is an N − 2

simplex, i.e., an equilateral triangle. Under type θ1, the belief region is divided into

Cθ1aDO
= C{aDO,a1}∪C{aDO,aDO} and Cθ1a1 = C{a1,a1}∪C{a1,aDO}. Under type θ2, the belief

region is divided into Cθ2aDO
= C{aDO,aDO} ∪ C{a1,aDO} and Cθ2a1 = C{a1,a1} ∪ C{aDO,a1}.

Since there are only two types, we have C1,21,DO = C{a1,aDO}.
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Figure 10.4: Illustration of KM = 4 convex polytopes C{a1,a1}, C{aDO,a1}, C{aDO,aDO},
and C{a1,aDO} in blue (horizontal stripes), green (downward diagonal stripes), grey
(vertical stripes), and orange (upward diagonal stripes), respectively. Each point in
the equilateral triangle represents a belief p = [p1, p2, p3] ∈ ∆X .

Among KM possible sets C{a1,··· ,aM},∀al ∈ A, l ∈ {1, · · · ,M}, most of them are

empty. Take N = 2 as an example, K actions can generate at most K(K − 1)/2

belief thresholds over p1 ∈ (0, 1) for each type as shown in Fig. 10.3. Thus, the



340

whole belief region p1 ∈ [0, 1] can be divided into at most MK(K−1)/2+1 regions

under M types. When N = 3, the belief region is an equilateral triangle as shown

in Fig. 10.4. For each given type, K actions represent K planes. Projecting these

planes vertically onto the equilateral triangle, we obtain at most K(K − 1)/2 lines.

Thus, these lines under M types can divide the equilateral triangle into at most

MK(K−1)
2

(MK(K−1)
2

+ 1)/2 belief regions. The results can be extended to N > 3 as

a variant of the hyperplane arrangement problem [162]. We summarize the above

result in Proposition 13; i.e., the number of belief region partitions grows in a

polynomial rate denoted by χ(K,M,N) rather than the exponential rate of KM ,

where χ(K,M,N) is a polynomial function of K,M for each N .

Proposition 13 (Upper Limit of Enforceable Policies). For any credible

generator, at most χ(K,M,N) security policies are enforceable.

Remark 25. Solely dependent on the user’s utility vector v̂U , the belief partition

∆X = ∪a1∈A,··· ,aM∈AC{a1,··· ,aM} characterizes the user’s incentive under different

types. If C{a1,··· ,aM} = ∅, then the security policies that require the user of type

θl to take action al for any l ∈ {1, · · · ,M} are unenforceable as they violate the

user’s incentive. Proposition 13 illustrates that the number of enforceable security

policies cannot exceed a threshold determined by K,M,N ; i.e., among all |S| = KM

potential security policies, the defender can choose at most χ(K,M,N) ones to be

compatible with the user’s incentive.

Cyber Attribution and Type Identification

The honeypot example motivates us to investigate the condition under which

public security policies elicit different actions from different types of users. The

condition is useful for cyber attribution, i.e., tracing observable actions back to
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the user’s private types. Since each security policy uniquely determines a posterior

belief for a given generator, we define type identifiability concerning the posterior

belief in Definition 33.

Definition 33 (Identifiable Types). Two different types l, h ∈ {1, · · · ,M} are

identifiable under a posterior belief p ∈ ∆X if ∃i, j ∈ {DO, 1, · · · , K−1} and i ̸= j

such that p ∈ Cl,hi,j .

The posterior beliefs under which two different types l, h ∈ {1, · · · ,M} are

identifiable constitute a belief region that may not be connected. This belief

region solely depends on the user’s utility vector v̂U as the finest belief partition

∆X = ∪a1∈A,··· ,aM∈AC{a1,··· ,aM} solely depends on v̂U . Intuitively, the size of the

region is reduced as the utilities of the users of type θl and θh become better aligned.

Definition 34 defines two extremes of utility alignment.

Definition 34 (Completely (Mis)aligned Utilities). Two different types of

users have completely aligned (resp. misaligned) utilities, or equivalently zero (resp.

full) utility misalignment, if they are unidentifiable (resp. identifiable) under all

posterior belief p ∈ ∆X .

If two utilities have the same (resp. opposite) values, then they are completely

aligned (resp. misaligned). If two types of users’ utilities are completely aligned

(resp. misaligned), then the security policies that procure them to take different

actions (resp. the same action) are not enforceable under any credible generators.

Proposition 14 shows that the results are translation- and scale-invariant.

Proposition 14 (Alignment under Linear Dependence). Consider linearly

dependent utilities of two types l, h ∈ {1, · · · ,M} of users; i.e., there exist a scaling
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factor ρsU(θl, θh) ∈ R and translation factors ρtU(x, θl, θh) ∈ R,∀x ∈ X , such that

v̂U(x, θl, a) = ρsU(θl, θh)v̂U(x, θh, a) + ρtU(x, θl, θh),∀x ∈ X , a ∈ A. Two utilities are

completely aligned (resp. misaligned) if and only if ρsU(θl, θh) ≥ 0 (resp. < 0).

Proof. For any given p ∈ ∆X and θl ∈ Θ, there exists an action a∗i ∈ A such that∑N
n=1 pn[v̂U(xn, θl, a

∗
i )− v̂U(xn, θl, ak)] ≥ 0,∀ak ∈ A.

Then, ρsU(θl, θh)
∑N

n=1 pn[v̂U(xn, θh, a
∗
i ) − v̂U(xn, θh, ak)] ≥ 0,∀ak ∈ A, and the

user of type θh ∈ Θ at any posterior belief p has the same best-response action a∗i

if and only if ρsU(θl, θh) ≥ 0.

Characterization of the Optimal Generator

Under a zero-information generator π0 ∈ Π, the user’s posterior belief equals

the prior belief p0 and we can rewrite the user’ best-response action a∗θ(b
π0

U ) in

(10.2) as a∗θ(p
0). Since variables bU , c are not designable in the benchmark case, we

omit them in function v̄D and rewrite the defender’s expected posterior utility as

v̄D(π,p
0). Since the users make decisions based on their prior beliefs, we refer to

the expected posterior utility v̄i of player i ∈ {D,U} as his prior utility ṽi when

the generator contains zero information. In particular, the defender’s prior utility

ṽD is a function of the prior belief p0, i.e.,

ṽD(p
0) := v̄D(π

0,p0) = Ex∼p0Eθ∼bD(·|x)[v̂D(x, θ, a
∗
θ(p

0)].

We obtain the piece-wise linear structure of the defender’s prior utility ṽD in

Proposition 15. The solid lines in Fig. 10.5 illustrate ṽD.

Proposition 15. The defender’s prior utility ṽD is a (possibly discontinuous)

piece-wise linear function of the common prior belief vector p0 ∈ ∆X with at most
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χ(K,M,N) pieces.

Proof. The piece-wise linear structure follows from the fact that ṽD is linear with

respect to p0 inside each convex polytope C{a1,··· ,aM},∀al ∈ A, l ∈ {1, · · · ,M}. As a

result of Proposition 13, the upper bound of the number of different convex polytopes

is χ(K,M,N). Since the polytopes are determined based on the user’s prior utility

rather than the defender’s, ṽD is possibly discontinuous at the boundaries of these

polytopes.
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Figure 10.5: The defender’s expected posterior utility versus prior belief p01 with
and without the modulator in orange and blue, respectively. We denote orange lines
and notations in bold. The solid lines indicate that the defender’s prior utility ṽD is
discontinuous and piece-wise linear under three belief regions, i.e., [0, tθ11 ], [tθ11 , t

θ2
1 ],

and [tθ21 , 1]. The dashed lines represent the defender’s optimal posterior utility VD.

The defender’s expected posterior utility v̄D is a function of π ∈ Π and p0 ∈ ∆X .

Thus, the defender’s optimal posterior utility VD(p
0) := supπ∈Π v̄D(π,p

0) is a

function of p0 ∈ ∆X . Based on Theorem 6, there exists an optimal generator π∗ ∈ Π

that achieves the optimal posterior utility, i.e., VD(p
0) = v̄D(π

∗,p0) = r. Denote

the convex hull of function ṽD as co(ṽD). Then, we can use the concavification

technique introduced in [10, 109] to show that the defender’s optimal posterior
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utility VD(p
0) is the concave closure of her prior utility ṽD(p

0) over the entire belief

region p0 ∈ ∆X , i.e., VD(p0) = sup{z ∈ R|(p0, z) ∈ co(ṽD)}.

We visualize the concavification process under the binary state space N = 2

in Fig. 10.5. Suppose that there are two types of users and each type θ ∈ {θ1, θ2}

has a single belief threshold denoted by tθ1 where 0 < tθ11 < tθ21 < 1. Consider a

common prior belief p01 ∈ [tθ21 , 1] denoted by node 1’s abscissa. Then, the defender’s

prior utility ṽD(p
0
1) is denoted by node 1’s ordinate. The defender can improve the

utility from node 1’s ordinate to at most node 4’s ordinate by adopting the optimal

generator π∗ ∈ Π as follows. Generator π∗ generates two signals s2 ∈ S and s3 ∈ S

with proper probabilities under different states so that the user’s posterior belief is

node 2’s abscissa when observing policy s2 and node 3’s abscissa when observing

s3. Based on the Bayesian plausibility condition in Section 10.1.4, the defender’s

optimal posterior utility VD(p
0
1) can be represented as the linear interpolation of

the ordinates of nodes 2 and 3, i.e., node 4’s ordinate. The same reasoning applies

to all feasible common prior beliefs p01 ∈ [0, 1]. Therefore, for all [p01, 1− p01] ∈ ∆X ,

the defender’s optimal posterior utility VD(p
0) is the concave closure of her prior

utility ṽD(p
0) and VD(p

0) ≥ ṽD(p
0).

Although we need at least |S| = KM security policies to represent all the

permutations of actions under different types, Fig. 10.5 shows that the defender can

achieve her optimal posterior utility by generating two different security policies with

proper probabilities when N = 2. Proposition 16 generalizes the result to N > 2

and shows that the generator only needs to generate a small number of security

policies to achieve her optimal posterior utility. If ṽD(p
0) = VD(p

0) and p0 is

further an interior point of any convex polytope C{a1,··· ,aM},∀al ∈ A, l ∈ {1, · · · ,M},

then there exist infinitely many credible generators that achieve VD(p
0).
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Proposition 16 (Efficiency of the Optimal Generator). For any DG with

common prior belief p0 ∈ ∆X , there exist either one or infinitely many optimal

generators to achieve the optimal posterior utility VD(p
0). For each state x ∈ X ,

there exists one optimal generator π∗(·|x) ∈ ∆S that generates at least KM − N

security policies with zero probability.

Proof. Since COP under the benchmark case is a linear program, the optimal

solution is either unique or innumerable. If N = 2, the convex hull consists of

pieces of line segments where each line segment can be determined uniquely by its

two endpoints. If N = 3, the convex hull as a polygon consists of finite pieces of

triangles where each triangle can be determined uniquely by its three endpoints.

We can extend to any finite N where the convex hull consists of pieces of (N − 1)-

simplex where each piece can be determined uniquely by N endpoints. Thus, for

any p0 ∈ ∆X , it requires at most N points to achieve VD(p
0), which corresponds

to N distinct security policies.

Remark 26. Proposition 16 shows that the defender does not need to apply all

enforceable security policies to achieve the optimal posterior utility; i.e., the optimal

generator is efficient and generates at most N security policies for each state x ∈ X .

We define the trust margin under a credible generator π ∈ Π in Definition

35. The maximum trust margin is achieved when the optimal generator π∗ ∈ Π

is applied. The trust margin can be negative if generator π is not well designed.

However, the maximum trust margin is non-negative as it is the difference between

the defender’s optimal posterior utility and prior utilities, i.e., VD(p
0) − ṽD(p0).

Based on whether the maximum trust margin is zero or positive, Definition 36
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defines the user to be unmanageable or manageable.

Definition 35 (Trust Margin). We define v̄D(π,p
0)− ṽD(p0) as the trust margin

under the common prior belief p0 ∈ ∆X and a credible generator π ∈ Π.

Definition 36 (Manageability). The user is manageable (resp. unmanageable)

under prior belief p0 if the maximum trust margin is greater than (resp. equals)

zero.

Intuitively, a user is manageable if he shares the same utility with the defender

but unmanageable if he has an opposite utility. We introduce ρsD ∈ R to represent

the user’s level of maliciousness. Theorem 7 investigates how the user’s level of

maliciousness affects his manageability.

Theorem 7 (Manageability and Level of maliciousness). Let the common

prior belief be state-independent, i.e., bD(θ|x) = b̂D(θ),∀θ ∈ Θ, ∀x ∈ X , and

two players’ utilities be linearly dependent, i.e., there exist a scaling factor ρsD ∈

R and translation factors ρtD(x, θ) ∈ R, such that v̂D(x, θ, a) = ρsDv̂U(x, θ, a) +

ρtD(x, θ),∀x ∈ X , θ ∈ Θ, a ∈ A. Then, the following two statements hold.

(a) The defender’s trust margin is zero for all p0 ∈ ∆X and credible generators

if and only if ρsD ≤ 0. The optimal generator contains zero information.

(b) The defender’s trust margin is non-negative for all p0 ∈ ∆X and credible

generators if and only if ρsD > 0. Moreover, the optimal generator contains

full information. If p0 is an interior point of the (N − 1)-simplex and there

exists at least one θ ∈ Θ under which no actions dominate, then the defender’s

trust margin is positive.
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Proof. The given conditions lead to ṽD(p
0) = Eθ∼b̂DEx∼p0 [ρsDv̂U(x, θ, a

∗
θ(p

0)) +

ρtD(x, θ)] = ρsDEθ∼b̂DEx∼p0 [v̂U(x, θ, a
∗
θ(p

0))] + Eθ∼b̂DEx∼p0 [ρtD(x, θ)]. Proposition 12

has shown that Ex∼p0 [v̂U(x, θ, a
∗
θ(p

0))] is a PWLC function of p0 for each θ ∈ Θ.

Since b̂D(θ) ≥ 0, ∀θ ∈ Θ, the linear combination Eθ∼b̂DEx∼p0 [v̂U (x, θ, a
∗
θ(p

0))] is also

PWLC. The term Eθ∼b̂DEx∼p0 [ρtD(x, θ)] is a linear function of p0. Thus, ṽD is a

piece-wise linear and concave (resp. linear) function of p0 if and only if ρsD < 0 (resp.

ρsD = 0). If ṽD is concave or linear over the entire belief region ∆X , its convex hull is

itself. Thus, VD(p
0) = ṽD(p

0) for all p0 ∈ ∆X and any zero-information generator

is optimal. Similarly, ṽD is PWLC if and only if ρsD > 0, and any full-information

generator is optimal. If there exists at least one θ ∈ Θ under which no actions

dominate, then ṽD is strictly convex over the entire belief region. Thus, we have

VD(p
0) < ṽD(p

0) when p0 is an interior point of the (N − 1)-simplex.

Theorem 7 shows that when two players’ utilities are linearly dependent, the

user’s manageability depends on the sign of the scaling factor ρsD rather than

its value. Thus, the user’s level of maliciousness has a threshold impact on the

manageability and the threshold is 0.

10.3.2 Incentive Modulator and Trust Manipulator

We illustrate the modulator design and the manipulator design in Section 10.3.2

and 10.3.2, respectively. The GMM mechanism design is presented in Section

10.3.2.

Joint Design of Generator and Modulator

The modulator incentivizes unmanageable users and increases the security and

efficiency of the networks. Under the binary state N = 2, Fig. 10.5 illustrates the
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defender’s prior utility with the modulator in orange solid lines. The orange solid

lines are different from the blue ones in two folds. From the user’s perspective,

the modulator changes the user’s expected utility under different actions and thus

results in translations of the dashed lines in Fig. 10.3. Those translations change

the belief region partition, e.g., the right shifts of tθ11 and tθ21 in Fig. 10.5. From

the defender’s perspective, the modulator modifies her utility in each new belief

regions, and the value of the modification is Ex∼p0Eθ∼bD(·|x)[γc(a
∗
θ(p

0))]. If the

defender’s belief is independent of state, i.e., bD(θ|x) = b̂(θ),∀θ ∈ Θ,∀x ∈ X , then

the defender’s utility change Ex∼p0Eθ∼bD(·|x)[γc(a
∗
θ(p

0))] = γEθ∼b̂D(·)[c(a
∗
θ(p

0))] is

a constant with respect to p0 in each new belief region. When the state space is

binary as shown in Fig. 10.5, it means that designing c introduces translations but

not rotations to each segment of the function ṽD.

The joint design of the modulator and the generator results in the new convex hull

denoted by the dashed blue lines in Fig. 10.5. Based on both players’ perspectives,

the optimal design needs to strike a balance between incentivizing users to change

their belief region partitions and the costs to provide the incentives. Take Fig.

10.5 as an example, we observe that the modulator incurs costs to the defender for

all actions, i.e., c(a) ≤ 0, ∀a ∈ A. Thus, in all three belief regions, the defender’s

prior utilities with the modulator, represented by the solid orange lines, are lower

than the ones without the modulator, represented by the solid blue lines. However,

the benefit of the user’s incentive change outweighs the costs; i.e., the defender’s

optimal posterior utility VD(p
0
1) increases from node 4 in blue to node 4 in orange.
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Joint Design of Generator and Manipulator

The manipulator directly distorts the user’s prior belief to elicit desirable

behaviors. When the generator cannot be designed, the manipulator design is

equivalent to the process of finding the initial belief p0
g := argmaxp0∈∆X ṽD(p

0)

that achieves the global maximum of the prior utility ṽD. Proposition 17 proves

the existence of the optimal distorted belief p0
g.

Proposition 17. For any given v̂D, v̂U of two players, there exists an initial

belief p0
g ∈ ∆X at the boundary of the convex polytopes C{a1,··· ,aM},∀al ∈ A, l ∈

{1, · · · ,M}, such that p0
g = argmaxp0∈∆X ṽD(p

0).

Proof. For each v̂D, v̂U , the global maximum ṽD(p
0
g) = maxp0∈∆X ṽD(p

0) exists

and has a finite value due to Theorem 6. Proposition 16 shows that the global

maximum is either unique or infinite. In either case, at least one global maximum

is at the boundary of the convex polytopes due to the piece-wise linear property

stated in Proposition 15.

When the optimal generator is applied, the joint design of the manipulator

and the generator is equivalent to the process of finding the initial belief p̄0
g :=

argmaxp0∈∆X VD(p
0) that achieves the global maximum of VD. Based on the

piece-wise linear property of ṽD in Proposition 15, the prior utility ṽD and its

concave closure VD share the same global maximum. Thus, p0
g = p̄0

g and the

optimal generator contains zero information. Take Fig. 10.5 as an example,

p0
g = [tθ21 , 1− tθ21 ] achieves the global maximum denoted by node 2’s ordinate, and

node 2 is on both the solid and the dashed lines. These results are summarized in

Theorem 8.
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Theorem 8. The design of optimal overt manipulator changes the common initial

belief p0 into p0
g = p̄0

g. The defender’s optimal posterior utility has the value of

ṽD(p
0
g) = VD(p

0
g) and is independent of the initial belief p0 ∈ ∆X . In the joint

design of the overt manipulator and the generator, the optimal generator contains

zero information.

Design of the GMM Mechanism

We incorporate the modulator design into the joint design of the generator and

the manipulator to complete the GMM mechanism design. Based on the analysis

in Section 10.3.2, the first step of the GMM design is to determine the optimal

modulator c∗ ∈ C that results in the prior utility function with the largest value

of the global maximum, i.e., c∗ = argmaxc[maxp0∈∆X ṽD(p
0)]. With the given

modulator c∗, the second step of the design is to reduce the problem to the joint

design of modulator and manipulator presented in Section 10.3.2.

Remark 27 (Separation Principle). The two-step design of the GMM mechanism

shows that the defender can design the optimal modulator c∗ ∈ C independently.

We identify the equivalence principle in Remark 28 based on the results in

Theorem 8. If the overt manipulator allows the defender to manipulate the initial

belief arbitrarily, then the optimal generator contains zero information; i.e., the

defender no longer needs the optimal generator to achieve her optimal posterior

utility. Note that the equivalence principle does not mean that the generator

is redundant. When the belief manipulation is not arbitrary and under practical

constraints (e.g., the belief changes within a limited range), the joint design of

the two components can yield better performance than the single design of the

manipulator.
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Remark 28 (Equivalence Principle). For any given modulator c ∈ C, the joint

design of the generator and the overt manipulator results in the same outcomes as

the single design of the overt manipulator does.

10.4 Case Study

In Section 10.4, we illustrate how the defender can use the DG to mitigate

insider threats where honeypots are configured adaptively to detect and deter

misbehavior.

10.4.1 Model Description

We have Θ = {θb, θg}, X = {xH , xN}, and A = {aDO, aAC} based on the

running example introduced in Section 10.1.1, Example 4, and Example 5. The

true percentage of honeypots p0,HD := b(xH) ∈ [0, 1], is only known to the SOC.

Thus, the insiders’ perceived honeypot percentage p0,HU := bU (x
H |θ) ∈ [0, 1],∀θ ∈ Θ,

can be different from the true percentage.

Table 10.1 lists the utilities of the SOC and the insiders. The column represents

the binary state of a node, and the row represents the insiders’ actions. In each

matrix entry, we list the payoffs resulting from the selfish (resp. adversarial) insiders

on the left (resp. right) of the semicolon. When the insider chooses not to access

a node, we calibrate the payoffs to be 0 for both the SOC and the insiders. The

other four possible scenarios are listed as follows. First, a selfish insider’s access

to a normal server maintains the organization’s normal operation and results in a

positive reward rD > 0 (resp. rU > 0) on average to the organization (resp. the

selfish insider). Second, when an adversarial insider accesses a normal server, he
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disrupts the normal operation and compromises confidential data, which brings him

a reward of ϕNU rU > 0 and incurs a security loss of ϕNDrD < 0 to the organization.

Third, if an adversarial insider accesses a honeypot, he is detected and prohibited

from data theft. Meanwhile, the SOC obtains valuable threat intelligence. We use

ϕHD > 0 and ϕHU < 0 to represent the degrees of the SOC’s gain and the adversarial

insider’s loss, respectively. Finally, once a selfish insider accesses the honeypot,

the SOC has to quarantine the insider and investigate the incident, which incurs

a suspension of normal services as well as an investigation cost. Meanwhile, the

selfish insider also receives penalties and additional security training sessions. We

use ϕgDrD < 0 and ϕgUrU < 0 to represent the cost for the SOC and the selfish

insider, respectively.

Selfish θg; Adversarial θb Honeypot xH Normal Server xN

No Access aDO 0 ; 0 0 ; 0
Access aAC riϕ

g
i ; riϕ

H
i ri ; riϕ

N
i

Table 10.1: Two players’ utilities vi(x, θ, a), i ∈ {D,U}.

Compared to a computing system that precisely follows its instructions, human

insiders alter their behaviors in response to (dis)incentives. In this case study, the

(dis)incentives refer to the insider’s authentication cost c(aAC) := rUϕ
0 to access a

node, where the ratio ϕ0 ∈ R takes the value of 0 in the default setting. We assume

that the SOC can increase (i.e., ϕ0 < 0) or decrease (i.e., ϕ0 > 0) an insider’s

authentication cost at no additional cost, i.e., γ = 0. The revenues, losses, and costs

can be quantified in dollars and their values vary for different security scenarios.
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Threshold Policy Analysis

In this case study, both selfish and adversarial insiders share the same prior

belief p0,HU ∈ [0, 1]. Hence they share the same posterior belief denoted by pHU ∈ [0, 1]

and adopt the following threshold policies. Define the decision thresholds of the

selfish and the adversarial insiders as tg(ϕ0) := max{min{(1− ϕ0)/(1− ϕgU), 1}, 0}

and tb(ϕ0) := max{min{(ϕNU − ϕ0)/(ϕNU − ϕHU ), 1}, 0}, respectively. Since both

denominators are positive, i.e., 1 − ϕgU > 1 and ϕNU − ϕHU > 0, the selfish insider

(resp. the adversarial insider) chooses to access a node if and only if the node is

unlikely to be a honeypot, i.e., pHU < tg(ϕ0) (resp. pHU < tb(ϕ0)). If a selfish (resp.

adversarial) insider accesses a node, his expected utility rU(1− ϕ0 + p0,HD (ϕgU − 1))

(resp. rU(ϕ
N
U − ϕ0 + p0,HD (ϕHU − ϕNU ))) decreases linearly in p0,HD , i.e., the true

percentage of honeypots.

Since the selfish and adversarial insiders share the same insider information, the

difference in their decision thresholds results purely from their incentive misalign-

ment. Given the insiders’ utility matrices, the SOC can change their incentives and

elicit desirable behaviors by a proper design of the authentication cost determined

by the ratio ϕ0. If ϕ0 ≤ ϕgU < 0 (resp. ϕ0 ≤ ϕHU < 0), then the selfish (resp. adver-

sarial) insider chooses aAC for all security scenarios. If ϕ0 ≥ 1 (resp. ϕ0 ≥ ϕNU > 0),

then the selfish (resp. adversarial) insider chooses aDO for all security scenarios.

Since the deceptive honeypot configuration can possibly change insiders’ behaviors

only if ϕ0 is in the region [min(ϕgU , ϕ
H
U ),max(1, ϕNU )], we refer to the region as the

incentivized region of ϕ0. As a special case of Proposition 13, Corollary 2 shows

that security policies s{aDO,aAC} and s{aAC ,aDO} cannot be both enforceable for any

node in the corporate network.

Corollary 2. If ϕgU < 0,ϕNU > 0, ϕHU < 0, then for all ϕ0 ∈ R and credible con-
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figuration π ∈ Π, either π(s{aDO,aAC}|x) = 0,∀x ∈ {xH , xN}, or π(s{aAC ,aDO}|x) =

0, ∀x ∈ {xH , xN}.

10.4.2 Numerical Results

Following the insider categorization in Section 10.1, we re-weight the percentage

from the VCDB and adopt qg := bD(θ
g|x) = 0.32 and qb := bD(θ

b|x) = 0.68 for

all x ∈ {xN , xH} as the benchmark value of the insiders’ type statistics. Based

on the analysis in Section 10.4.1, the values of rU do not affect the insiders’

actions, and the value of rD only scales the SOC’s utility by a constant. Thus,

we normalize rU = rD = 1. We consider ϕgU = ϕgD = −0.3, ϕHU = −ϕHD = −1, and

ϕNU = −ϕND = 0.9 as the benchmark values. Then, the selfish insider has the same

utility as the SOC, i.e., vD(x, θ
g, a) = vU (x, θ

g, a),∀x ∈ {xH , xN},∀a ∈ {aAC , aDO},

while the adversarial insider has an exactly opposite utility to the one of the SOC,

i.e., vD(x, θ
b, a) = −vU (x, θb, a),∀x ∈ {xH , xN},∀a ∈ {aAC , aDO}. In Section 10.4.2,

the SOC cannot change the authentication cost, i.e., c(aAC) = 0. In Sections 10.4.2

and 10.4.2, the insider has the correct prior belief of the honeypot percentage, i.e.,

p0,HU = p0,HD .

Security Posture under the Optimal Generator

Fig. 10.6a shows how the SOC’s normalized revenue ṽD without the optimal

generator is affected by the percentages of honeypots and the selfish insiders,

respectively. The maximum (resp. minimum) value of ṽD is achieved when insiders

are all selfish (resp. adversarial) and no honeypots are applied. The two decision

thresholds tb(0) and tg(0) divide the percentage of honeypots into three regions, i.e.,

high, medium, and low, in which the insiders’ behaviors and the SOC’s normalized
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revenue ṽD have different characteristics.

If the intended security outcomes are not achieved due to the insiders’ mis-

behavior, the SOC can apply the optimal generator to elicit desirable behaviors

and reduce the cyber risks of the organization. To illustrate the effectiveness of

the optimal generator, we plot the maximum trust margin in Fig. 10.6b. Fig.

(a) Prior utility ṽD. (b) Maximum trust margin.

Figure 10.6: SOC’s utilities vs. p0,HD ∈ [0, 1] and qg ∈ [0, 1].

10.6b corroborates Theorem 7; i.e., when all insiders are adversarial (resp. selfish),

no (resp. all) credible generators, including the optimal one, can improve the

SOC’s normalized revenue for any percentage of honeypots p0,HD ∈ [0, 1]. The

flat region represented by qg ∈ [0, (ϕND − ϕHD)/(ϕgD − 1 + ϕND − ϕHD)] and p0,HD ∈

[0,min(tb(0), tg(0))] identifies two critical thresholds. On the one hand, we refer

to (ϕND − ϕHD)/(ϕgD − 1 + ϕND − ϕHD) as the insider’s motive threshold that is used

to quantify the average motive of the entire insider population. If the percent-

age of adversarial insiders exceeds the motive threshold, then insiders’ behaviors

are on average destructive to the organization. On the other hand, we refer to

min(tb(0), tg(0)) as the deterrence threshold that measures the adequacy of the

honeypots. If the percentage of honeypots is below the deterrence threshold, then
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the SOC does not have a sufficient number of honeypots to create a credible threat

for the insiders not to access nodes in the corporate network. Based on Definition

36, the insiders are unmanageable in the flat region.

For the other regions, the insiders are manageable, and the optimal generator

can effectively reduce the cyber risk of the organization. The increase depends on

the percentage of selfish insiders and honeypots. When the percentage of honeypots

is tg(0) and insiders are all selfish, the organization’s revenue with the optimal

generator is 114 times higher than the one without the optimal generator. Averaged

over the entire region of qg ∈ [0, 1] and p0,HD ∈ [0, 1], the organization’s revenue with

the optimal generator is 35.6% higher than the one without the optimal generator.

The results in Fig. 10.6 demonstrate that the optimal generator design provides a

constructive way to quantify the accuracy of the information that the SOC should

reveal to the insiders to establish trust with them, while in the meantime, retain

her information advantage to elicit desirable insider behaviors and maximize the

organization’s well-being. These results provide a guideline to address the challenges

identified in 2c and 2d of Table 2 in [147].

Security Posture under Various Modulators

In Section 10.4.2, we investigate how the (dis)incentives affect the insiders’

behaviors and the security posture of the insider network. In Fig. 10.7, we plot the

decision thresholds of selfish and adversarial insiders in blue and red, respectively.

Since the blue line has a steeper slope than the red line, Fig. 10.7 demonstrates that

the same authentication cost affects the selfish insiders more significantly than the

adversarial ones. As defined in Definition 33, two types of insiders are identifiable

under posterior belief pHU if pHU ∈ [tb(ϕ0), tg(ϕ0)]. Furthermore, a larger difference in
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the two thresholds, i.e., tg(ϕ0)− tb(ϕ0), indicates a higher incentive misalignment

between selfish and adversarial insiders.
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Figure 10.7: The adversarial and the selfish insiders’ decision thresholds tb(ϕ0) and
tg(ϕ0) in the red dashed line and the blue solid line, respectively. The difference
tg(ϕ0)−tb(ϕ0) denoted in the black dotted line represents their utility misalignment.

Fig. 10.8a illustrates the organization’s original payoff ṽD without a genera-

tor. The selfish insider and the SOC achieve a win-win situation at the region

ϕ0 ∈ [0.5, 0.74] as they both achieve their maximum payoffs at that region. The

adversarial insider and the SOC cannot achieve a win-win situation for all ϕ0 ∈ R

as adversarial insiders seeking to compromise sensitive data and sabotage the

organization have a completely misaligned payoff structure. Fig. 10.8b illustrates

the organization’s improved payoff VD when the optimal generator is applied. The

results show that the optimal generator can always increase the payoffs of the

selfish insiders and the organization regardless of the (dis)incentives represented

by ϕ0 ∈ R. Win-win situations still exist (resp. do not exist) for the SOC and the

selfish (resp. adversarial) insider.
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(a) Players’ prior utilities.
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(b) Optimal posterior utilities.

Figure 10.8: Utilities of the SOC, selfish insiders, and adversarial insiders in the
dotted black, the solid blue, and the dashed red lines, respectively.

Security Posture under Covert and Overt Trust Manipulators

In Section 10.4.2, the SOC can generate ambiguous or fake reports of the

honeypot percentage so that the insiders’ initial beliefs of the honeypot percentage

deviate from the truth, i.e., p0,HU ̸= p0,HD . Figs. 10.9a and 10.9b illustrate the SOC’s

payoffs with and without the optimal generator, respectively, under different values

of p0,HU and p0,HD . In Fig. 10.9a, the insiders’ initial beliefs fall into the following

three regions. If p0,HU ∈ [tg(0), 1], both types of insiders choose not to access the node.

Then, the SOC’s normalized payoff ṽD is zero regardless of the true percentage of

honeypots p0,HD . If p0,HU ∈ [tb(0), tg(0)], selfish insiders choose aAC and adversarial

insiders choose aDO. Then, reducing the percentage of honeypots increases the

SOC’s normalized payoff ṽD as it reduces the false alarm rate when selfish insiders

access the honeypots. If p0,HU ∈ [0, tb(0)], both types of insiders choose to access

the node. Then, reducing the percentage of honeypots also increases the SOC’s

normalized payoff ṽD. However, the increase rate is lower than the one in the second

region as the two types of insiders take the same action and are not identifiable.
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(a) Prior utility ṽD. (b) Optimal posterior utility.

Figure 10.9: SOC’s utilities vs. p0,HD ∈ [0, 1] and p0,HU ∈ [0, 1].

These results illustrate that without a deceptive generator, the SOC may not

always benefit from faking the percentage of honeypots. On the contrary, when

the optimal generator is applied in Fig. 10.9b, the SOC can benefit from a fake

percentage of honeypots for all p0,HD , p0,HU ∈ [0, 1]. Moreover, the benefit of faking

honeypot percentage is a non-decreasing function of |p0,HD − p0,HU |. Thus, the SOC

obtains a higher payoff VD with the optimal generator when there is a larger

mismatch between the true and the fake percentages of honeypots. The maximum

value of VD is achieved when the true percentage of honeypots is zero and the

SOC makes the insiders believe that the percentage of honeypots exceeds tb(0).

Averaged over the true percentage p0,HD ∈ [0, 1] and the fake one p0,HU ∈ [0, 1], the

SOC’s payoff with the optimal generator, i.e., VD is 59.3% higher than her original

payoff ṽD.
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Part VI

Hodatology for Cognitive Security
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Chapter 11

ADVERT: An Attention

Enhancement Mechanism for

Phishing Prevention

Following Section 1.3.2, attacks exploiting the innate and the acquired vulnera-

bilities of human users have posed severe threats to cybersecurity. In Chapter 11,

we focus on inattention, one type of innate human vulnerability, and use phishing

email as a prototypical scenario to explore the users’ visual behaviors when they

determine whether a received email is secure or not. Based on the users’ eye-tracking

data and phishing recognition results, we develop ADVERT1 to provide a human-

centric data-driven attention enhancement mechanism for phishing prevention. In

particular, ADVERT enables an adaptive visual-aid generation to guide and sustain

the users’ attention to the right content of an email and consequently makes users

less likely to fall victim to phishing. The design of the ADVERT contains two

1ADVERT is an acronym for ADaptive Visual aids for Efficient Real-time security-assistive
Technology.
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feedback loops of attention enhancement and phishing prevention at short and long

time scales, respectively, as shown in Fig. 11.1.
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Figure 11.1: The design diagram of ADVERT. The adaptive learning loops of the
attention enhancement mechanism and the phishing prevention mechanism are
highlighted using juxtaposed blue and orange backgrounds, respectively. Since a
user needs to persistently pay attention to an email to make a phishing judgment,
the meta-adaptation feedback in orange updates less frequently than the feedback
of attention enhancement in blue.

The bottom part of Fig. 11.1 in blue illustrates the design of adaptive visual aids

(e.g., highlighting, warnings, and educational messages) to engage human users in

email processing. First, as a human user reads emails and judges whether they are

phishing or legitimate, a covert eye-tracking system can record the user’s eye-gaze

locations and pupil sizes in real-time. Second, based on the eye-tracking data, we

abstract the email’s Areas of Interest (AoIs), e.g., title, hyperlinks, attachments,

etc, and develop a Visual State (VS) transition model to characterize the eye-gaze

dynamics. Third, we develop system-level attention metrics to evaluate the user’s
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attention level based on the VS transition trajectory. Then, we quantize the

attention level to obtain the Attention State (AS) and develop adaptive learning

algorithms to generate visual aids as feedback of the AS. The visual aids change

the user’s hidden cognitive states and lead to the set of eye-tracking data with

different patterns of VS transition and AS, which then updates the design of visual

aids and enhances attention iteratively.

The attention enhancement loop serves as a stepping-stone to achieving the

ultimate goal of phishing prevention. The orange background in the top part of Fig.

11.1 illustrates how we tune the hyperparameters in the attention enhancement loop

to safeguard users from phishing emails. First, we create a metric to evaluate the

user’s accuracy in phishing recognition under the current attention enhancement

mechanism. Then, we iteratively revise the hyperparameters to achieve the highest

accuracy. Since the accuracy evaluation depends on the implementation of the

entire attention enhancement loop, the evaluation is costly and time-consuming.

Thus, we leverage Bayesian optimization to propose an efficient meta-level tuning

algorithm to improve the accuracy.

11.1 Attention Enhancement Mechanism

As illustrated by step 1 of Fig. 11.1, we consider a group of M human users

who vet a list of N emails and classify them as phishing or legitimate. As a user

m ∈ M := {1, · · · ,M} reads an email n ∈ N := {1, · · · , N} on the screen for

a duration of T nm, the eye-tracking device records the vertical and the horizontal

coordinates of his eye gaze point in real-time. To compress the sensory outcomes

and facilitate RL-driven attention enhancement solutions, we aggregate potential
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gaze locations (i.e., pixels on the screen) into a finite number of I non-overlapping

Areas of Interest (AoIs) as shown in Fig. 11.2. We index each potential AoI by

11

12

Figure 11.2: A sample email with 12 AoIs. In sequence, they are the email’s
title, the sender’s information, the receiver’s information, the salutation, the email
body, the URL, the sender’s signature, the organization logo, the ‘print’ and ‘share’
buttons, the timestamp, the ‘bookmark’ and ‘forward’ buttons, and the sender’s
profile picture. The AoI partition in red boxes and their index numbers in black
circles are invisible to users.

i ∈ I := {1, 2, ..., I}.

Each email does not need to contain all the AoIs and the AoI partition remains

unknown to the users. Previous works [138, 144, 175] have identified the role of

AoIs in helping human users recognize phishing while different research goals can

lead to different AoI partitions. For example, the email body AoI (i.e., area 5 in

Fig. 11.2) can be divided into finer AoIs based on the phishing indicators such as

misspellings, grammar mistakes, and threatening sentences. We refer to all other

areas in the email (e.g., blank areas) as the uninformative area. When the user’s

eyes move off the screen during the email vetting process, no coordinates of the

gaze location are available. We refer to these off-screen areas as the distraction
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area.

11.1.1 Visual State Transition Model

As illustrated by step 2 of Fig. 11.1, we establish the following transition model

based on the AoI to which the user’s gaze location belongs at different times. We

define S := {si}i∈I ∪ {sua, sda} as the set of I + 2 Visual States (VSs), where si

represents the i-th AoI; sua represents the uninformative area; and sda represents

the distraction area. We provide an example transition map of these VSs in Fig.

11.3. The links represent the potential shifts of the gaze locations during the email

Area of Inadvertence

Area of Distraction

Logo 𝑠!

Title 𝑠"

Main 
content 
𝑠# URL 𝑠$

...

Uninformative 
zone 𝑠%&

Distraction
zone 𝑠'&

Areas of Interest 
(AoIs)

Figure 11.3: Transitions among visual states in S. The VS indexes are consistent
with Fig. 11.2.

reading process; e.g., the users can shift their focus from the title to the main

content or the distraction area. We omit most links for illustration purposes; e.g.,

it is also possible for a user to regain attention to the AoIs from distraction or

inadvertence.

We denote st ∈ S as the VS of user m ∈ M vetting email n ∈ N at time

t ∈ [0, T nm]. In this work, we do not distinguish among human users concerning

their attention processes while they read different emails. Then, each user’s gaze
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path during the interval [0, T nm] can be characterized as the same stochastic process

[st]t∈[0,Tn
m]. The stochastic transition of the VSs divides the entire time interval

[0, T nm] into different transition stages. We visualize an exemplary VS transition

trajectory [st]t∈[0,Tn
m] in Fig. 11.4 under I = 4 AoIs and T nm = 50 seconds. As

denoted by the colored squares, 40 VSs arrive in sequence, which results in 40

discrete transition stages.

Time (s)

Transition

   Stage

Generation

    Stage

Figure 11.4: An exemplary visual state transition trajectory [st]t∈[0,Tn
m]. The x-axis

and the y-axis represent T nm = 50 seconds and I + 2 = 6 visual states, respectively.
We denote visual states sda, sua, and {si}i∈I in red, black, and blue, respectively.
Each generation stage contains different numbers of transition stages.

11.1.2 Feedback Visual-Aid Design

Propel visual aids can help guide and sustain the users’ attention. Previous

works have proposed different classes of visual aids to enhance phishing recognition,

including highlights of contents [128, 223], warnings of suspicious hyperlinks and

attachments [4, 44], and anti-phishing educational messages [194]. These potential

classes of visual aids construct the visual-aid library denoted as a finite set A.

As illustrated by step 6 of Fig. 11.1, different visual aids can affect the users’

visual behaviors. The influence, however, can be beneficial (e.g., timely highlights
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prevent users from mind-wandering) or detrimental (e.g., extensive highlights make

humans weary and less attentive to the AoIs). Due to the unpredictability and

heterogeneity of human behaviors and their mental processes, there lacks mature

theories or design rules to generate the most beneficial visual aids directly under

different conditions. Moreover, the visual aid should adapt to the human visual

attention that changes during the email vetting. Therefore, we apply reinforcement

learning techniques to learn the dynamic design of visual aids based on the real-time

evaluation of the user’s attention status detailed in Section 11.1.3.

The sequence of adaptive visual aids is generated with a period of length T pl

and we refer to the time interval between every two visual aids as the generation

stage indexed by k ∈ Knm := {1, 2, · · · , Kn
m}, where Kn

m is the maximum generation

stage during [0, T nm]; i.e., K
n
mT

pl ≤ T nm and (Kn
m + 1)T pl ≥ T nm. Then, we denote

ak ∈ A as the visual aid at the k-th generation stage. Fig. 11.4 illustrates how

visual aids affect the transition of visual states in Kn
m = 3 generation stages divided

by the two vertical dashed lines. During the second generation stage, an improper

visual aid leads to more frequent transitions to the distraction area and also a

longer sojourn time at the visual state sda. On the contrary, the proper visual aids

during the first and the third generation stages engage the users and extend their

attention spans, i.e., the amount of time spent on AoIs before a transition to sda or

sua.

11.1.3 Evaluation of Attention Status

From the VS transition trajectory (e.g., Fig. 11.4), we aim to construct the

Attention State (AS) used as the feedback value for the adaptive visual-aid design.

We define X as the set of all possible attention states. Previous works, e.g.,
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[138, 169], have defined attention metrics based on the AoIs, e.g., the proportion of

time spent on each AOI, gaze duration means, fixation count, and average duration.

Compared to these detailed-level metrics extracted directly from raw eye-gaze data,

we propose the following system-level metric of attention level based on the VS

transition history as shown in Section 11.1.3. Such system-level metric serves as

sufficient statistics to effectively characterize the attention status. Moreover, it

preserves the users’ privacy as the raw data of gaze locations can reveal sensitive

information about their biometric identities, including gender, age, and ethnicity

[119, 127].

To this end, we assign scores to each visual state in Section 11.1.3 to evaluate

the user’s attention (e.g., gaze at AoIs) and inattention (e.g., gaze at uninformative

and distraction areas). The scores can be determined manually based on the expert

recommendation and empirical studies (e.g., [169]), or based on other biometric data

(e.g., the pupil sizes in Fig. 11.7). Moreover, we can apply Bayesian optimization

for further fine-tuning of these scores as shown in Section 11.2.2.

Concentration Scores and Decay Rates

Both the gaze location and the gaze duration matter in the identification

of phishing attacks. For example, at the first glance, users cannot distinguish

the spoofed email address ‘paypa1@mail.paypaI.com’ from the authentic one

‘paypal@mail.paypal.com’ while a guided close look reveals that the lower case

letter ‘l’ is replaced by the number ‘1’ and the capital letter ‘I’. Therefore, we assign

a concentration score rco(s) ∈ R to characterize the transient and the sustained

attention associated with visual state s ∈ S. Since the amount of information that

a user can extract from a VS s ∈ S is limited, we use an exponential decay rate of

paypa1@mail.paypaI.com
paypal@mail.paypal.com
l
1
I
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α(s) ∈ R+ to penalize the effect of concentration score as time elapses. Different

visual states can have different concentration scores and decay rates. For example,

the email body AoI usually contains more information than other AoIs, and an

extended attention span extracts more information, e.g., the substitution of letter

‘l’ into ‘I’, to identify the phishing email. Thus, the email body AoI turns to have

a high concentration score and a low decay rate, which is corroborated in Table 11.1

based on the data set collected from human experiments [32] as shown in Section

11.3.

Cumulative Attention Level

We construct the metric for attention level illustrated in step 3 of Fig. 11.1

as follows. Let Wk ∈ Z+ be the total number of transition stages contained in

generation stage k ∈ Knm. Then, we define twk
k , wk ∈ {1, 2, · · · ,Wk}, as the duration

of the wk-th transition stage in the k-th generation stage. Take the gaze path in

Fig. 11.4 as an example, the first generation stage contains w1 = 12 transition

stages and the first 7 transition stages last for a total of
∑7

w1=1 t
w1
1 = 10 seconds.

Based on the sets of scores associated with s ∈ S, we compute the cumulative

reward uwk
k (s, t) at time t of the wk-th transition stage in the k-th generation

stage as uwk
k (s, t) =

∫ t
0
rco(s)e−α(s)τ · 1{s=sτ}dτ, 0 ≤ t ≤ twk

k . At generation stage

k, we define w̄tk as the latest transition stage before time t, i.e.,
∑w̄t

k
wk=1 t

wk
k ≤ t

and
∑w̄t

k+1
wk=1 t

wk
k > t. Then, we define the user’s Cumulative Attention Level (CAL)

vk(t) over time interval [(k − 1)T pl, t] at generation stage k ∈ Knm as the following

cumulative reward

vk(t) :=
∑
s∈S

w̄t
k∑

wk=1

uwk
k (s, t), 0 ≤ t ≤ T pl, (11.1)

l
I
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We visualize the CAL of Kn
m = 3 generation stages in Fig. 11.5 based on the

exemplary gaze path in Fig. 11.4.
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Figure 11.5: The user’s cumulative attention level vk(t− (k − 1)T pl), k ∈ Knm, t ∈
[(k−1)T pl, kT pl], overKn

m = 3 generation stages in T nm = 50 seconds. The horizontal
lines quantize vk(t) into X = 4 values that form the finite set X = {−30, 0, 30, 60}.
The purple star and the blue square denote the values of v̄k · T pl and v̄quk · T pl,
respectively, at each generation stage k ∈ Knm.

Since vk(t) is bounded for all k ∈ Knm, t ∈ [0, T pl], we can quantize it into X

finite values to construct the set X of the attention states illustrated by step 4

of Fig. 11.1. We represent the quantized value of vk(t) ∈ R as vquk (t) ∈ X for all

k ∈ Knm, t ∈ [0, T pl], and define the average attention level and quantized average

attention level for each generation stage in Definition 37.

Definition 37. Let v̄k ∈ R and v̄quk ∈ X denote the user’s Average Attention

Level (AAL) and Quantized Average Attention Level (QAAL) over generation stage

k ∈ Knm, respectively. They are measured by the improvement of CAL and the

quantized value of the CAL improvement per unit time, i.e., v̄k := vk(T
pl)/T pl and
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v̄quk := vquk (T pl)/T pl, respectively.

11.1.4 Q-Learning via Consolidated Data

We elaborate on the adaptive learning block in step 5 of Fig. 11.1 in Section

11.1.4. Since the inspection time of a user reading one email is not sufficiently long,

we consolidate a group of email inspection data to learn the optimal visual-aid

generation policy over a population.

The QAAL v̄quk ∈ X represents the attention state at the generation stage

k ∈ Knm. Since the goal is to enhance the user’s attention represented by the

CAL, the reward function R : X × A 7→ R should be monotone concerning the

value of v̄quk , e.g., R(v̄quk , ak) := v̄quk , ∀ak ∈ A. In this work, we assume that

each visual aid ak ∈ A exerts the same statistical effect on the attention process

regardless of different users and emails. Thus, we can consolidate the data set of

M̄ ∈ {1, · · · ,M} users and N̄ ∈ {1, · · · , N} emails2 to learn the optimal visual-aid

generation policy σ ∈ Σ : X 7→ A in a total of K̄ :=
∑M̄

m=1

∑N̄
n=1K

n
m stages.

With a given discounted factor β ∈ (0, 1), the expected long-term objective can be

represented as maxσ∈Σ E[
∑K̄

k=1(β)
k ·R(v̄quk , σ(v̄quk ))].

The Q-table [Qk(v̄
qu
k , ak)]v̄quk ∈X ,ak∈A represents the user’s attention pattern at

generation stage k ∈ K̄ := {1, · · · , K̄}, i.e., the estimated payoff of applying visual

aid ak ∈ A when the attention state is v̄quk ∈ X . Let the sequence of learning

rate γk(v̄
qu
k , ak) satisfy

∑∞
k=0 γk(v̄

qu
k , ak) = ∞ and

∑∞
k=0(γk(v̄

qu
k , ak))

2 < ∞ for all

v̄quk ∈ X , ak ∈ A. Then, we can update the attention pattern at each generation

2When sufficiently large data sets are available, we can carefully choose these M̄ users to
share similar attributes (e.g., ages, sexes, races, etc) and these N̄ emails to belongs to the same
categories (e.g., business or personal emails).
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stage k ∈ K̄ as follows, i.e.,

Qk+1(v̄
qu
k , σk(v̄

qu
k )) = Qk(v̄

qu
k , σk(v̄

qu
k ))

+ γk(v̄
qu
k , σk(v̄

qu
k )) · [R(v̄quk , σk(v̄quk ))

+ βmax
a∈A

Qk(v̄
qu
k+1, a)−Qk(v̄

qu
k , σk(v̄

qu
k ))], (11.2)

where the visual-aid generation policy σk(v̄
qu
k ) at generate stage k ∈ K̄ is an ϵk-

greedy policy; i.e., with probability ϵk ∈ [0, 1], the visual aid ak is selected randomly

from A; with probability 1− ϵk, the optimal visual aid a∗k ∈ argmaxa∈AQk(v̄
qu
k , a)

is implemented. To obtain a convergent attention policy and visual-aid policy, the

value of ϵk gradually decreases from 1 to 0.

11.2 Phishing Prevention Mechanism

The attention enhancement mechanism in Section 11.1 tracks the attention

process in real-time to enable the adaptive visual-aid generation. By properly

modifying the user’s attention and engaging him in vetting emails, the attention

enhancement mechanism serves as a stepping-stone to achieving the ultimate

goal of phishing prevention. Empirical evidence and observations such as the

Yerkes–Dodson law [228] have shown that a high attention level, or mental arousal,

does not necessarily yield good performance. Thus, besides attention metrics, e.g.,

the AAL, we need to design anti-phishing metrics to measure the users’ performance

of phishing recognition as shown in Section 11.2.1.

In Section 11.2.2, we develop an efficient meta-level algorithm to tune the

hyperparameters in the attention enhancement mechanism, e.g., the period length

T pl of the visual-aid generation, the number of attention states X, the atten-
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tion scores rco(s), α(s),∀s ∈ S, etc. We denote these hyperparameters as one

d-dimensional variable θ = [T pl, X, [rco(s)]s∈S , [α(s)]s∈S ] ∈ Rd where d = 2 + 2|S|.

Let the i-th element θi be upper and lower bounded by θ̄i and θi, respectively.

Thus, θ ∈ Θd := {[θi]i∈{1,··· ,d} ∈ Rd|θi ≤ θi ≤ θ̄i}.

11.2.1 Metrics for Phishing Recognition

As illustrated by step 7 in Fig. 11.1, we provide a metric to evaluate the outcome

of the users’ phishing identification under a given hyperparameter θ ∈ Θd. After

vetting email n ∈ {1, · · · , N̄}, the user m ∈ {1, · · · , M̄} judges the email to be

phishing or legitimate. The binary variable znm(θ) ∈ {zco, zwr} represents whether

the judgment is correct (denoted by zco) or not (denoted by zwr). We can reshape

the two-dimension index (m,n) as a one-dimension index n̂ and rewrite znm(θ) as

zn̂(θ). Once these users have judged in total of N bo emails, we define the following

metric cac ∈ C : Θd 7→ [0, 1] to evaluate the accuracy of phishing recognition, i.e.,

cac(θ) :=
1

N bo

Nbo∑
n̂=1

|1{zn̂(θ)=zco}|,∀θ ∈ Θd. (11.3)

The goal is to find the optimal hyperparameter θ∗ ∈ Θd to maximize the accuracy

of phishing identification; i.e., θ∗ ∈ argmaxθ∈Θd cac(θ). However, we cannot know

the value of cac(θ) for a θ ∈ Θd a priori until we implement this hyperparameter

θ in the attention enhancement mechanism. The implemented hyperparameter

affects the adaptive visual-aid generation that changes the user’s attention and

the anti-phishing performance metric cac(θ). Since the experimental evaluation at

a given θ ∈ Θd is time-consuming, we present an algorithm in Section 11.2.2 to

determine how to choose and update the hyperparameter to maximize the detection
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accuracy.

11.2.2 Efficient Hyperparameter Tuning

We illustrate the meta-adaptation (i.e., step 8 in Fig. 11.1) in Section 11.2.2.

As illustrated in Fig. 11.6, we refer to the duration of every N bo security decisions

as a tuning stage. Consider a time and budget limit that restricts us to conduct L

tuning stages in total. We denote θl as the hyperparameter at the l-th tuning stage

where l ∈ L := {1, 2, · · · , L}. Since each user’s email inspection time is different,

each tuning stage can contain different numbers of generation stages.
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Correctness 
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Email types

1
...

𝑧!" 𝑧#$
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Figure 11.6: Hyperparameter tuning based on the user’s phishing recognition. Each
tuning stage consists of N bo emails and contains several generation stages.

To find the optimal hyperparameter θ∗ ∈ Θd within L trials is challenging. The

empirical methods such as a naive grid search and random search over Θd ⊂ Rd

become inefficient when d > 1. Bayesian Optimization (BO) [53] provides a

systematic way to update the hyperparameter and balance between exploration

and exploitation. BO consists of a Bayesian statistical model of the objective

function cac ∈ C and an acquisition function for deciding the hyperparameter to
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implement at the next tuning stage. The statistical model of cac ∈ C is a Gaussian

process N (µ0,Σ0) with a mean function µ0(θ) = µ̄0 and covariance function or

kernel Σ0(θ, θ̄) = λ0 · exp(∑d
i=1 λ

i(θi − θ̄i)2) for all θ, θ̄ ∈ Θd, where µ̄0, λ0 and

λi, i ∈ {1, 2, · · · , d}, are parameters of the kernel. The kernel Σ0 is required to be

positive semi-definite and has the property that the points closer in the input space

are more strongly correlated. For any l ∈ L, we define three shorthand notations

µ0(θ1:l) := [µ0(θ1), · · · , µ0(θl)], c
ac(θ1:l) := [cac(θ1), · · · , cac(θl)], and

Σ0(θ1:l, θ1:l) :=


Σ0(θ1, θ1) · · · Σ0(θ1, θl)

...
. . .

...

Σ0(θl, θ1) · · · Σ0(θl, θl)

 .

Then, the evaluation vector of l ∈ L elements is assumed to be multivariate Gaussian

distributed, i.e., cac(θ1:l) ∼ N (µ0(θ1:l),Σ
0(θ1:l, θ1:l)). Conditioned on the values of

θ1:l, we can infer the value of cac(θ) at any other θ ∈ Θ \ {θl′}l′∈{1,··· ,l} by Bayesian

rule, i.e.,

cac(θ)|cac(θ1:l) ∼ N (µn(θ), (Σn(θ))2), (11.4)

where µn(θ) = Σ0(θ, θ1:l) ·Σ0(θ1:l, θ1:l)
−1 · (cac(θ1:l)−µ0(θ1:l))+µ

0(θ) and (Σn(θ))2 =

Σ0(θ, θ)− Σ0(θ, θ1:l) · Σ0(θ, θ1:l)
−1 · Σ0(θ1:l, θ).

We adopt expected improvement as the acquisition function. Define c∗l :=

maxl′∈{1,··· ,l} c
ac(θl′) as the optimal evaluation among the first l evaluations and

a shorthand notation (cac(θ) − c∗l )
+ := max{cac(θ) − c∗l , 0}. For any l ∈ L, we

define El[·] := E[·|cac(θ1:l)] as the expectation taken under the posterior distribution

of cac(θ) conditioned on the values of l evaluations cac(θ1:l). Then, the expected
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improvement is EIl(θ) := El[(cac(θ)− c∗l )+]. The hyperparameter at the next tuning

stage is chosen to maximize the expected improvement at the current stage, i.e,

θl+1 ∈ argmax
θ∈Θd

EIl(θ). (11.5)

The expected improvement can be evaluated in a closed form, and (11.5) can be

computed inexpensively by gradient methods [53].

At the first L0 ∈ {1, 2, · · · , L} tuning stages, we choose the hyperparam-

eter θl, l ∈ {1, 2, · · · , L0} uniformly from Θd. We can use the evaluation re-

sults cac(θl), l ∈ {1, 2, · · · , L0}, to determine the parameters µ̄0, λ0, and λi, i ∈

{1, 2, · · · , d}, by Maximum Likelihood Estimation (MLE); i.e., we determine

the values of these parameters so that they maximize the likelihood of observ-

ing the vector [cac(θ1:L0)]. For the remaining L − L0 tuning stages, we choose

θl, l ∈ {L0, L0 + 1, · · · , L}, in sequence as summarized in Algorithm 10.

Algorithm 10: Hyperparameter tuning via BO.

110 Implement the initial L0 evaluations cac(θl), l ∈ {1, 2, · · · , L0};
111 Place a Gaussian process prior on cac ∈ C, i.e.,

cac(θ1:L0) ∼ N (µ0(θ1:L0),Σ0(θ1:L0 , θ1:L0));
112 for l← L0 to L do
113 Obtain the posterior distribution of cac(θ) in (11.4) based on the existing l

evaluations;

114 Compute EIl(θ), ∀θ ∈ Θd, based on the posterior distribution;
115 Determine θl+1 via (11.5);
116 Implement θl+1 at the next tuning stage l + 1 to evaluate cac(θl+1);

117 end
118 Return the maximized value of all observed samples

θ∗ ∈ argmaxθl∈{θ1,··· ,θL} c
ac(θl);
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Figure 11.7: Gaze locations and pupil sizes collected in one trail of the data set.
The grey squares illustrate the transition of 15 visual states. The red and blue lines
represent the variations of the participant’s left and right pupil sizes, respectively,
as he reads the email. The x-axis represents the time of the email inspection.

11.3 Case Study

In this case study, we verify the effectiveness of ADVERT via a data set

collected from human subject experiments conducted at New York University [32].

We elaborate on the experiment setup and the data processing procedure in Section

11.3.1. Based on the features obtained from the data set, we generate synthetic data

under adaptive visual aids to demonstrate the proposed attention enhancement

mechanism and the phishing prevention mechanism in Section 11.3.2 and 11.3.3,

respectively.

11.3.1 Experiment Setting and Data Processing

The data set involvesM = 160 undergraduate students (nWhite = 27, nBlack = 19,

nAsian = 64, nHispanic/Latinx = 17, nother = 33) who are asked to vet N = 12 different

emails (e.g., the email of NYU friends network in Fig. 11.2) separately and then give

a rating of how likely they would take actions solicited in the emails (e.g., maintain

membership in Fig. 11.2). When presented to different participants, each email is

described as either posing a cyber threat or risk-free legitimate opportunities to
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investigate how the above description affects the participants’ phishing recognition.

While the participants vet the emails, the Tobii Pro T60XL eye-tracking monitor

records their eye locations on a 1920× 1200 resolution screen and the current pupil

diameters of both eyes with a sampling rate of 60Hz. Fig. 11.7 illustrates the

pupil sizes of left and right eyes in red and blue, respectively. At different times,

the average of the pupil diameters (resp. gaze locations) of the right and left

eyes represent the pupil size (resp. gaze location). Since the covert eye-tracking

system does not require head-mounted equipment or chinrests, the tracking can

occur without the participants’ awareness. We refer the reader to the supplement

materials of [32] for the survey data and the details of the experimental procedure.

Estimate Concentration Scores and Decay Rates based on Pupil Sizes

Empirical works in [107, 110] have demonstrated that pupils dilate as a con-

sequence of attentional efforts. Building on the findings, we assume that the

average pupil diameters of both eyes at time t of the generation stage k ∈ Knm is

approximately proportional to the participant’s attention level dvk
dt
(t) at time t. We

obtain the benchmark values of rco(s), α(s),∀s ∈ S, in Table 11.1 by minimizing

the mean square error between the CAL in Section 11.1.3 and the cumulative pupil

size through global optimization methods such as Simulated Annealing (SA) [216].

The results in Table 11.1 corroborate that the main content AoI s5 ∈ S has the

highest concentration score and the lowest decay rate.

Synthetic VS Trajectory Generation under Visual Aids

In the case study, we consider I = 13 AoIs. The sample email in Fig. 11.2

illustrates the first 12 AoIs and the 13-th AoI is on the email attachment. For visual
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AoIs Meaning rco(si) α(si)
s1 Title 9.48 2.17
s2 Sender 3.55 4.04
s3 Receiver 7.62 0.22
s4 Salutation 13.76 0.57
s5 Main Content 21.05 0.16
s6 URL 7.84 10.90
s7 Signature 6.47 5.46
s8 Logo 6.44 5.16
s9 Print& Share 4.86 13.91
s10 Time 3.81 6.68
s11 Bookmark& Forward 7.34 2.19
s12 Profile 7.26 2.02
s13 Attachment 4.74 3.46

Table 11.1: The concentration score rco(si) and decay rate α(si) for I = 13 AoIs.

aid a ∈ A, we denote P i,j(a) as the probability of attention arriving at visual state

j ∈ S from visual state i ∈ S and ϕi(a) as the average sojourn time at visual state i ∈

S. We specify the participants’ VS transition trajectory [st]t∈[0,Tn
m],∀m ∈M, n ∈ N ,

under visual-aid generation policy σ ∈ Σ as a semi-Markov transition process with

probability transition matrix P (σ(i)) := [P i,j(σ(i))]i,j∈S and exponential sojourn

distribution of the scale parameter ϕ(σ(i)) := [ϕi(σ(i))]i∈S .

In particular, we consider a binary set of visual aid A = {aN , aY }, where aN

represents the benchmark case without visual aids and aY represents the visual aid

of highlighting the entire email contents. Based on the VS transition trajectory

from the data set, we obtain the probability transition matrix P (aN) and the

sojourn distribution parameter ϕ(aN ) under the benchmark case aN . The transition

matrix P (aY ) and sojourn distribution ϕ(aY ) under visual aid aY modify P (aN)

and ϕ(aN ) based on the following observations. On the one hand, the visual aid aY

decreases P i,sua(aY ), P i,sda(aY ),∀i ∈ S; i.e., the participants will be guided by the
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visual aid to pay more frequent attention to the AoIs than the uninformative and

distraction areas. On the other hand, the visual aid aY decreases ϕs5(a
Y ); i.e., the

persistent highlighting makes participants weary and reduces their attention spans

on the email’s main content.

We illustrate P (aN) and P (aY ) using heat maps in Fig. 11.8a and Fig. 11.8b,

respectively. In Fig. 11.9, we illustrate an exemplary transition trajectory of

I + 2 visual states under aN and aY in blue and red, respectively. The trajectory

corroborates that participants under visual aid aY incline to pay attention to AoIs

yet have less sustained attention. To accurately quantify the impact of the visual aid

on the VS transition depends on many factors [77], including the graphic design, the

human subject, and the cognitive task. Here, we provide one potential estimation

of the impact based on the human experiments to illustrate the implementation

procedure and the effectiveness of the ADVERT framework.
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(b) Under visual aid aY .

Figure 11.8: Heat maps of the transition matrices P (a), a ∈ A. The row and
the column represent the source and the destination of the I + 2 visual states,
respectively. Under aY , the participants tend to pay attention to AoIs rather than
the uninformative and distraction areas.
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Figure 11.9: The VS transition trajectory when the visual aids in four generation
stages are aY , aN , aN , and aY , respectively. The inspection lasts for 12 seconds and
the period length T pl is 3 seconds.

11.3.2 Validation of Attention Enhancement Mechanism

Based on the benchmark attention score in Section 11.3.1, Fig. 11.10 illustrates

the CAL of the exemplary VS transition trajectory shown in Fig. 11.9. Here,

we consider X = 2 attention states X = {xH , xL} with attentive state xH and

inattentive state xL. Define Xat ∈ R as the attention threshold. If the AAL at

generation stage k ∈ Knm is higher (resp. lower) than the attention threshold, i.e.,

v̄k ≥ Xat (resp. v̄k ≤ Xat), then the attention state xk ∈ X at generation k is the

attentive state xH (resp. inattentive state xL). Fig. 11.11 further shows the impact

of visual aids aN and aY on the AAL in red and blue, respectively. The figure

demonstrates that aY can increase the mean of AAL yet increase its variance.

In Algorithm 11, we present the Q-learning process for participant m ∈M who
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Figure 11.10: The CAL of the exemplary VS transition trajectory shown in Fig.
11.9. The horizontal dotted line represents the attention threshold Xat. The visual
aids in four generation stages are aY , aN , aN , and aY , respectively, and the resulting
attention states are xL, xH , xH , and xL, respectively.

read email n ∈ N for T nm seconds. Define ηk(x, a) as the total number of visits

to attention state x ∈ X and visual aid a ∈ A up to generation stage k. Then,

we choose the learning rate γk(xk, ak) = η0

ηk(x,a)−1+η0
for all xk ∈ X , ak ∈ A to

guarantee the asymptotic convergence, where η0 ∈ (0,∞) is a constant parameter.

Based on the benchmark data set of M = 160 participants who inspect N = 12

emails in Section 11.3.1, the inspection time T nm,∀m ∈M, n ∈ N , follows a Burr

distribution; i.e., its cumulative distribution function is described by FBurr(t |

ρ1, ρ2, ρ3) = 1 − 1
(1+(t/ρ1)

ρ2 )ρ3
with the scale parameter ρ1 = 11.7, and the shape

parameters ρ2 = 62.5, ρ3 = 0.04. The average inspection time of M ×N samples

is 18.7 seconds. During T nm seconds of the email vetting process, the eye-tracking

device records the participant’s gaze locations, which leads to the VS transition

trajectory. In Algorithm 11, we simulate the human email-reading process through

the synthetic VS transition trajectory generated by the sufficient statistics P (at)
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Figure 11.11: The normalized histogram of average attention level under visual
aids aN and aY in red and blue, respectively.

and ϕ(at). Every T
pl seconds, ADVERT updates the Q-matrix and the visual aid

based on (11.2).

Following Section 11.1.4, we develop Algorithm 12 to illustrate the entire

attention enhancement loop that involves the consolidation of the data set from

M̄ ∈ {1, · · · ,M} participants and N̄ ∈ {1, · · · , N} emails. After the participant

m ∈ {1, · · · , M̄} finishes reading the email n ∈ {1, · · · , N̄}, Algorithm 11 returns

the Q-matrix and the attention state at the final generation stage Kn
m. These

results then serve as the inputs for the next email inspection until N bo emails have

been inspected.

Based on Algorithm 12, we plot the entire Q-learning updates with N bo = 100

emails in Fig. 11.12 that contains a total of 609 generations stages. The learning

results show that the visual aid aY outweighs aN for both attention states and

should be persistently applied under the current setting.
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Algorithm 11: [Individual Adaptation] Optimal visual-aid learning and
attention enhancement for participant m ∈M vetting email n ∈ N .

119 Input: Initial Q-matrix [Q0(x, a)]x∈X ,a∈A, initial attention state x0 ∈ X , the
number of visits ηk(x, a), and the hyperparameter θ = [Xat, T pl];

120 Initialize time t = 0 and the inspection length Tnm based on the Burr distribution
FBurr;

121 Set the initial visual aid a0 ∈ A based on the initial Q-matrix Q0, the initial
attention state x0 and the ϵk-greedy policy in Section 11.1.4;

122 while t < Tnm do
123 Obtain VS transition st ∈ S based on P (at) and ϕ(at) (i.e., use synthetic

visual data to achieve step 2 of Fig. 11.1);
124 Evaluate the CAL vk(t) based on rco, α as shown in step 3 of Fig. 11.1;

125 if t = kT pl, k ∈ Z+ then
126 if v̄k ≥ Xat (shown in step 4 of Fig. 11.1) then attentive attention state

xk = xH else inattentive attention state xk = xL;
127 Update Q-matrix Qk based on (11.2) as shown in step 5 of Fig. 11.1;
128 Implement the visual aid ak ∈ A based on the current Q-matrix Qk and

the ϵk-greedy policy (i.e., step 6 of Fig. 11.1);
129 if xk = x, ak = a then update the number of visits

ηk+1(x, a)← ηk(x, a) + 1;
130 Output the number of updates Kn

m ← k;

131 end

132 end
133 Implement the pre-trained neural network in Section 11.3.3 to estimate whether

participant m has made the correct judgment concerning email n, i.e.,
znm(θ) ∈ {zco, zwr} (i.e., use synthetic decision data to achieve step 7 of Fig.
11.1);

134 Return: Q-matrix [QKn
m
(x, a)]x∈X ,a∈A, final attention state xKn

m
∈ X , number of

visits ηKn
m
(x, a), and znm(θ);

11.3.3 Validation of Phishing Prevention Mechanism

After we obtain a participant’s synthetic response (characterized by his VS

transition trajectory) under the adaptive visual aids, we apply a pre-trained neural

network to estimate whether the participant has made a correct judgment as shown

in line 24 of Algorithm 11. In Section 11.3.3, we elaborate on the training process

of the neural network based on the data set used in Section 11.3.1. We apply the

Bayesian optimization in Algorithm 10 to evaluate the accuracy metric cac ∈ C as
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Algorithm 12: [Population Adaptation] Optimal visual-aid learning
through a consolidated data set of M̄ ∈ {1, · · · ,M} participants vetting
N̄ ∈ {1, · · · , N} emails.

135 Input: Hyperparameter θ = [Xat, T pl];
136 Initialize Q-matrix [Q0(x, a)]x∈X ,a∈A as a zero matrix,

η0(x, a) = 0, ∀x ∈ X , a ∈ A, and initial attention state x0 ∈ X ;
137 for participant m ∈ {1, · · · , M̄} vetting email n ∈ {1, · · · , N̄} do
138 Implement Algorithm 11 with the inputs of [Q0(x, a)]x∈X ,a∈A, x0 ∈ X , and

η0(x, a);
139 Save the outputs of [QKn

m
(x, a)]x∈X ,a∈A, xKn

m
∈ X , ηKn

m
(x, a), and znm(θ);

140 Cascade the outputs to the inputs of the next loop: Q0 ← QKn
m
, x0 ← xKn

m
,

and η0 ← ηKn
m
;

141 end
142 Return: the accuracy metric cac(θ) based on (11.3);

illustrated in step 8 of Fig. 11.1. In Section 11.3.3, we show the results.

Neural Network

In this case study, we regard the majority choice of the M = 160 participants as

the email’s true label. Without visual aids, these participants achieve an accuracy

of 74.6% on average. Under the assumption that the hyperparameters affect the

participants’ phishing recognition only through their VS transitions, we construct

a neural network with an LSTM layer, a dropout layer, and a fully-connected

layer to establish the relationship from the sequence of VS transition trajectory

[st]t∈Tn
m
to the label of judgment correctness znm ∈ {zco, zwr}. We split the entire

trials of the data set into 1113 training data and 128 test data. The trained neural

network achieves a sensitivity of 0.89, a specificity of 0.21, an f1-score of 0.73, and

an accuracy of 0.61.
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Figure 11.12: The Q-learning updates under hyperparameters Xat = 5.56 and
T pl = 3 seconds. The red and blue lines represent the Q-matrix values under visual
aids aN and aY , respectively. The solid and dashed lines represent the Q-matrix
values under attention states xL and xH , respectively.

Bayesian Optimization Results

As explained in Section 11.2, for each different application scenario, a meta

optimization of the accuracy metric cac(Xat, T pl) is required to find the optimal

attention threshold Xat and the period length T pl for visual-aid generation. To

obtain the value of cac(Xat, T pl) under different values of the hyperparameter

θ = [Xat, T pl], we need to implement the hyperparameter in Algorithm 12 and

repeat for nrp times to reduce the noise. Thus, the evaluation is costly and Bayesian

optimization in Algorithm 10 is a favorable method to achieve the meta optimization.

We illustrate the Bayesian optimization for L = 60 tuning stages in Fig. 11.13.

Each blue point represents the average value of cac(Xat, T pl) over nrp = 20 repeated

samples under the hyperparameter θ = [Xat, T pl]. Based on the estimated Gaussian

model in red, we find that the attention threshold Xat ∈ [1, 33] has a small impact

on phishing recognition while the period length T pl ∈ [60, 600] has a periodic impact

on phishing recognition. The optimal hyperparameters for phishing prevention are
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Xat,∗ = 8.8347 and T pl,∗ = 6.63 seconds.

Figure 11.13: The estimated Gaussian model of the objective function cac(θ)
concerning the hyperparameter θ = [Xat, T pl] in red with its contour on the bottom.
The blue points represent the sample values of 60 trials.

We illustrate the temporal procedure of Bayesian optimization of L = 60 tuning

stages in Fig. 11.14. As we increase the number of tuning stages to conduct more

trials and obtain more samples, the maximized value of the accuracy metric cac ∈ C

monotonously increases as shown in red. The blue line and its error bar represent

the mean and variances of the sample values at each tuning stage, respectively.

Throughout the L = 60 tuning stages, the variance remains small, which indicates

that ADVERT is robust to the noise of human attention and decision processes.

Compared to the benchmark accuracy of 74.6% without visual aids, participants

with visual aid achieve the accuracy of a minimum of 86% under all 60 trials of
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Figure 11.14: Accuracy metric cac(Xat, T pl) at L = 60 tuning stages. The blue
line and its error bar represent the mean value of the samples and their variances,
respectively. The red line represents the maximized value of the observed samples
up to the current tuning stage.

different hyperparameters. The above accuracy improvement corroborates that

the ADVERT’s attention enhancement mechanism illustrated in blue of Fig. 11.1

effectively serves as a stepping stone to facilitate phishing recognition. The results

shown in the blue line further corroborate the efficiency of the ADVERT’s phishing

prevention mechanism illustrated in orange of Fig. 11.1; i.e., in less than 50 tuning

stages, we manage to improve the accuracy of phishing recognition from 86.8% to

93.7%. Besides, the largest accuracy improvement (from 88.7% to 91.4%) happens

within the first 3 tuning stages. Thus, if we have to reduce the number of tuning

stages due to budget limits, ADVERT can still achieve a sufficient improvement of

phishing recognition accuracy.
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Chapter 12

RADAMS: Alert and Attention

Management Strategies against

Information-DoS Attacks

In Chapter 11, we have addressed the challenge of reactive attentional attacks,

where stealthy attackers exploit inattention to evade attention. In Chapter 12, we

address the challenge of proactive attentional attacks that aim to overload human

attention. We refer to this new class of attacks as the Informational Denial-of-Service

(IDoS) attacks.

IDoS is no stranger to us in this age of information explosion. We are commonly

overloaded with terabytes of unprocessed data or manipulated information on

online media. However, the targeted IDoS attacks on specific groups of people, e.g.,

security guards, operators at the nuclear power plant, and network administrators,

can pose serious threats to lifeline infrastructures and systems. The attacker

customizes attack strategies to targeted individuals or organizations to quickly and
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maximally deplete their human cognitive resources. As a result, common methods

(e.g., set tiered alert priorities) to mitigate alert fatigue are insufficient under these

targeted and intelligent attacks that generate massive feints strategically. There is

a need to understand this phenomenon, quantify its consequence and risks, and

develop new mitigation methods. In this work, we establish a probabilistic model to

formalize the definition of IDoS attacks, evaluate their severity levels, and assess the

induced cyber risks. The model captures the interaction among attackers, human

operators, and assistive technologies as highlighted by the orange, green, and blue

backgrounds, respectively, in Fig. 12.1.

Feint attack

Real attack

Feint attack

Detection Data-Driven 
Human-Assistive 

Security 
Technology

Attention 
Management Human 

Operator 
with Limited 

Attention

Figure 12.1: Interaction among IDoS attacks, human operators, and assistive
technologies.

Attackers generate feints and real attacks that trigger alerts of Intrusion Detec-

tion System (IDS). Due to the detection imperfectness, human operators need to

inspect these alerts in detail to determine the attacks’ types, i.e., feint or real, and

take responsive security decisions. The accuracy of the security decisions depends

on the inspection time and the operator’s sustained attention without distractions.

The large volume of feints exerts an additional cognitive load on each human

operator and makes it hard to focus on each alert, which can significantly decrease

the accuracy of his security decisions and increase cyber risks. Accepting the innate

human vulnerability, we aim to develop assistive technologies to compensate for
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the human attention limitation. Evidence from the cognitive load theory [221] has

shown that divided attention to multiple stimuli can degrade the performance and

cost more time than responding to these stimuli in sequence. Hence, we design

the Attention Management (AM) strategies to intentionally make some alerts

inconspicuous so that the human operator can focus on the other alerts and finish

the inspection with less time and higher accuracy. We further define risk measures

to evaluate the inspection results, which serves as the stepping stone to designing

adaptive AM strategies to mitigate attacks induced by human vulnerabilities.

12.1 High-Level Abstraction and Motivating Ex-

ample

As shown in Fig. 12.2, there is an analogy between the DoS attacks in commu-

nication networks and the IDoS attacks in the human-in-the-loop systems. Both of

them achieve their attack goals by exhausting the limited resources. DoS attacks

happen when the attacker generates a large number of superfluous requests to

deplete the computing resource of the targeted machine and prevent the fulfillment

of legitimate services. Analogously, IDoS attacks create a large amount of unpro-

cessed information to deplete cognitive resources of human operators and prevent

them from acquiring the knowledge contained in the information. We list several

assailable cognitive resources under IDoS attacks as follows.

• Attention: Paying sustained attention to acquire proper information is

costly. From an economic perspective, inattention occurs when the cost of

information acquisition is lower than the attention cost measured by the

information entropy [198]. IDoS attacks generate feints to distract the human
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Figure 12.2: The service request fulfillment process under DoS attacks and the
information processing flows under IDoS attacks in green and blue backgrounds,
respectively.

from the right information. An excessive number of feints prohibit the human

from process any information.

• Memory and Learning Capacity: Humans have limited memory and

learning capacity. Humans cannot remember the details or learn new things

if there is an information overload [221].

• Reasoning: Human decision-making consumes a large amount of energy,

which is one of the reasons why we have two modes of thought [108] (‘system

1’ thinking is fast, instinctive, and emotional; while ‘system 2’ thinking is

slower and more logical). IDoS attacks can exert a heavy cognitive load to

prevent humans from deliberative decisions that use the ‘system 2’ thinking.

Moreover, evidence shows the paradox of choice [190]; i.e., rich choices can

bring anxiety and prevent humans from making any decisions.

When these cognitive resources are exhausted, the information cannot be

processed correctly and timely and serves as noise that leads to alert fatigue [12].

We use operators in the control room of nuclear power plants as a stylized example
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to illustrate the consequences of IDoS attacks and motivate the need for the security

technology to assist human operators against IDoS attacks. In Fig. 12.3, a monitor

Figure 12.3: A stylized example of the monitor screen for operators in the control
room of nuclear power plants. The red triangles represent warnings and security
messages.

screen contains meters that show the real-time readings of the temperature, pressure,

and flow rate in a nuclear power plant. Based on the pre-defined generation rules,

warnings and messages pop up at different locations. Due to the complexity of

the nuclear control system, the inspection of these alerts consumes the operator’s

time and cognitive resources. The attempt to inspect all alerts and the constant

switching among them can lead to missed detection and erroneous behaviors. If

the alerts are generated strategically by attacks, they may further mislead humans

to take actions in the attacker’s favor; e.g., focusing on feints and ignoring the real

attacks that hide among feints.

One way to mitigate IDoS attacks is to train the operators or human users to

deal with the information overload and remain vigilant and productive under a

heavy cognitive load. However, attentional training can be time-consuming and

the effectiveness is not guaranteed. The second method is to recruit more human

operators to share the information load. It would require the coordination of the

operator team and can incur additional costs of human resources. The third method
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is to develop assistive technologies to rank and filter the information to alleviate

the cognitive load of human operators. It would leverage past experiences and data

analytics to pinpoint and prioritize critical alerts for human operators to process.

The first two methods aim to increase the capacity or the volume of the cognitive

resources in Fig. 12.2. The third method pre-processes the information so that it

adapts to the capacity and characteristics of cognitive resources.

In this work, we adopt the thrid method and develop a Resilient and Adaptive

Data-driven alert and Attention Management Strategy (RADAMS) to protect

Industrial Control Systems (ICSs) from IDoS attacks. We illustrate the overview

diagram of Resilient and Adaptive Alert and Attention Management Strategy

(RADAMS) in Fig. 12.4. RADAMS enriches the existing alert selection frameworks

with the IDoS attack model, the human attention model, and the human-assistive

security technology highlighted in red, green, and blue, respectively.

12.2 IDoS Attacks and Sequential Alert Arrivals

As illustrated in the first column of Fig. 12.4, after the IDoS attacker has

generated feint and real attacks, the IDS monitors the readings from physical layers

and log files from cyber layers and generates alerts according to the generation

rules. Then, the alerts are sent to the SOC and a triage system automatically

generates their category labels (e.g., the alerts’ criticality) based on the mapping

rules. The rules for alert generation and triage mapping are pre-defined and their

designs are not the focus of this work.
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Figure 12.4: The overview diagram of RADAMS against IDoS in ICS, which
incorporates the IDoS attack model, human attention model, and the human-
assistive security technology in the red, green, and blue boxes, respectively. The
processes in black are not the focus of this work. The modern SOC adopts a
hierarchical alert analysis process. The tier-1 SOC analysts, also referred to as the
operators, are in charge of real-time alert monitoring and inspections. The tier-2
SOC analysts are in charge of the in-depth analysis.

12.2.1 Feint and Real Attacks of Heterogeneous Targets

After the initial intrusion, privilege escalation, and lateral movement, IDoS

attackers can launch feint and real attacks sequentially as illustrated by the solid

red arrows in Fig. 12.5. With a deliberate goal of triggering alerts, feint attacks

require fewer resources to craft. Although feints have limited impacts on the target

system, they aggravate the alert fatigue by depleting human attention resources and

preventing human operators from a timely response to real attacks. For example,

the attacker can attempt to access a database with wrong credentials intentionally,

and in the meantime, gradually changes the temperature of the reactor of a nuclear
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power plant. The repeated log-in attempts trigger an excessive number of alerts so

that the overloaded human operators fail to pay sustained attention and respond

timely to the sensor alerts of the temperature deviation.

Hidden Attacks 
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and Decisions 
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Figure 12.5: The timelines of an IDoS attack, alerts under AM strategies, and
manual inspections are depicted in red, blue, and green, respectively. The inspection
stage h ∈ Z0+ is equivalent to the attack stage Ih ∈ Z0+. The red arrows represent
the sequential arrivals of feints and real attacks. The semi-transparent blue the
dashed green arrows represent the de-emphasized alerts and the alerts without
inspections, respectively.

We denote feint and real attacks as θFE and θRE, respectively, where Θ :=

{θFE, θRE} is the set of attacks’ types. Each feint or real attack can target cyber

components (e.g., servers, databases, and workstations) or physical components

(e.g., sensors of pressure, temperature, and flow rate) in the ICS. We define Φ as

the set of the potential attack targets. The stochastic arrival of these attacks is

modeled as a Markov renewal process where tk, k ∈ Z0+, is the time of the k-th

arrival. We refer to the k-th attack equivalently as the attack at attack stage

k ∈ Z0+ and let θk ∈ Θ and ϕk ∈ Φ be the attack’s type and target at attack

stage k ∈ Z0+, respectively. Define κAT ∈ KAT : Θ × Φ × Θ × Φ 7→ [0, 1] as

the transition kernel where κAT (θ
k+1, ϕk+1|θk, ϕk) denotes the probability that the

(k + 1)-th attack has type θk+1 ∈ Θ and target ϕk+1 ∈ Φ when the k-th attack



397

has type θk ∈ Θ and target ϕk ∈ Φ. The inter-arrival time τ k := tk+1 − tk is a

continuous random variable with support [0,∞) and Probability Density Function

(PDF) z ∈ Z : Θ×Φ×Θ×Φ 7→ R0+ where z(t|θk+1, ϕk+1, θk, ϕk) is the probability

that the inter-arrival time is t when the attacks’ types and targets at attack stage

k and k + 1 are θk, ϕk and θk+1, ϕk+1, respectively. The values of κAT ∈ KAT and

z ∈ Z are unknown to human operators and the designer of RADAMS. Attackers

can adapt κAT and z to different ICS and alert inspection schemes to achieve the

attack goals. We formally define IDoS attacks in Definition 38.

Definition 38. An IDoS attack is a sequence of feint and real attacks of heteroge-

neous targets, which can be characterized by the 4-tuple (Θ,Φ,KAT ,Z).

12.2.2 Alert Triage Process and System-Level Metrics

The alerts triggered by IDoS attacks contain device-level contextual information,

including the software version, hardware parameters, existing vulnerabilities, and

security patches. The alert triage process consists of rules that map the device-level

information to the system-level metrics, which helps human operators make timely

responses. Some essential metrics are listed as follows.

• Source sSO ∈ SSO: The ICS sensors or the cyber components that the alerts

are associated with.

• Time Sensitivity sTS ∈ STS: The length of time that the potential attack

needs to achieve its attack goals.

• Complexity sCO ∈ SCO: The degree of effort that a human operator takes

to inspect the alert.
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• Susceptibility sSU ∈ SSU : The likelihood that the attack succeeds and

inflicts damage on the protected system.

• Criticality sCR ∈ SCR: The consequence or the impact of the attack’s

damage.

These alert metrics are observable to the human operator and the RADAMS

designer, and they form the category label of an alert. We define the category

label associated with the k-th alert as sk := (skSO, s
k
TS, s

k
CO, s

k
SU , s

k
CR) ∈ S where

S := SSO × STS × SCO × SSU × SCR. The joint set S can be adapted to suit the

organization’s security practice. For example, we have STS = ∅ if time sensitivity

is unavailable or unimportant.

The alert triage process establishes a stochastic connection between the hidden

types and targets of IDoS attacks and the observable category labels of the associated

alerts. Let o(sk|θk, ϕk) be the probability of obtaining category label sk ∈ S when

the associated attack has type θk ∈ Θ and target ϕk ∈ Φ. The revelation kernel

o reflects the quality of the alert triage. For example, feints with lightweight

resource consumption usually have a limited impact. Thus, a high-quality triage

process should classify the associated alert as low criticality with a high probability.

Letting b(θk, ϕk) denote the probability that the k-th attack has type θk and

target ϕk at the steady-state, we can compute the steady-state distribution b in

closed form based on κAT . Then, the transition of category labels at different

attack stages is also Markov and is represented by κCL ∈ KCL : S × S 7→ [0, 1].

We can compute κCL = Pr(sk+1,sk)∑
sk+1∈S Pr(sk+1,sk)

based on κAT , o, b, where Pr(sk+1, sk) =∑
θk,θk+1∈Θ

∑
ϕk,ϕk+1∈Φ κAT (θ

k+1, ϕk+1|θk, ϕk)o(sk|θk, ϕk)o(sk+1|θk+1, ϕk+1)b(θk, ϕk).

In this work, we focus on the case where the IDS introduces the same delay
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between attacks and their triggered alerts. Since the sequences of attacks and alerts

have a one-to-one mapping, we can consider zero delay time without loss of generality.

Hence, the sequence of alerts associated with an IDoS attack (Θ,Φ,KAT ,Z) is also

a Markov renewal process characterized by the 3-tuple (S,KCL,Z).

12.3 Attention Model under IDoS Attacks

An SOC typically adopts a hierarchical alert analysis [236]. The attention

model in this section applies to the tier-1 SOC analysts, or the operators, who

are in charge of monitoring, inspecting, and responding to alerts in real time. As

illustrated by the green box in Fig. 12.4, the operators choose to inspect certain

alerts, dismiss the feints, and escalate the real attacks to tier-2 SOC analysts

for in-depth analysis. The in-depth analysis can last hours to months, during

which the tier-2 analysts correlate incidents from different components in the ICS

over long periods to build threat intelligence and analyze the impact. The threat

intelligence is then incorporated to form and update the generation rules of the

IDS and mapping rules of the triage process.

12.3.1 Alert Responses

Due to the high volume of alerts and the potential short-term surge arrivals,

human operators cannot inspect all alerts in real time. The uninspected alerts

receive an alert response wNI . Whether the operator chooses to inspect an alert

depends on the switching probability in Section 12.3.2.

When the operator inspects an alert, he can be distracted by the arrival of new

alerts and switch to newly-arrived alerts without completing the current inspection.
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We elaborate on the attention dynamics in Section 12.3.3. The alert with incomplete

inspection is labeled by wUN . Besides the insufficient inspection time, the operator’s

cognitive capacity constraint can also prevent him from determining whether the

alert is triggered by a feint or a real attack. In this work, we consider prudent

operators. When they cannot determine the attack’s type after a full inspection, the

associated alert is labeled as wUN . We elaborate on how the insufficient inspection

time and the operator’s cognitive capacity constraint lead to wUN , i.e., referred to

as the inadequate alert response, in Section 12.3.4. The alerts labeled as wNI and

wUN are ranked and queued up for delayed inspections at later stages.

When the operator successfully completes the alert inspection with a determinis-

tic decision, he either dismisses the alert (denoted by wFE) or escalates the alert to

tier-2 SOC analysts for in-depth analysis (denoted by wRE) as shown in Fig. 12.4.

We use wk ∈ W := {wFE, wRE, wUN , wNI} to denote the operator’s response to the

alert at attack stage k ∈ Z0+. We can extend the set W to suit the organization’s

security practice. For example, some organizations let the operators report their

estimations and confidence levels concerning incomplete alert inspection, i.e., divide

the label wUN into finer subcategories. At later stages, the delayed inspection

prioritizes the alerts estimated to be associated with real attacks of high confidence

levels.

12.3.2 Probabilistic Switches within Allowable Delay

Alerts are monitored in real time when they arrive. When the category label

of the new alert indicates higher time sensitivity, susceptibility, or criticality, the

operator can delay the current inspection (i.e., label the alert under inspection

as wUN) and switch to inspect the new alert. We denote κ∆kSW (sk+∆k|sk) as the
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operator’s switching probability when the previous alert at attack stage k and the

new alert at stage k +∆k,∆k ∈ Z+, have category label sk ∈ S and sk+∆k ∈ S,

respectively. As a probability measure,

∞∑
∆k=1

∑
sk+∆k∈S

κ∆kSW (sk+∆k|sk) ≡ 1,∀k ∈ Z0+,∀sk ∈ S. (12.1)

Since the operator cannot observe the attack’s hidden type and hidden target, the

switching probability κ∆kSW is independent of θk, ϕk and θk+1, ϕk+1. The switching

probability depends on the time that the operator has already spent on the current

inspection. For example, an operator becomes less likely to switch after spending a

long time inspecting an alert of low criticality or beyond his capacity, which can

lead to the Sunk Cost Fallacy (SCF).

We denote Dmax ∈ R+ as the Maximum Allowable Delay (MAD). At time

t ≥ tk, the k-th alert’s Age of Information (AoI) [227] is defined as tkAoI := t− tk.

This work focuses on time-critical ICSs where a defensive response for the k-th

alert is only effective when the alert’s AoI is within the MAD, i.e., tkAoI ≤ Dmax.

Therefore, the operator will be reminded when an alert’s AoI exceeds the MAD so

that he can switch to monitor and inspect new alerts. The MAD and the reminder

scheme help mitigate the SCF when the operators are occupied with old alerts and

miss the chance to monitor and inspect new alerts in real time.

12.3.3 Attentional Factors

We identify the following human and environmental factors affecting operators’

alert inspection and response processes.

• The operator’s expertise level denoted by yEL ∈ YEL.
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• The k-th alert’s category label sk ∈ S.

• The k-th attack’s type θk and target ϕk.

• The operator’s stress level ytSL ∈ R+, which changes with time t as new alerts

arrive.

The first three factors are the static attributes of the analyst, the alert, and the

IDoS attack, respectively. They determine the average inspection time, denoted by

d̄(yEL, s
k, θk, ϕk) ∈ R+, to reach a complete response wFE or wRE. For example, if

the inspected alert is of low complexity, the operator can reach a complete response

in a shorter time. Also, it takes a senior operator less time on average to reach

a complete alert response than a junior one does. We use d(yEL, s
k, θk, ϕk) to

represent the Actual Inspection Time Needed (AITN) when the operator is of

expertise level yEL, the alert is of category label sk, and the attack has type θk and

target ϕk. AITN d(yEL, s
k, θk, ϕk) is a random variable with mean d̄(yEL, s

k, θk, ϕk).

The fourth factor reflects the temporal aspect of human attention during the

inspection process. Evidence has shown that the continuous arrival of the alerts

can increase the stress level of human operators [8] and 52% of employees attributes

their mistakes to stress [211]. We denote nt ∈ Z0+ as the number of alerts that

arrive during the current inspection up to time t ∈ [0,∞) and model the operator’s

stress level ytSL as an increasing function fSL of nt, i.e., ytSL = fSL(n
t). At time

t ∈ [0,∞), the human operator’s Level of Operational Efficiency (LOE), denoted

by ωt ∈ [0, 1], is a function fLOE of the stress level ytSL, i.e.,

ωt = fLOE(y
t
SL) = (fLOE ◦ fSL)(nt), ∀t ∈ [0,∞). (12.2)

Based on the Yerkes–Dodson law, the function fLOE follows an inverse U -shape
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that contains the following two regions. In region one, a small number of alerts

result in a moderate stress level and allow human operators to inspect the alert

efficiently. In region two, the LOE starts to decrease when the number of alerts to

inspect is beyond some threshold n̄(yEL, s
k) and the human operator is overloaded.

The value of the attention threshold n̄(yEL, s
k) depends on the operator’s expertise

level yEL ∈ YEL and the alert’s category label sk ∈ S. For example, it requires more

(resp. fewer) alerts (i.e., higher (resp. lower) attention threshold) to overload a

senior (resp. an inexperienced) operator. We can also adapt the value of n̄(yEL, s
k)

to different scenarios. In the extreme case where all alerts are of high complexity

and create a heavy cognitive load, we let n̄(yEL, s
k) = 0, ∀yEL ∈ YEL, sk ∈ S,

and the LOE decreases monotonously with the number of alert arrivals during an

inspection.

12.3.4 Alert Responses under Time and Capacity Limita-

tions

After we identify attentioinal factors in Section 12.3.3, we illustrate their impacts

on the operators’ alert responses as follows. We define the Effective Inspection Time

(EIT) during inspection time [t1, t2] as the integration ω̃t1,t2 :=
∫ t2
t1
ωtdt. When the

operator is overloaded and has a low LOE during [t1, t2], the EIT ω̃t1,t2 is much

shorter than the actual inspection time t2 − t1.

Suppose that the operator of expertise level yEL inspects the k-th alert for a

duration of [t1, t2]. If the EIT has exceed the AITN d(yEL, s
k, θk, ϕk), then the

operator can reach a complete response wFE or wRE with a high success probability

denoted by pSP (yEL, s
k, θk, ϕk) ∈ [0, 1]. However, when ω̃t1,t2 < d(yEL, s

k, θk, ϕk), it

indicates that the operator has not completed the inspection and the alert response
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concerning the k-th alert is wk = wUN . The success probability pSP depends on

the operator’s capacity to identify attacks’ types, which leads to the definition of

the capacity gap below.

Definition 39 (Capacity Gap). For an operator of expertise level yEL ∈ YEL, we

define pCG(yEL, s
k, θk, ϕk) := 1− pSP (yEL, sk, θk, ϕk) as his capacity gap to inspect

an alert with category label sk ∈ S, type θk ∈ Θ, and target ϕk ∈ Φ defined in

Section 12.2.

12.4 Human-Assistive Security Technology

As illustrated in Section 12.3, the frequent arrival of alerts triggered by IDoS

attacks can overload the human operator and reduce the LOE and the EIT. To

compensate for the human’s attentional limitation, we can intentionally make some

alerts less noticeable, e.g., without sounds or in a light color, based on their category

labels. As illustrated by the blue box in Fig. 12.4, based on the category labels

from the triage process, RADAMS automatically emphasizes and de-emphasizes

alerts, and then presents them to the tier 1 SOC analysts.

12.4.1 Adaptive AM Strategy

In this work, we focus on the class of Attention Management (AM) strategies,

denoted by A := {am}m∈{0,1,··· ,M}, that de-emphasize consecutive alerts. As ex-

plained in Section 12.3.1, the operator can only inspect some alerts in real time.

Thus, we use Ih ∈ Z0+ and tIh ∈ [0,∞) to denote the index and the time of the

alert under the h-th inspection; i.e., the inspection stage h ∈ Z0+ is equivalent

to the attack stage Ih ∈ Z0+. Whenever the operator starts a new inspection
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at inspection stage h ∈ Z0+, RADAMS determines the AM action ah ∈ A for

the h-th inspection based on the stationary strategy σ ∈ Σ : S 7→ A that is

adaptive to the category label of the h-th alert. We illustrate the timeline of the

manual inspections and the AM strategies in green and blue, respectively, in Fig.

12.5. The solid and dashed green arrows indicate the inspected and uninspected

alerts, respectively. The non-transparent and semi-transparent blue arrows indicate

the emphasized and de-emphasized alerts, respectively. At inspection stage h, if

ah = am, RADAMS will make the next m alerts less noticeable; i.e., the alerts at

attack stages Ih + 1, · · · , Ih +m are de-emphasized. Denote κ̄
Ih+1−Ih,ah
SW (sIh+1|sIh)

as the operator’s switching probability to these de-emphasized alerts under the

AM action ah ∈ A. Analogously to (12.1), the following holds for all h ∈ Z0+ and

ah ∈ A, i.e.,

∞∑
Ih+1=Ih+1

∑
sIh+1∈S

κ̄
Ih+1−Ih,ah
SW (sIh+1|sIh) ≡ 1, ∀sIh ∈ S. (12.3)

The deliberate de-emphasis on selective alerts brings the following tradeoff. On the

one hand, these alerts do not increase the operator’s stress level and the operator

can pay sustained attention to the alert under inspection with high LOE and

EIT. On the other hand, these alerts do not draw the operator’s attention and

the operator is less likely to switch to them during the real-time monitoring and

inspections.

Since the operator may switch to inspect a de-emphasized alert with switching

probability κ̄
Ih+1−Ih,ah
SW (e.g., the h-inspection in Fig. 12.5), RADAMS recomputes

the AM strategy and implements the new strategy whenever the operator has

started to inspect a new alert. Although the operator can switch unpredictably,
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Proposition 18 shows that the transition of the inspected alerts’ category labels is

Markov.

Proposition 18. For a stationary AM strategy σ ∈ Σ, the set of random variables

(SIh ,TIh)h∈Z0+ is a Markov renewal process.

Proof. The sketch of the proof includes two steps. First, we prove that the state

transition from sIh to sIh+1 is Markov for all h ∈ Z0+. Due to the uncertainty of

switching in inspection, the transition stage Ih+1 is also a random variable for all

h ∈ Z0+ and we can represent the transition probability as

Pr(SIh+1 = sIh+1 |sIh) =
∞∑
l=1

Pr(Ih+1 = Ih + l) · Pr(SIh+1 = sIh+1 |sIh),

where Pr(Ih+1 = Ih+ l) is the probability that the (h+1)-th inspection happens at

attack stage Ih+ l. The term Pr(SIh+1 = sIh+1|sIh) is Markov and can be computed

based on κCL. The term Pr(Ih+1 = Ih + l) depends on d(yEL, s
Ih+l

′
, θIh+l

′
, ϕIh+l

′
),

κl
′
SW , κ̄l

′
SW , τ l

′
, for all l′ ∈ {1, · · · , l}. Since sIh+l

′
, θIh+l

′
, ϕIh+l

′
, l′ ∈ {1, · · · , l},

are all stochastically related to sIh and sIh+1 based on o, κAT and κCL, the term

Pr(Ih+1 = Ih + l) depends on sIh and sIh+1 for all l ∈ Z+.

Then, we show that the distribution of the inter-arrival time TIh,m
IN := TIh+1−TIh

only depends on sIh and sIh+1 . Analogously, the cumulative distribution function

of TIh,m
IN is

Pr(TIh,m
IN ≤ t) =

∞∑
l=1

Pr(Ih+1 = Ih + l) · Pr(TIh,m
IN ≤ t),

and hence we arrive at the Markov property.
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12.4.2 Stage Cost and Expected Cumulative Cost

For each alert at attack stage k ∈ Z0+, RADAMS assigns a stage cost c̄(wk, sk)

based on the alert response wk ∈ W and the category label sk ∈ S. The value of

the cost can be estimated by the salary of SOC analysts and the estimated loss

of the associated attack. For example, c̄(wUN , s
Ih) and c̄(wNI , s

Ih) are positive

costs as those alerts without a complete response incur additional workloads. The

delayed inspections also expose the organization to the threats of time-sensitive

attacks. On the other hand, c̄(wFE, s
Ih) and c̄(wRE, s

Ih) are negative costs as the

alerts with complete alert response wFE and wRE reduce the workload of tier 2

SOC analysts and enable them to obtain threat intelligence.

When the operator starts a new inspection at inspection stage h+ 1, RADAMS

will evaluate the effectiveness of the AM strategy for the h-th inspection. The

performance evaluation is reflected by the Expected Consolidated Cost (ECoC)

c : S × A 7→ R at each inspection stage h ∈ Z0+. We denote the realization of

c(sIh , ah) as the Consolidated Cost (CoC) c̃Ih(sIh , ah). Since the AM strategy σ

at each inspection stage can affect the future human inspection process and the

alert responses, we define the Expected Cumulative Cost (ECuC) u(sIh , σ) :=∑∞
h=0 γ

hc(sIh , σ(sIh)) under adaptive strategy σ ∈ Σ as the long-term performance

measure. The goal of the assistive technology is to design the optimal adaptive

strategy σ∗ ∈ Σ that minimizes the ECuC u under the presented IDoS attack based

on the category label sIh ∈ S at each inspection stage h. We define v∗(sIh) :=

minσ∈Σ u(s
Ih , σ) as the optimal ECuC when the category label is sIh ∈ S. We refer

to the default AM strategy σ0 ∈ Σ as the one when no AM action is applied under

all category labels, i.e., σ0(sIh) = a0, ∀sIh ∈ S.
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12.4.3 Reinforcement Learning

Due to the absence of the following exact model parameters, RADAMS has to

learn the optimal AM strategy σ∗ ∈ Σ based on the operator’s alert responses in

real time.

• Parameters of the IDoS attack model (e.g., κAT and z) and the alert generation

model (e.g., o) in Section 12.2.

• Parameters of the human attention model (e.g., fLOE and fSl), inspection

model (e.g., κ∆kSW , κ̄
Ih+1−Ih,ah
SW , and d), and alert response model (e.g., yEL and

pSP ) in Section 12.3.

Define Qh(sIh , ah) as the estimated ECuC during the h-th inspection when the

category label is sIh ∈ S and the AM action is ah. Based on Proposition 18, the

state transition is Markov, which enables Q-learning as follows.

Qh+1(sIh , ah) := (1− αh(sIh , ah))Qh(sIh , ah)

+ αh(sIh , ah)[c̃Ih(sIh , ah) + γmin
a′∈A

Qh(sIh+1 , a′)], (12.4)

where sIh and sIh+1 are the observed category labels of the alerts at the attack

stage Ih and Ih+1, respectively. When the learning rate αh(sIh , ah) ∈ (0, 1) satisfies∑∞
h=0 α

h(sIh , ah) = ∞,∑∞
h=0(α

h(sIh , ah))2 < ∞,∀sIh ∈ S,∀ah ∈ A, and all state-

action pairs are explored infinitely, mina′∈AQ
h(sIh , a′) converges to the optimal

ECuC v∗(sIh) with probability 1 as h → ∞. At each inspection stage h ∈ Z0+,

RADAMS selects AM strategy ah ∈ A based on the ϵ-greedy policy; i.e., RADAMS

chooses a random action with a small probability ϵ ∈ [0, 1], and the optimal action

argmina′∈AQ
h(sIh , a′) with probability 1− ϵ.
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Algorithm 13: Algorithm to Learn the Adaptive AM strategy

143 Input K: The total number of attack stages;

144 Initialize The operator starts the h-th inspection under AM action ah ∈ A; Ih = k0;

c̃Ih(sIh , ah) = 0;
145 for k ← k0 + 1 to K do
146 if The operator has finished the Ih-th alert (i.e., EIT > AITN), then
147 if Capable (i.e., rand ≤ pSP (yEL, s

k, θk, ϕk)) then
148 Dismiss (i.e., wIh = wFE) or escalate (i.e., wIh = wRE) the Ih-th alert;
149 else
150 Queue up the Ih-th alert, i.e., wIh = wUN ;

151 c̃Ih(sIh , ah) = c̃Ih(sIh , ah) + c̄(wIh , sIh);

152 Ih+1 ← k; The operator starts to inspect the k-th alert with category label sIh+1 ;

153 Update Qh+1(sIh , ah) via (12.4) and obtain the AM action ah+1 by ϵ-greedy
policy;

154 c̃h+1(sIh+1 , ah+1) = 0; h← h+ 1;

155 else
156 if The operator chooses to switch or The MAD is reached, i.e., tk − tIh ≥ Dmax

then
157 Queue up the Ih-th alert (i.e., wIh = wUN );

158 c̃Ih(sIh , ah) = c̃Ih(sIh , ah) + c̄(wUN , sIh);
159 Ih+1 ← k; The operator starts to inspect the k-th alert with category label

sIh+1 ;

160 Update Qh+1(sIh , ah) via (12.4) and obtain the AM action ah+1 by ϵ-greedy
policy;

161 c̃h+1(sIh+1 , ah+1) = 0; h← h+ 1;

162 else
163 The operator continues the inspection of the Ih-th alert with decreased LOE;

164 The k-th alert is queued up for delayed inspection (i.e., wk = wNI);

165 c̃Ih(sIh , ah) = c̃Ih(sIh , ah) + c̄(wNI , s
k);

166 Return Qh(s, a),∀s ∈ S, a ∈ A;

We present the algorithm to learn the adaptive AM strategy based on the

operator’s real-time alert monitoring and inspection process in Algorithm 13. Each

simulation run corresponds to the operator’s work shift of 24 hours at the SOC.

Since the SOC can receive over 10 thousand of alerts in each work shift, we can

use infinite horizon to approximate the total number of attack stages K > 10, 000.

Whenever the operator starts to inspect a new alert at inspection stage Ih+1,

RADAMS applies Q-learning in (12.4) based on the category label sIh+1 of the
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newly arrived alert and determines the AM action ah+1 for the h + 1 inspection

based on the ϵ-greedy policy as shown in lines 12 and 19 of Algorithm 13. The CoC

c̃Ih(sIh , ah) of the h-th inspection under the AM action ah ∈ A and the category

label sIh of the inspected alert can be computed iteratively based on the stage cost

c̄(wk, sk) of the alerts during the attack stage k ∈ {Ih, · · · , Ih+1 − 1} as shown in

lines 13, 20, and 24 of Algorithm 13.

12.5 Theoretical Analysis

In Section 12.5, we focus on the class of ambitious operators who attempt to

inspect all alerts, i.e., κSW (sk+∆k|sk) = 1{∆k=1},∀sk, sk+∆k ∈ S,∀∆k ∈ Z+. To

assist this class of operators, the implemented AM action am,m ∈ {0, 1, · · · ,M},

chooses to make the selected alerts fully unnoticeable. Then, under am ∈ A, the

operator at inspection stage h can pay sustained attention to inspect the alert of

category label sIh ∈ S for m + 1 attack stages. Moreover, the operator switches

to the new alert at attack stage Ih+1, i.e.,
∑

sIh+m+1∈S κ̄
Ih+1−Ih,am
SW (sIh+m+1|sIh) =

1{Ih+1−Ih=m+1}. Throughout the section, we omit the variable of the expertise level

yEL in functions d, d̄, pSP , and pCG as yEL is a constant for all attack stages.

12.5.1 Security Metrics

We propose two security metrics in Definition 40 to evaluate the performance

of ambitious operators under IDoS attacks and different AM strategies. The first

metric, denoted as pUN(s
Ih , ah), is the probability that the operator chooses wUN

during the h-th inspection under the category label sIh ∈ S and AM action ah ∈ A.

This metric reflects the Attentional Deficiency Level (ADL) of the IDoS attack. For
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example, as the attackers generate more feints at a higher frequency, the operator

is persistently distracted by the new alerts, and it becomes unlikely for him to

fully respond to an alert. The ADL pUN(s
Ih , ah) is high in this scenario. We use

the ECuC u(sIh , σ) as the second metric that evaluates the IDoS risk under the

category label sIh ∈ S and the AM strategy σ ∈ Σ. For both metrics, smaller

values are preferred.

Definition 40 (Attentional Deficiency Level and Risk). Under category label

sIh ∈ S and the stationary AM strategy σ ∈ Σ, we define pUN(s
Ih , σ(sIh)) and

u(sIh , σ) as the Attentional Deficiency Level (ADL) and the risk of the IDoS attacks

defined in Section 12.2, respectively.

12.5.2 Closed-Form Computations

The Markov renewal process that characterizes the IDoS attack or the associated

alert sequence follows a Poisson process when Condition 1 holds.

Condition 1 (Poisson Arrival). The inter-arrival time τ k for all attack stage

k ∈ Z0+ is exponentially distributed with the same arrival rate denoted by β > 0, i.e.,

z(τ |θk+1, ϕk+1, θk, ϕk) = βe−βτ , τ ∈ [0,∞) for all θk+1, θk ∈ Θ and ϕk+1, ϕk ∈ Φ.

Recall that random variable TIh,m
IN represents the inspection time of the Ih-th

alert under the AM action ah = am ∈ A. For the ambitious operators under AM

action am ∈ A at inspection stage h, the next inspection happens at attack stage

Ih+1 = Ih +m + 1. Thus, Ih+1 is no longer a random variable. As a summation

of m + 1 i.i.d. exponential distributed random variables of rate β, TIh,m
IN follows

an Erlang distribution denoted by z̄ with shape m+ 1 and and rate β > 0 when

condition 1 holds, i.e., z̄(τ) = βm+1τme−βτ

m!
, τ ∈ [0,∞).
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Denote phSD(w
Ih |sIh , ah; θIh , ϕIh) as the probability that the operator makes

alert response wIh at inspection stage h. To obtain a theoretical underpinning,

we consider the case where the AITN equals the average inspection time, i.e.,

d(sk, θk, ϕk) = d̄(sk, θk, ϕk). Then, the operator under AM action am makes a

complete alert response (i.e., wIh ∈ {wFE, wRE}) at inspection stage h for category

label sIh if the inspection time τ Ih,mIN is greater than the AITN. The probability

of the above event can be represented as
∫∞
d(sIh ,θIh ,ϕIh )

pSP (s
Ih , θIh , ϕIh)z̄(τ)dτ =

pSP (s
Ih , θIh , ϕIh) ·∑m

n=0
1
n!
e−βd(s

Ih ,θIh ,ϕIh )(βd(sIh , θIh , ϕIh))n, which leads to

phSD(wUN |sIh , am; θIh , ϕIh) = 1− pSP (sIh , θIh , ϕIh)

·
m∑
n=0

1

n!
e−βd(s

Ih ,θIh ,ϕIh )(βd(sIh , θIh , ϕIh))n. (12.5)

Then, the ADL pUN(s
Ih , ah) can be computed as

∑
θIh∈Θ,ϕIh∈Φ

Pr(θIh , ϕIh |sIh) · phSD(wUN |sIh , ah; θIh , ϕIh), (12.6)

where the conditional probability Pr(θIh , ϕIh|sIh) can be computed via the Bayesian

rule, i.e., Pr(θIh , ϕIh|sIh) = o(sIh |θIh ,ϕIh )b(θIh ,ϕIh )∑
θIh∈Θ,ϕIh∈Φ

o(sIh |θIh ,ϕIh )b(θIh ,ϕIh ) .

We can compute the ECoC c(sIh , am) explicitly as

c(sIh , am) = mc̄(wNI , s
Ih) +

∑
θIh∈Θ,ϕIh∈Φ

Pr(θIh , ϕIh|sIh)

·
∑

wIh∈W

phSD(w
Ih|sIh , am; θIh , ϕIh)c̄(wIh , sIh). (12.7)
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For prudent operators in Section 12.3.1, we have

phSD(wi|sIh , ah; θi, ϕIh) = 1− phSD(wUN |sIh , ah; θi, ϕIh), (12.8)

for all i ∈ {FE,RE}, sIh ∈ S, ah ∈ A, ϕIh ∈ Φ, h ∈ Z0+. Plugging (12.8) into

(12.7), we can simplify the ECoC c(sIh , am) as

c(sIh , am) =
∑
ϕIh∈Φ

∑
i∈{FE,RE}

Pr(θi, ϕ
Ih |sIh) · phSD(wi|sIh , am; θi, ϕIh)

· [c̄(wi, sIh)− c̄(wUN , sIh)] +mc̄(wNI , s
Ih) + c̄(wUN , s

Ih). (12.9)

As shown in Proposition 19, the ADL and the risk are monotone function of

βd(sIh , θIh , ϕIh) for each AM strategy.

Proposition 19. If condition 1 holds, then the ADL pUN (s
Ih , σ(sIh)) and the risk

u(sIh , σ) of an IDoS attack under category label sIh ∈ S and AM strategy σ ∈ Σ

increase in the value of the product βd(sIh , θIh , ϕIh).

Proof. First, since phSD(wUN ) in (12.5) increases monotonously with respect to the

product βd(sIh , θIh , ϕIh), the values of phSD(wFE) and p
h
SD(wRE) in (12.8) decrease

monotonously with respect to the product. Plugging (12.5) into (12.6), we obtain

that pUN(s
Ih , am) in (12.10) under any am ∈ A and sIh ∈ S is a summation of

functions increasing in βd(sIh , θIh , ϕIh).

pUN(s
Ih , am) =

∑
ϕIh∈Φ

∑
i∈{FE,RE}

Pr(θi, ϕ
Ih|sIh)[1−

pSP (s
Ih , θi, ϕ

Ih) ·
m∑
n=0

1

n!
e−βd(s

Ih ,θi,ϕ
Ih )(βd(sIh , θi, ϕ

Ih))n]. (12.10)

Second, since c̄(wFE, s
Ih) and c̄(wRE, s

Ih) are negative and c̄(wUN , s
Ih) is positive,
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the ECoC in (12.9) decreases with βd(sIh , θIh , ϕIh) under any am ∈ A and sIh ∈ S.

Then, the risk also decreases with the product due to the monotonicity of the

Bellman operator [19].

Remark 29 (Product Principle of Attention (PPoA)). On the one hand,

as β increases, the feint and real attacks arrive at a higher frequency on average,

resulting in a higher demand of attention resources from the human operator. On

the other hand, as d(sIh , θIh , ϕIh) increases, the human operator requires a longer

inspection time to determine the attack’s type, leading to a lower supply of attention

resources. Proposition 19 characterizes the PPoA that the ADL and the risk of

IDoS attacks depend on the product of the supply and demand of attention resources

for any stationary AM strategy σ ∈ Σ.

12.5.3 Fundamental Limits under AM strategies

Section 12.5.3 aims to show the fundamental limits of the IDoS attack’s ADL,

the ECoC, and the risk under different AM strategies. Define the shorthand

notation: p(sIh) :=
∑

ϕIh∈Φ
∑

i∈{FE,RE} Pr(θi, ϕ
Ih|sIh)pCG(sIh , θi, ϕIh).

Lemma 11. If Condition 1 holds and M →∞, then for each sIh ∈ S, the ADL

pUN(s
Ih , am) decreases strictly to p(sIh) as m increases.

Proof. Since 1
n!
e−βd(s

Ih ,θIh ,ϕIh ))(βd(sIh , θIh , ϕIh))n > 0 for all m ∈ {0, · · · ,M}, the

value of pUN(s
Ih , am) in (12.10) strictly decreases as m increases. Moreover,

limm→∞
∑m

n=0
1
n!
e−βd(s

Ih ,θIh ,ϕIh ))(βd(sIh , θIh , ϕIh))n = 1 leads to the following equa-

tion minm∈{0,··· ,M} pUN(s
Ih , am) = p(sIh) for all sIh ∈ S.

Remark 30 (Fundamental Limit of ADL). Lemma 11 characterizes that the

minimum ADL under all AM strategies am ∈ A is p(sIh). The value of p(sIh)
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depends on both the operator’s capacity gap pCG(s
Ih , θFE, ϕ

Ih) and the frequency of

feint and real attacks with different targets, i.e., Pr(θIh , ϕIh|sIh),∀θIh ∈ Θ, ϕIh ∈ Φ.

Denote the expected reward of making a complete alert response (i.e., the

rewards to dismiss feints and escalate real attacks) as

λ(sIh ,m, ϕIh) =
∑

i∈{FE,RE}

c̄(wi, s
Ih) · Pr(θi, ϕIh|sIh)

· phSP (sIh , θi, ϕIh) · [
m∑
n=0

1

n!
e−βd(s

Ih ,θi,ϕ
Ih )(βd(sIh , θi, ϕ

Ih))n].

Combining (12.10) and (12.9), we can rewrite ECoC as a combination of the

following three terms in (12.11).

c(sIh , am) = pUN(s
Ih , am)c̄(wUN , s

Ih) +mc̄(wNI , s
Ih) +

∑
ϕIh∈Φ

λ(sIh ,m, ϕIh).

(12.11)

Based on Lemma 11, the first term pUN(s
Ih , am)c̄(wUN , s

Ih) and the third term∑
ϕIh∈Φ λ(s

Ih ,m, ϕIh) decrease in m while the second term mc̄(wNI , s
Ih) in (12.11)

increases in m linearly at the rate of c̄(wNI , s
Ih). The tradeoff among the three

terms is summarized below.

Remark 31 (Tradeoff among ADL, Reward of Alert Attention, and

Impact for Alert Inattention). Based on Lemma 11 and (12.11), increasing m

reduces the ADL, and achieves a higher reward of completing the alert response.

However, the increase of m also linearly increases the impact for alert inattention

represented by mc̄(wNI , s
Ih), the cost of uninspected alerts. Thus, we need to strike

a balance among these terms to reduce the IDoS risk.
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We define λmin(s
Ih , ϕIh) :=

∑
i∈{FE,RE} c̄(wi, s

Ih) Pr(θi, ϕ
Ih|sIh)phSP (sIh , θi, ϕIh),

λϵ0max(s
Ih , ϕIh) := (1− ϵ0)λmin(sIh , ϕIh), cmin(sIh) :=

∑
ϕIh∈Φ λmin(s

Ih , ϕIh) + p(sIh)

c̄(wUN , s
Ih)+mc̄(wNI , s

Ih), and cϵ0max(s
Ih) :=

∑
ϕIh∈Φ λ

ϵ0
max(s

Ih , ϕIh)+[p(sIh)+ϵ0(1−

p(sIh))]c̄(wUN , s
Ih) +mc̄(wNI , s

Ih).

Proposition 20. Consider the scenario where Condition 1 holds and M > m(sIh).

For any ϵ0 ∈ (0, 1] and sIh ∈ S, there exists m(sIh) ∈ Z+ such that c(sIh , am) ∈

[cmin(s
Ih), cϵ0max(s

Ih)],∀am ∈ A, when m ≥ m(sIh). Moreover, the lower bound

cmin(s
Ih) and the upper bound cϵ0max(s

Ih) increase in m linearly at the same rate

c̄(wNI , s
Ih).

Proof. For any ϵ0 ∈ (0, 1], there exists m(sIh) ∈ Z+ such that

m∑
n=0

1

n!
e−βd(s

Ih ,θIh ,ϕIh )(βd(sIh , θIh , ϕIh))n ∈ [1− ϵ0, 1]

when m ≥ m(sIh). Based on Lemma 11, if m > m(sIh), then pUN(s
Ih , am) ∈

[p(sIh), p(sIh) + ϵ0(1− p(sIh))]. Plugging it into (12.11), we obtain the results.

Let σm ∈ Σ denote the AM strategy that chooses to de-emphasize the next

m ≥ m(sIh) alerts for all category label sIh ∈ S. The monotonicity of the Bellman

operator [19] leads to the following corollary.

Corollary 3. Consider the scenario where Condition 1 holds and M > m(sIh).

For any ϵ0 ∈ (0, 1] and sIh ∈ S, the upper and lower bounds of the risk u(sIh , σm)

increase in m linearly at the same rate of c̄(wNI , s
Ih).

Remark 32 (Fundamental Limit of ECoC and Risk). Proposition 20 and

Corollary 3 show that the maximum length of the de-emphasized alerts for any

sIh ∈ S should not exceed m(shm) to reduce the ECoC and the risk of IDoS attacks.
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12.6 Case Study

The following section presents case studies to demonstrate the impact of IDoS

attacks on human operators’ alert inspections and alert responses, and further

illustrate the effectiveness of RADAMS. Throughout the section, we adopt the

attention model in Section 12.3.

12.6.1 Experiment Setup

We consider an IDoS attack targeting either the Programmable Logic Controllers

(PLCs) in the physical layer or the data centers in the cyber layer of an ICS. We

denoted these two targets as ϕP and ϕC , respectively. They constitute the binary set

of attack targets Φ = {ϕP , ϕC} defined in Section 12.2.1. The SOC of the ICS is in

charge of monitoring, inspecting, and responding to both the cyber and the physical

alerts. We consider two system-level metrics defined in Section 12.2.2, the source

SSO = {sSO,P , sSO,C} and the criticality SCR = {sCR,L, sCR,H}, i.e., S = SSO×SCR.

Let sSO,P and sSO,C represent the source of physical and cyber layers, respectively.

We assume that the alert triage process can accurately identify the source of

attacks, i.e., Pr(sSO,i|ϕj) = 1{i=j},∀i, j ∈ {P,C}. Let sCR,L and sCR,H represent

low and high criticality, respectively. We assume that the triage process cannot

accurately identify feints as low criticality and real attacks as high criticality. The

revelation kernel is separable and takes the form of o(sSO, sCR|θi, ϕj) = Pr(sSO|ϕj) ·

Pr(sCR|θi), sSO ∈ SSO, sCR ∈ SCR, i ∈ {FE,RE}, j ∈ {P,C}. We choose the

values of o so that the attack is more likely to be feint (resp. real) when the

criticality level is low (resp. high).

The inter-arrival time at attack stage k ∈ Z0+ follows an exponential distribution
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with rate β(θk, θk+1) parameterized by the attack’s type θk, θk+1. Thus, the average

inter-arrival time µ(θk, θk+1) := 1/β(θk, θk+1) also depends on the attack’s type

at the current and the next attack stages as shown in Table 12.1. We choose the

benchmark values based on the literature (e.g., [191, 192] and the references within)

and attacks can change these values in different IDoS attacks.

Table 12.1: Benchmark values of the average inter-arrival time µ(θk, θk+1) =
1/β(θk, θk+1),∀θk, θk+1 ∈ Θ.

Average inter-arrival time from feints to real attacks 6s
Average inter-arrival time from real attacks to feints 10s

Average inter-arrival time between feints 15s
Average inter-arrival time between real attacks 8s

The average inspection time d̄ in Section 12.3.3 depends on the criticality skCR

and attack’s type θk at attack stage k ∈ Z0+ as shown in Table 12.2. We choose

the benchmark values of d̄(skCR, θ
k) based on [191], and these values can change for

different human operators and IDoS attacks. We add a random noise uniformly

distributed in [−5, 5] to the average inspection time to simulate the AITN.

Table 12.2: Benchmark values of the average inspection time d̄(skCR, θ
k), ∀θk ∈

Θ, skCR ∈ SCR.

Average time to inspect feints of low criticality 6s
Average time to inspect feints of high criticality 8s

Average time to inspect real attacks of low criticality 15s
Average time to inspect real attacks of high criticality 20s

The stage cost c̄(wk, skSO) at attack stage k ∈ Z0+ in Section 12.4.2 depends on

the alert response wk ∈ W and the source skSO ∈ SSO. We determine the benchmark

values of c̄(wk, skSO) per alert in Table 12.3 based on the salary of the SOC analysts

and the estimated loss of the associated attacks.



419
Table 12.3: The benchmark values of the stage cost c̄(wk, skSO),∀wk ∈ W , skSO ∈
SSO.

Reward of dismissing feints wFE $80
Reward of identifying real attacks wRE in physical layer $500
Reward of identifying real attacks wRE in cyber layer $100

Cost of incomplete alert response wUN or wNI $300

12.6.2 Analysis of Numerical Results

We plot the dynamics of the operator’s alert responses in Fig. 12.6 under the

benchmark experiment setup in Section 12.6.1. We use green, purple, orange, and

yellow to represent wUN , wNI , wFE, and wRE, respectively. The heights of squares

are also used to distinguish the four categories.
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Figure 12.6: Alert response wk ∈ W for the k-th attack whose type is shown in the
y-axis. The k-th vertical dash line represents the k-th alert’s arrival time tk.
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Learning during the Real-Time Monitoring and Inspection

Based on Algorithm 13, we illustrate the learning process of the estimated ECuC

Qh(sIh , ah) for all sIh ∈ S and ah ∈ A at each inspection stage h ∈ Z0+ in Fig.

12.7. We choose αh(sIh , ah) = kc
kTI(s

Ih )−1+kc
as the learning rate where kc ∈ (0,∞)

is a constant parameter and kTI(s
Ih) ∈ Z0+ is the number of visits to sIh ∈ S

up to stage h ∈ Z0+. Here, the AM action ah is implemented randomly at each

inspection stage h, i.e., ϵ = 1. Thus, all four AM actions (M = 3) are explored

equally on average for each sIh ∈ S as shown in Fig. 12.7. Since the number of

visits to different category labels depends on the transition probability κAT , the

learning stages for four category labels are of different lengths.

We denote category labels (sSO,P , sCR,L), (sSO,P , sCR,H), (sSO,C , sCR,L), and

(sSO,C , sCR,H) in blue, red, green, and black, respectively. To distinguish four AM

actions, a deeper color represents a larger m ∈ {0, 1, 2, 3} for each category label

sSO,i, sCR,j, i ∈ {P,C}, j ∈ {H,L}. The inset black box magnifies the selected

area. The optimal strategy σ∗ ∈ Σ is to take a3 for all category labels. The risk

v∗(sIh) = u(sIh , σ∗) under the optimal strategy has the approximated values of

$1153, $1221, $1154, and $1358 for the above category labels in blue, red, green,

and black, respectively. We also simulate the operator’s real-time monitoring and

inspection under IDoS attacks when AM strategy is not applied based on Algorithm

13. The risks v0(sIh) := u(sIh , σ0) under the default AM strategy σ0 ∈ Σ have

the approximated values of $1377, $1527, $1378, and $1620 for the category label

(sSO,P , sCR,L), (sSO,P , sCR,H), (sSO,C , sCR,L), and (sSO,C , sCR,H), respectively. These

results illustrate that the optimal AM strategy σ∗ ∈ Σ can significantly reduce the

risk under IDoS attacks for all category labels and the reduction percentage can be

as high as 20%.
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Figure 12.7: The convergence of the estimated ECuC Qh(sIh , ah) vs. the number
of inspection stages.

We further investigate the IDoS risk under the optimal AM strategy σ∗ as

follows. As illustrated in Fig. 12.7, when the criticality level is high (i.e., the attack

is more likely to be real), the attacks targeting cyber layers (denoted in black)

result in a higher risk than the one targeting physical layers (denoted in red). This

asymmetry results from the different rewards of identifying real attacks in physical

or cyber layers denoted in Table 12.3. Since dismissing feints bring the same reward

in physical and cyber layers, the attacks targeting physical or cyber layers result in

similar IDoS risks when the criticality level is low. Within physical or cyber layers,

high-criticality alerts result in a higher risk than low-criticality alerts do.

The value of Qh(sIh , am),m ∈ {0, 1, 2}, represents the risk when RADAMS

deviates to sub-optimal AM action am for a single category label sIh ∈ S. As
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illustrated by the red and black lines in Fig. 12.7, this single deviation can increase

the risk under alerts of high criticality. However, it hardly increases the risk under

alerts of low criticality as illustrated by the green and blue lines in the inset black

box of Fig. 12.7. These results illustrate that we can deviate from the optimal AM

strategy to sub-optimal ones for some category labels with approximately equivalent

risk, which we refer to as the attentional risk equivalency in Remark 33.

Remark 33 (Attentional Risk Equivalency). The above results illustrate that

we can contain the IDoS risk by selecting proper sub-optimal strategies. If applying

the optimal AM strategy σ∗ is costly, then RADAMS can choose not to apply AM

strategy for (sSO,C , sCR,L) or (sSO,P , sCR,L) without significantly increasing the IDoS

risks.

Optimal AM Strategy and Resilience Margin under Different Stage Costs

We define resilience margin as the difference of the risks under the optimal and

the default AM strategies. We investigate how the cost of incomplete alert response

in Table 12.3 affects the optimal AM strategy and the resilience margin in Fig.

12.8.

As shown in the upper figure, the optimal strategy remains to choose AM action

a3 when the alert is of high criticality. When the alert is of low criticality, then

as the cost increases, the optimal AM strategy changes sequentially from a3, a2,

and a1 to a0; i.e., RADAMS gradually decreases m ∈ {0, 1, 2, 3}, the number of

de-emphasized alerts. As shown in the lower figure, the resilience margin increases

monotonously with the cost. The optimal strategy for alerts of high criticality

yields a larger resilience margin than the one for low criticality.

Remark 34 (Tradeoff of Monitoring and Inspection). The results show that



423

0 200 400 600 800 1000

200

400

600

Figure 12.8: The optimal AM strategy and the risk vs. the cost of an incomplete
alert response under category label (sSO,P , sCR,L), (sSO,P , sCR,H), (sSO,C , sCR,L),
and (sSO,C , sCR,H) in solid red, solid green, dashed yellow, and dashed green,
respectively.

the optimal strategy strikes a balance between real-time monitoring a large number

of alerts and inspecting selected alerts with high quality. Moreover, the optimal

strategy is resilient for a large range of cost values ([$0, $1000]). If the cost is high

and the alert is of low (resp. high) criticality, then the optimal strategy encourages

monitoring (resp. inspecting) by choosing a small (resp. large) m. However, when

the cost of an incomplete alert response is relatively low, the optimal strategy is a4

for all alerts as the high-quality inspection outweighs the high-quantity monitoring.
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Arrival Frequency of IDoS Attacks

As stated in Section 12.2.1, feint attacks with the goal of triggering alerts require

fewer resources to craft. Thus, we let ĉRE = $0.04 and ĉFE ∈ (0, ĉRE) denote the

cost to generate a real attack and a feint, respectively. With ĉRE and ĉFE, we can

compute the attack cost of feint and real attacks per work shift of 24 hours. Let ρ

be the scaling factor for the arrival frequency and in Section 12.6.2, the average

inter-arrival time is µ̂(θk, θk+1) = ρµ(θk, θk+1),∀θk, θk+1 ∈ Θ. We investigate how

the scale factor ρ ∈ (0, 2.5] affects the IDoS risk and the attack cost in Fig. 12.9.

As ρ decreases, the attacker generates feint and real attacks at a higher frequency.

Then, the risks under both the optimal and the default strategies increase. However,

the optimal AM strategy can reduce the increase rate for a large range of ρ ∈ [0.5, 2].
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Figure 12.9: IDoS risk vs. ρ under the optimal and the default AM strategies in
solid red and dashed blue, respectively. The black line represents the attack cost
per work shift of 24 hours.

Remark 35 (Attacker’s Dilemma). From the attacker’s perspective, although

increasing the attack frequency can induce a high risk to the organization and the

attacker can gain from it, the frequency increase also increases the attack cost
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exponentially as shown by the dotted black line in Fig. 12.9. Thus, the attacker has

to strike a balance between the attack cost and the attack gain (represented by the

IDoS risk). Moreover, attackers with a limited budget are not capable to choose

small values of ρ (i.e., high attack frequencies).

Percentage of Feint and Real Attacks

Consider the case where κAT independently generates feints and real attacks with

probability ηFE and ηRE = 1− ηFE, respectively. We consider the case where the

attacker has a limited budge ĉmax = $270 per work shift (i.e., 86400s) and generates

feint and real attacks at the same rate β̂, i.e., β(θk, θk+1) = β̂, ∀θk, θk+1 ∈ Θ.

Consider the attack cost in Section 12.6.2, the attacker has the following budget

constraint, i.e.,

86400 · β̂ · (ηFE ĉFE + ηRE ĉRE) ≤ ĉmax. (12.12)

The budget constraint results in the following tradeoff. If the attacker chooses

to increase the probability of real attack ηRE, then he has to reduce the arrival

frequency β̂ of feint and real attacks. We investigate how the probability of feints

affects the IDoS risk in Fig. 12.10 under the optimal and the default AM strategies

in red and blue, respectively. The feints are of low and high costs in Fig. 12.10a

and 12.10b, respectively.

As shown in Fig. 12.10a, when the feints are of low cost, i.e., ĉFE = ĉRE/10,

generating feints with a higher probability monotonously increases the IDoS risks

for both AM strategies. When the probability of feints is higher than 80%, the

resilience margin is zero; i.e., the optimal and the default AM strategies both induce

high risks. However, as the probability of feint decreases, the resilience margin

increases to around $500; i.e., the default strategy can moderately reduce the risk
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(a) Low-cost feints ĉFE = 1.
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(b) High-cost feints ĉFE = 5.

Figure 12.10: IDoS risk vs. ηFE ∈ [0, 1] under the optimal and the default AM
strategies in red and blue, respectively. The black line represents the resilience
margin.

but the optimal strategy can excessively reduce the risk.

Remark 36 (Half-Truth Attack for High-Cost Feints). As shown in Fig.

12.10b, when the feints are of high cost, i.e., ĉFE = ĉRE/2, then the optimal attack

strategy is to deceive with half-truth, i.e., generating feint and real attacks with

approximately equal probability to induce the maximum IDoS risk. As the probability

of feints decreases from ηFE = 1, the risk increases significantly under the default

AM strategy but moderately under the optimal one.

The figures in Fig. 12.10 show that the optimal attack strategy under the

budget constraint (12.12) needs to adapt to the cost of feint generation. Regardless

of the attack strategy, the optimal AM strategy can reduce the risk and achieve a

positive resilient margin for all category labels (sSO,i, sCR,j), i ∈ {P,C}, j ∈ {L,H}.

Moreover, higher feint generation cost reduces the arrival frequency of IDoS attacks

due to (12.12). Thus, comparing to Fig. 12.10a, the risk in Fig. 12.10b is lower for

the same ηFE under the optimal or the default AM strategies, especially when ηFE

is close to 1.
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The Operator’s Attention Capacity

We consider the following attention function fLOE◦fSL with a constant attention

threshold, i.e., n̄(yEL, s
k) = n̄0, ∀yEL, sk ∈ S. Consider the following trapezoid

attention function. If nt ≤ n̄0, the LOE ωt = 1; i.e., the operator can retain the

high LOE when the number of distractions is less than the attention threshold n̄0.

If nt > n̄0, the LOE ωt gradually decreases as nt increases. Then, a larger value of

n̄0 indicates a high attention capacity. We investigate how the value of n̄0 affects

the risk in Fig. 12.11.

0 1 2 3 4 5

0

500

1000

1500

R
is

k
 (

$
)

0 1 2 3 4 5

0

500

1000

1500

0 1 2 3 4 5

0

500

1000

1500

R
is

k
 (

$
)

0 1 2 3 4 5

0

500

1000

1500

Figure 12.11: Risk vs. attention threshold under the optimal and the default
AM strategies in red and blue, respectively. The black dotted line represents the
resilience margin.

As the operator’s attention capacity increases, the risks under the optimal and
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the default AM strategies decrease for all category labels. The resilience margin

decreases from around $200 to $50 as n̄0 increases from 0 to 2 and then maintains

the value of around $50. Thus, the optimal strategy suits operators with a large

range of attention capacity, especially for the ones with limited attention capacity.
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Part VII

Discussions
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Chapter 13

Insights and Future Directions

In this dissertation, we have explored the methodologies of Defense through

AI-powered SYstem-scientific methods (DAISY) to mitigate three classes of vulner-

abilities related to posture (Part II), information (Part III and IV), and human

(Part V and VI) in CPSs. They have laid a solid foundation of 5G-SP established

in Section 1.4.1 for high-confidence CPSs. In Section 13.1, we summarize the chal-

lenges addressed by this dissertation, its contributions to the six transformations of

DAISY in Section 1.4.2, and the future works. In Section 13.2, we go beyond these

works to discuss our visions and broader insights.

13.1 Conclusions and Future Works

We have learned from [101] that posture-related defense technologies have

been extensively studied, while the mitigation solutions for information-related

and human-induced vulnerabilities are underdeveloped. Due to the necessity and

urgency to mitigate these three classes of vulnerabilities, it is a promising direction

to explore further and pay more attention to the information-related and human-
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related vulnerabilities. In the following five subsections, we summarize Chapters 3

to 12 and their related research opportunities.

13.1.1 Posture-Related Vulnerability

In Chapter 3, we have focused on addressing the challenges of large-scale

interdependence and the SoS protection under resource constraints. For the first

challenge, we have proposed factored MDP and factored Markov games to exploit the

networks’ link sparsity and reduce the growth rate from exponential to polynomial.

To address the second challenge, we have developed dynamic strategies for the

protection-recovery tradeoff, which have enabled a resilient and cost-effective design.

Future work would incorporate incomplete monitoring and resource constraints

explicitly to capture more practical factors. It would be of interest to understand

the impact of the network topology and investigate resilient strategies on structured

networks, e.g., chordal networks.

In Chapter 4, the main challenge is that the protection of nuclear power

systems needs to be time-sensitive and risk-sensitive. Thus, we have formulated a

finite-horizon Semi-Markov Game (SMG) and developed non-stationary response

policies. Probabilistic Risk Assessment (PRA) approaches have been used to

identify model parameters under complex scenarios. We expect research in the

following directions to improve the proposed method further. First, available data

sets and reliable expert judgments can be incorporated to determine the model

parameters. Sensitivity analysis can also be performed to assess the effect of

parameter uncertainties on the results presented in the case studies. Second, the

defender-attacker interaction in the real world is more complex, and many game

components (e.g., the system state, and both players’ rewards) are of incomplete
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information, which motivates possible extensions to more sophisticated forms of

games. Third, it would be worth investigating how system states related to hardware

failure, maintenance, and test affect the players’ strategies and the consequence.

13.1.2 Information-Related Vulnerability: Adversarial De-

ception

In Chapter 5 and Chapter 6, we have focused on addressing cyber and physical

deception, respectively, by formulating dynamic Bayesian games and solving Perfect

Bayesian Nash Equilibrium (PBNE) for behavior predictions. Both chapters have

considered rational and multi-stage deception and counter-deception; i.e., players

aim to achieve their deception goals at minimum cost, and their private types

remain unknown to others for all stages. Besides, we have proposed dynamic beliefs

to quantify the uncertainty resulting from players’ private types. The beliefs are

continuously updated to reduce uncertainties and provide a probabilistic detection

system. Our models can be broadly applied to scenarios in AI, economy, and

social science, where multi-stage interactions occur between multiple agents with

incomplete information. Multi-sided non-binary types can be defined based on the

scenario, and our iteration algorithm of the forward belief update and the backward

policy computation could be further extended for efficient PBNE computations.

The main challenge of game-theoretic approaches is the complexity of identifying

utilities and feasible actions of defenders and users at each stage. One future direc-

tion to address the challenge would be to develop mechanisms that can automate

the synthesis of verifiably correct game-theoretic models. It would alleviate the

workload of the system defender and operator. Nevertheless, game theory provides

a quantitative and explainable framework to design the proactive defensive response
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under uncertainties, compared to rule-based and machine-learning-based defense

methods, respectively. On the one hand, the rule-based defense is static, and an

attack can circumvent it through sufficient effort. On the other hand, machine

learning methods require a huge amount of labeled data sets, which can be hard to

obtain.

13.1.3 Information-Related Vulnerability: Defensive De-

ception

In Chapter 7 and Chapter 8, we have developed honeypot strategies to deter

lateral movement and obtain threat intelligence, respectively. In Chapter 7, the key

insight is that static security does not necessarily ensure long-term security due to

the existence of temporal-spatial attack paths when attacks can persistently stay

in the system. The defender cannot discover a complete attack path if focusing

only on the attack-defense interactions at local stages or for a short period. The

stealthiness of the attack is also challenging to deal with as the defender does not

know when the attacker has entered the system and where the lateral movement

has occurred. The traditional attack graph models show the causal relationship

between preconditions and consequences to identify critical attack paths and assess

the vulnerability of the assets. We have seen that a dynamic view of attack-defense

plays an important role in discovering hidden and unknown attacks. For example,

the exploitation of the same vulnerability at different times can sequentially lead

to new attack paths. We have used time-expanded graphical models to capture

the temporal-spatial relationships to reveal stealthy attack paths and address the

reachability question of whether the asset can be compromised within a given time

frame.
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In Chapter 8, we have studied the use of honeypots for threat intelligence

gathering, shifting from the applications of detection and deterrence. The need for

understanding zero-day threats motivates the development of honeypots with active

engagement strategies that go beyond the functionalities of passive information

gathering or low-level interactions. As the defender increases the interaction level of

the honeypot by emulating more services, performing more functions, and allowing

outbound traffic, we have observed the benefits of the proactive honeypots in terms

of threat intelligence, longer engagement time, and reduced risk of detection by

adversaries. However, we have noted the overhead of resources and the increased

risk of the attacker evading the honeypot and compromising the production system.

We have seen that legitimate users can inadvertently access the honeypot when

they do not have sufficient knowledge to distinguish it. We briefly discuss the

challenges and related future directions about Reinforcement Learning (RL) in the

honeypot engagement problem in Chapter 8 as follows.

Non-cooperative and Adversarial Learning Environment

The major challenge of learning under the security scenario is that the defender

lacks full control of the learning environment, which limits the scope of feasible

RL algorithms. In the classical RL task, the learner can choose to start at any

state at any time, and repeatedly simulate the path from the target state. In

the adaptive honeypot engagement problem, however, the defender can remove

attackers but cannot willfully drive them to the target honeypot and oblige them

to unveil their attacking behaviors because the true threat information is revealed

only when attackers are unaware of the honeypot engagements. Future work could

generalize the current framework to an adversarial learning environment where a
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savvy attacker can detect the honeypot and adopt deceptive behaviors to disrupt

the learning process.

Risk Reduction during the Learning Period

Since the learning process is based on samples from real-time interactions, the

defender needs to take into account the system’s safety and security during the

learning period. For example, if the visit and sojourn in the normal zone result

in significant losses, we can use the State–Action–Reward–State–Action (SARSA)

algorithm [184] to achieve a more conservative learning process in lieu of Q-learning.

Other safe RL methods are stated in the survey [58], which are possible directions

for future work.

Asymptotic versus Finite-Step Convergence

Since an attacker can choose to terminate the interaction and exit the system,

the engagement time with the attacker can be short-lived. Thus, it is critical for

the defender to achieve an acceptable outcome of the learning within finite steps,

and meanwhile, maintain a good engagement performance in these steps.

Previous works have studied the convergence rate [47] and the non-asymptotic

convergence [112, 113] in the MDP setting. For example, [47] has shown a relation-

ship between the convergence rate and the learning rate of Q-learning; [113] has

provided the performance bound of the finite-sample convergence rate; [112] has

proposed E3 algorithm which achieves near-optimal solutions with high probability

in polynomial time. However, in the honeypot engagement problem, the defender

does not know the remaining steps that she can interact with the attacker because

the attacker can terminate on his own. Thus, we cannot directly apply the E3
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algorithm which depends on the horizon time. Moreover, since attackers may

change their behaviors during the long learning period, the learning algorithm

needs to adapt to the changes of SMDP model quickly.

In this preliminary work, we use the ϵ-greedy policy for the trade-off of ex-

ploitation and exploration for a finite learning time. The parameter ϵ can be set

at a relatively large value so that the learning algorithm persistently adapts to

the changes in the environment. On the other hand, the defender can keep a

larger discounted factor γ to focus on the immediate investigation reward. If the

defender expects a short interaction time; i.e., the attacker is likely to terminate

shortly, she can increase the discounted factor in the learning process to adapt to

her expectations.

Transfer Learning

In general, the learning algorithm on SMDP converges more slowly than the

one on MDP because the sojourn distribution introduces extra randomness. Thus,

instead of learning ab initio, the defender can reuse the past experience with

attackers of similar behaviors to expedite the learning process. This observation

motivates the investigation of transfer learning in RL [208], where side-channel

information may also be incorporated.

13.1.4 Human-Related Vulnerability: Incentive Design

In Chapter 9 and Chapter 10, we have focused on the information design (i.e.,

strategic recommendation) and the holistic design (i.e., a policy generator, an

incentive modulator, and a trust manipulator), respectively, to affect insiders’

incentives and redress their misbehavior.
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These two works have contributed to the six transformations of SPs elaborated

in Section 1.4.2. First, incentive design is a proactive, affordable, and non-invasive

method to mitigate insider threats as it motivates rather than commands an

employee to act in the organization’s interests. Second, the ZETAR and the duplicity

game frameworks have explicitly captured the multi-agent interactions between

defenders and attackers, and have provided two sets of socio-technical solutions; i.e.,

ZETAR integrates audit and recommendation, while duplicity games consolidate

honeypots and security policies. Third, both frameworks have contributed to the

transformation of SP from empirical to quantitative, automated, and transferable.

On the one hand, they have provided formal design paradigms to mitigate insider

threats with quantitative performance metrics and provable guarantees. On the

other hand, they have yielded key measures for insiders’ compliance and the

organization’s security level.

13.1.5 Human-Related Vulnerability: Bounded Attention

Most of the existing works have taken humans as an independent component

in CPSs and aimed to compensate indirectly for the human vulnerability through

additional mechanisms. An alternative way is to directly affect the human compo-

nent and consider an integrated system. Developing security-assistive technologies

that directly affect humans is still in its infancy, and it is a promising direction

for integrative research. In Chapter 11 and Chapter 12, we have developed two

adaptive human-assistive technologies (i.e., ADVERT and RADAMS) to protect

humans from reactive and proactive attentional attacks, respectively.

ADVERT in Chapter 11 has addressed the challenge of phishing recognition

improvement through enhancing users’ attention. On the one hand, ADVERT has
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laid theoretical foundations to analyze, evaluate, and improve the human attention

process in phishing. On the other hand, its effectiveness has been corroborated

using a human-subject data set that contains the eye-tracking and survey data

of 150 undergraduates reading phishing emails. The results have shown that RL

adaption improves the accuracy of phishing recognition from 74.6% to 86%, while

the meta-adaptation has further improved the accuracy to 91.5% and 93.7% in less

than 3 and 50 tuning stages. The future work would focus on designing a more

sophisticated visual support system that can determine when and how to generate

visual aids in lieu of a periodic generation. We may also embed ADVERT into

VR/AR technologies to mitigate human vulnerabilities under simulated deception

scenarios, where the simulated environment can be easily repeated or changed. We

would allow the participants to report their confidence levels while they make the

security decisions. Finally, there would be an opportunity to incorporate factors

(e.g., pressure and incentives) into the design by limiting the participant’s vetting

time and rewarding correct identification of phishing emails, respectively.

RADAMS in Chapter 12 has addressed the challenge of mitigating a new

class of cognitive attacks called IDoS attacks that intentionally generate feint

attacks to overload human operators. On the one hand, RADAMS has provided

an automated, resilient, and socio-technical technology to manage alerts and

human attention against IDoS attacks. On the other hand, it has incorporated

Yerkes–Dodson law and the sunk cost fallacy to provide theoretical underpinnings

to establish various fundamental limits and understand tradeoffs among crucial

human and economic factors. Future works could be conducted in the following

three directions. First, we could incorporate the spatial information of attention

(e.g., the locations on the monitor screen) to create a temporal-spatial attention
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model. Second, we could consider evolving human model, in which both an IDoS

attacker and the assistive technology learn using different samples/observations

and different knowledge/information/decision-making schemes. Third, we could

develop coordination technologies to reduce the cognition load by sharing it among

multiple human operators. Based on the literature of cognitive science and existing

results of human experiments, we could develop detailed models of human attention,

reasoning, and risk-perceiving to better characterize human factors in CPS security.

13.2 Visions and Broader Insights

At the end of this dissertation, we present broader insights supported by the

results of DAISY and our visions that would be promising in pushing the boundaries

of this research further to encompass more impactful real-world applications.

13.2.1 Insights Related to Humans

Human is at the center of many main challenges in developing 5G-SP. A rich

literature has focused on threats from cyber and physical domains but oversimplified

the impact of the indispensable human factors in CPS security. This dissertation

has presented five ways to influence human behaviors to fill the gap of social

cybersecurity. They are providing incentives (诱之以利), providing disincentives

(胁之以威), disclosing information (晓之以理), designing assistive technology (辅

之以技), and manipulating emotions, beliefs, perceptions (动之以情).

Mitigating human-related vulnerability through these five ways is a promising

research direction worthy of further exploration not just in developing 5G-SP but

also in a broader research field such as human factor engineering. The final goal is
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to lay a theoretical foundation for the theory of security mind by characterizing

the human mental processes in CPSs to make the above five mitigation methods

Reliable, Explicable, Approachable, and Legible (referred as the REAL design

principle).

13.2.2 Insights Related to Security Games

Game theory is an appropriate framework for cybersecurity for the following

reasons. On the one hand, there are sufficient evidence and incidents of AI-powered

cyber attacks, which have shown that the adversaries are increasingly capable of

making quick and rational decisions. On the other hand, there is an urgent need for

automated and proactive defense mechanisms that would rely on AI and machine

learning techniques. The goal of the defense mechanism is to deter attacks or further

create difficulties for the adversaries. Hence, in the cyber-physical battlefield, the

interaction between attackers and defenders shifts from being human-versus-human

to algorithm-versus-algorithm. The outcomes of the interactions between algorithms

ultimately rely on their strategic reasoning through game-theoretic modeling and

analysis.

The economic perspective of game theory yields the following two insights for the

attacker and the defender, respectively. In particular, the attacker (resp. defender)

tends not to attack (resp. defense) if the attack (resp. defense) cost outweighs the

attack (resp. defense) gain.

Security by Design vs. Security by Defense

Security is a much broader concept than detection and prevention. The following

ancient philosophy from Sunzi’s the art of war [214] purports alternative deterrence
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strategies that can be applied to cyber-physical security.

• “Hence to fight and conquer in all your battles is not supreme excellence;

supreme excellence consists in breaking the enemy’s resistance without fighting.”

(是故百战百胜，非善之善也；不战而屈人之兵，善之善者也)

• “Thus the highest form of generalship is to balk the enemy’s plans; the next

best is to prevent the junction of the enemy’s forces; the next in order is to

attack the enemy’s army in the field; the worst policy of all is to besiege walled

cities.” (故上兵伐谋，其次伐交，其次伐兵，其下攻城)

When attacks are intelligent and strategically respond to the defense methods,

the defender can proactively deter attacks by designing attackers’ cost, information,

and epistemology.

• Designing attackers’ cost: The defender has the advantage to design the

system structure proactively to make it costly for the attacker to succeed.

Examples include cyber DMZ to reduce the attack surface, layered defense

and DiD to delay the penetration, and MTD to increase the attacker’s cost

in identifying the valuable assets. An attack is disincentivized or deterred, or

at least is not sustainable, if its cost outweighs its gain in the long run.

• Designing attackers’ information: The defender can gain an information

advantage by introducing defensive deception techniques, including honeypots

and honeyfiles. Such information advantage can increase the uncertainties of

the attacks and reduce the attack success rate.

• Manipulating attackers’ epistemology: The defender may have the advantage

to exploit the human weakness of the adversaries. For example, human
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attackers exhibit cognition biases, such as the framing effect, confirmation

bias, and inattentional blindness. They become unaware of or misled to

ignore signs of defensive deception and fall into honeypots that gather threat

intelligence.

Absolute Security vs. Best-Effort Security

Absolute security (i.e., defending all potential attacks at all costs) becomes

increasingly challenging to achieve as the CPSs and the attacks become more

complex and advanced, respectively. As opposed to absolute security, the defender

could pursue best-effort security by designing cost-effective security policies. Since

accepting to co-exist and interact with an adversary is inevitable in many circum-

stances, the defender needs to strategically develop security policies and constantly

evaluate the trust. This approach has been in accordance with the zero-trust

security philosophy [181] that is strongly advocated for 5G-SP.

In light of this view, the outcome of a security game is no longer binary,

i.e., winning or losing, which is zero-sum in game-theory terminology. However,

the outcome of the attacker-defender interaction can be Nash Equilibrium (NE).

Moreover, as we expand the scope from attack deterrence to utility maximization,

we can introduce new mechanisms such as cyber insurance to transfer risk besides

mitigate risk.

13.2.3 Insights Related to System-Scientific Approaches

A system is an entity that is made of parts that interact to achieve its design

objective. System-thinking or system-level modeling is a way to identify the key

interacting parts that contribute to the result within proper boundaries determined
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by their influence and budget. System-scientific approaches further incorporate

scientific tools (e.g., optimization, game theory, AI, and learning) to pinpoint the

leverage points of controllable variables to do the most efficient tuning/optimization.

We briefly discuss four aspects of system-scientific approaches as follows.

Holistic Modeling and Modular Design

System-level thinking enables holistic modeling to understand the relationship

among components of the system besides the components themselves. For example,

in Part VI, we have abstracted complex human processes as a human system

capable of sensing, decision-making, and acting. We focus on the input (e.g.,

human attention represented by their eye-gaze behaviors) and output (e.g., human

actions and task performances) of the human system to measure its impact on

the CPS and develop human-assistive technologies. Such system-level perspectives

enable us to incorporate existing psychological findings (e.g., the Yerkes–Dodson

law) and avoid the intricate details of human mental processes. The holistic

modeling helps us identify sufficient statistics to simplify the system design and

enables us to attain the optimality of the entire system through decentralized

decision-making.

A system-level understanding of the components and their relationships also

yields modular design and multi-scale solutions. Modular design is effective as we

can use the divide-and-conquer approach (e.g., the joint design of the generator,

modulator, and manipulator in Chapter 10). They are also customizable as we can

replace or redesign each module based on different scenarios (e.g., the joint design of

the IDoS attack model, human attention model, and human-assistive technologies

in Chapter 12). Multi-scale solutions enable approximations to different granularity
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levels based on time and budget constraints.

Model-Guided AI

In the era of AI and big data, one may be dubious about the need for models.

The answer is affirmative due to the following reasons. First, it is costly to collect

high-quality data (e.g., with accurate labels), especially in complex CPS scenarios.

Second, it is unclear what data to collect and how to use them, especially when

humans are involved. Third, despite their successes and wide applications, many

existing machine learning methods (e.g., neural networks) are inadequate in their

explainability and theoretical underpinning.

Therefore, there is a need to develop model-guided AI to transition from the

era of big data to the era of deep intelligence with incisive laws and principles. On

the one hand, the models and these principles enable explainable and transferable

solutions to incorporate practical constraints. On the other hand, they also guide us

to collect, use, and analyze data more efficiently. For example, we can incorporate

the knowledge of security experts to formulate explainable models. Then, we only

need a small dataset to tune the unknown parameters in the model rather than

learn the entire model; e.g., we use Bayesian optimization to tune the parameters

of RL for attention enhancement and phishing recognition in Chapter 11.

System Science-Supported Technology

Our research bridges between science and technology to create both provable

and implementable solutions. We aim to establish foundations, categorizations,

and fundamental solutions rather than case-by-case investigations. The proposed

methodologies are hence universal for a broad class of problems, and insights from
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one problem can be transferable to another. For example, we have established a

theoretical foundation and formed a quantitative design of insiders’ incentives in

Chapter 9 instead of taking the path of creating empirical solutions (e.g. awareness

training and relieving workload pressure) that are specific for an organization or a

particular subpopulation.

The theoretical underpinning entails the creation of the baseline feedback-

driven multi-agent framework, the analysis of the fundamental tradeoffs, and the

insight-driven learning mechanisms. The essential ideas of feedback architecture,

fundamental limits, and distinctive learning mechanisms are broadly applicable

to many socio-technical systems. They share the similar features of unantici-

pated uncertainties of human behaviors, usability-performance tradeoffs, and the

absence of exact human models. Nevertheless, they can benefit from the pro-

posed methodologies, which have not only achieved a clean-slate design for insider

threat mitigation but most importantly also created a metaphysical view of the

socio-technical systems as a result of the system-thinking.

System-Thinking beyond CPS

This dissertation is the epitome of system-thinking, which integrates feedback-

thinking, tradeoff-thinking, equilibrium-thinking, and data-thinking. It canvasses

perspectives that rise above the traditional realm of engineering and create several

concomitant impacts in related fields. One is the system-scientific approach to psy-

chology. In contrast to examining the mind and human behaviors by understanding

mechanisms in the white box and the connections within, this dissertation takes a

system-level approach to create input-output behaviors using empirical findings

and data. The second one is cybersecurity. This dissertation moves away from the
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laborious and perpetual examinations of the evolving vulnerabilities and security

solutions. Instead, it metaphysically abstracts cybersecurity into the fundamental

problems of adversarial interactions and examines the dimensions of information,

dynamics, and tradeoffs. The equilibrium-thinking metamorphoses cybersecurity

solutions from the tactical view of winning and losing into the strategic outlook

of long-term planning and design of security mechanisms and policies. The third

one is the meta-system theory. CPS is the cynosure of this dissertation, and many

theories have been developed for its application domains. It is also a quintessential

example of meta-systems or SoS. This dissertation contributes to the meta-system

theory by bonding systems of multiple types using diverse system-science concepts

and tools. The footprint of this meta-system theory can be found in many emerging

applications that go beyond CPSs.
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[9] K. J. Åström. Theory and applications of adaptive control—a survey. Auto-

matica, 19(5):471–486, 1983.

[10] R. J. Aumann, M. Maschler, and R. E. Stearns. Repeated games with incom-

plete information. MIT press, 1995.

[11] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?

Comput Geom, 7(5-6):265–301, 1997.

[12] T. Ban, N. Samuel, T. Takahashi, and D. Inoue. Combat security alert

fatigue with ai-assisted techniques. In Cyber Security Experimentation and

Test Workshop, pages 9–16, 2021.

[13] V. Barbu, M. Boussemart, and N. Limnios. Discrete-time semi-markov model

for reliability and survival analysis. Communications in Statistics-Theory

and Methods, 33(11):2833–2868, 2004.



449

[14] T. Basar and G. J. Olsder. Dynamic noncooperative game theory, volume 23.

Siam, 1999.

[15] G. Bassett, D. Hylender, P. Langlois, A. Pinto, and S. Widup. Data breach

investigations report. Technical report, Verizon DBIR Team, 2021.

[16] A. Bathelt, N. L. Ricker, and M. Jelali. Revision of the Tennessee Eastman

process model. IFAC-PapersOnLine, 48(8):309 – 314, 2015. 9th IFAC

Symposium on Advanced Control of Chemical Processes ADCHEM 2015.

[17] I. Baxter. Fake login attack evades logo detection, 2020. https://

ironscales.com/blog/fake-login-attack-evades-logo-detection.

[18] D. Bergemann and S. Morris. Information design: A unified perspective.

Journal of Economic Literature, 57(1):44–95, 2019.

[19] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena

Scientific, 1996.

[20] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[21] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-

time markov decision problems. In Advances in neural information processing

systems, pages 393–400, 1995.

[22] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry.

Attacks against process control systems: risk assessment, detection, and

response. In Proceedings of the 6th ACM symposium on information, computer

and communications security, pages 355–366, 2011.

https://ironscales.com/blog/fake-login-attack-evades-logo-detection
https://ironscales.com/blog/fake-login-attack-evades-logo-detection


450

[23] W. A. Casey, Q. Zhu, J. A. Morales, and B. Mishra. Compliance control:

Managed vulnerability surface in social-technological systems via signaling

games. In Proceedings of the 7th ACM CCS International Workshop on

Managing Insider Security Threats, pages 53–62, 2015.

[24] M. Chatterjee and A.-S. Namin. Detecting phishing websites through deep

reinforcement learning. In 2019 IEEE 43rd Annual Computer Software and

Applications Conference (COMPSAC), volume 2, pages 227–232. IEEE, 2019.

[25] C. Chen and Y. Xu. The curse of rationality in sequential scheduling games.

In International Conference on Web and Internet Economics, pages 295–308.

Springer, 2020.

[26] D. Chen and K. S. Trivedi. Optimization for condition-based maintenance

with semi-markov decision process. Reliability engineering & system safety,

90(1):25–29, 2005.

[27] P.-Y. Chen, S. Choudhury, L. Rodriguez, A. Hero, and I. Ray. Enterprise

cyber resiliency against lateral movement: A graph theoretic approach. arXiv

preprint arXiv:1905.01002, 2019.

[28] P. Cichonski, T. Millar, T. Grance, and K. Scarfone. Computer security

incident handling guide: recommendations of the national institute of stan-

dards and technology. Technical report, National Institute of Standards and

Technology, 2012.

[29] F. Cohen. Simulating cyber attacks, defences, and consequences. Computers

& Security, 18(6):479–518, 1999.



451

[30] V. Combs. 3 ways criminals use artificial intelligence in cybersecurity attacks,

Oct 2020. TechRepublic.

[31] T. M. Corporation. Enterprise matrix, 2019.

[32] E. B. Cox, Q. Zhu, and E. Balcetis. Stuck on a phishing lure: differential

use of base rates in self and social judgments of susceptibility to cyber risk.

Comprehensive Results in Social Psychology, 4(1):25–52, 2020.

[33] L. A. T. Cox Jr et al. Game theory and risk analysis. Risk Analysis,

29(8):1062–1068, 2009.

[34] V. P. Crawford and J. Sobel. Strategic information transmission. Economet-

rica: Journal of the Econometric Society, pages 1431–1451, 1982.

[35] R. Dahbul, C. Lim, and J. Purnama. Enhancing honeypot deception capability

through network service fingerprinting. In Journal of Physics: Conference

Series, volume 801, page 012057. IOP Publishing, 2017.

[36] R. Denning and V. Mubayi. Insights into the societal risk of nuclear power

plant accidents. Risk analysis, 37(1):160–172, 2017.

[37] D. Department of Homeland Security. Nsa/css technical cyber threat frame-

work v2 a report from: Cybersecurity operations the cybersecurity products

and sharing division. Technical report, 2018.

[38] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proc.

of the SIGCHI conference on Human Factors in computing systems, pages

581–590, 2006.

[39] DHS. Roadmap to enhance cyber systems security in the nuclear sector, 2012.



452

[40] L. Duenas-Osorio and S. M. Vemuru. Cascading failures in complex infras-

tructure systems. Structural safety, 31(2):157–167, 2009.

[41] M. Dufresne. Putting the MITRE ATT&CK evaluation into context, 2018.

[42] C. Dukes. Committee on national security systems (cnss) glossary. CNSSI,

Fort 1322 Meade, MD, USA, Tech. Rep, 1323, 2015.

[43] B. Edwards, A. Furnas, S. Forrest, and R. Axelrod. Strategic aspects of

cyberattack, attribution, and blame. Proceedings of the National Academy of

Sciences, 114(11):2825–2830, 2017.

[44] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned: an empirical

study of the effectiveness of web browser phishing warnings. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages

1065–1074, 2008.

[45] D. Evans, A. Nguyen-Tuong, and J. Knight. Effectiveness of moving target

defenses. In Moving target defense, pages 29–48. Springer, 2011.

[46] K. Evans, A. Abuadbba, M. Ahmed, T. Wu, M. Johnstone, and S. Nepal.

Raider: Reinforcement-aided spear phishing detector. arXiv preprint

arXiv:2105.07582, 2021.

[47] E. Even-Dar and Y. Mansour. Learning rates for q-learning. Journal of

Machine Learning Research, 5(Dec):1–25, 2003.

[48] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. Technical

report, Symantec Corp., 2011.



453

[49] X. Feng, Z. Zheng, P. Hu, D. Cansever, and P. Mohapatra. Stealthy attacks

meets insider threats: a three-player game model. In MILCOM 2015-2015

IEEE Military Communications Conference, pages 25–30. IEEE, 2015.

[50] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer

Science & Business Media, 2012.

[51] FireEye. Advanced Persistent Threat Groups — FireEye, 2017.

[52] L. Franklin, M. Pirrung, L. Blaha, M. Dowling, and M. Feng. Toward a

visualization-supported workflow for cyber alert management using threat

models and human-centered design. In 2017 IEEE Symposium on Visualiza-

tion for Cyber Security (VizSec), pages 1–8. IEEE, 2017.

[53] P. I. Frazier. Bayesian optimization. In Recent Advances in Optimization and

Modeling of Contemporary Problems, pages 255–278. INFORMS, 2018.

[54] D. Fridovich-Keil, V. Rubies-Royo, and C. J. Tomlin. An iterative quadratic

method for general-sum differential games with feedback linearizable dynamics.

In 2020 IEEE International Conference on Robotics and Automation (ICRA),

pages 2216–2222, 2020.

[55] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler. Combating advanced

persistent threats: From network event correlation to incident detection.

Computers & Security, 48:35–57, 2015.

[56] A. Friedman. Differential games. Courier Corporation, 2013.

[57] X. Fu and Y. Yang. Modeling and analyzing cascading failures for internet of

things. Information Sciences, 545:753–770, 2021.



454

[58] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement

learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[59] D. Gertman, H. Blackman, and C. Marble, Julie Smith. The spar-h hu-

man reliability analysis method. Technical report, U.S. Nuclear Regulatory

Commission, 2005.

[60] I. Ghafir, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie,

and F. J. Aparicio-Navarro. Detection of advanced persistent threat using

machine-learning correlation analysis. Future Generation Computer Systems,

89:349–359, 2018.

[61] I. Ghafir, K. G. Kyriakopoulos, S. Lambotharan, F. J. Aparicio-Navarro,

B. AsSadhan, H. BinSalleeh, and D. M. Diab. Hidden markov models and

alert correlations for the prediction of advanced persistent threats. IEEE

Access, 7:99508–99520, 2019.

[62] I. Ghafir, V. Prenosil, M. Hammoudeh, L. Han, and U. Raza. Malicious

ssl certificate detection: A step towards advanced persistent threat defence.

In Proceedings of the International Conference on Future Networks and

Distributed Systems, page 27. ACM, 2017.

[63] A. Ghosh, D. Pendarakis, and W. Sanders. Moving target defense co-chair’s

report-national cyber leap year summit 2009. Tech. Rep., Federal Networking

and Information Technology Research and Development (NITRD) Program,

2009.

[64] M. Gil, M. Albert, J. Fons, and V. Pelechano. Engineering human-in-the-loop



455

interactions in cyber-physical systems. Information and software technology,

126:106349, 2020.

[65] F. Greitzer and D. Frincke. Combining traditional cyber security audit

data with psychosocial data: towards predictive modeling for insider threat

mitigation. In Insider threats in cyber security. Springer, 2010.

[66] F. L. Greitzer, J. Strozer, S. Cohen, J. Bergey, J. Cowley, A. Moore, and

D. Mundie. Unintentional insider threat: contributing factors, observables,

and mitigation strategies. In 2014 47th Hawaii International Conference on

System Sciences, pages 2025–2034. IEEE, 2014.

[67] E. R. Griffor, C. Greer, D. A. Wollman, M. J. Burns, et al. Framework for

cyber-physical systems: Volume 1, overview. 2017.

[68] B. Guembe, A. Azeta, S. Misra, V. Osamor, L. Fernandez-Sanz, and

V. Pospelova. The emerging threat of ai-driven cyber attacks: A review.

Applied Artificial Intelligence, pages 1–34, 2022.

[69] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution

algorithms for factored MDPs. Journal of Artificial Intelligence Research,

19:399–468, 2003.

[70] H. Guo, C. Zheng, H. H.-C. Iu, and T. Fernando. A critical review of cascading

failure analysis and modeling of power system. Renewable and Sustainable

Energy Reviews, 80:9–22, 2017.

[71] A. Hagberg, A. Kent, N. Lemons, and J. Neil. Credential hopping in authenti-

cation graphs. In 2014 International Conference on Signal-Image Technology

Internet-Based Systems (SITIS). IEEE Computer Society, Nov. 2014.



456

[72] H. Hajieghrary, D. Kularatne, and M. A. Hsieh. Cooperative transport

of a buoyant load: A differential geometric approach. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

2158–2163, 2017.

[73] M. A. Haque, G. K. De Teyou, S. Shetty, and B. Krishnappa. Cyber resilience

framework for industrial control systems: concepts, metrics, and insights. In

2018 IEEE international conference on intelligence and security informatics

(ISI), pages 25–30. IEEE, 2018.

[74] S. Harris. Insider threat mitigation guide. Technical report, Cybersecurity

and Infrastructure Security Agency.

[75] J. C. Harsanyi. Games with incomplete information played by “Bayesian”

players, i–iii part i. the basic model. Management science, 14(3):159–182,

1967.

[76] J. Hofbauer, K. Sigmund, et al. Evolutionary games and population dynamics.

Cambridge university press, 1998.

[77] C. D. Holland and O. V. Komogortsev. Complex eye movement pattern

biometrics: the effects of environment and stimulus. IEEE Transactions on

Information Forensics and Security, 8(12):2115–2126, 2013.
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[235] Q. Zhu and T. Başar. Dynamic policy-based ids configuration. In Proceedings

of the 48h IEEE Conference on Decision and Control (CDC) held jointly with

2009 28th Chinese Control Conference, pages 8600–8605. IEEE, 2009.

[236] C. Zimmerman. Ten strategies of a world-class cybersecurity operations

center. The MITRE Corporation, 2014.


	Vita
	Acknowledgements
	Abstract
	Notations
	List of Figures
	List of Tables
	List of Acronyms
	I Motivation and Framework
	Introduction to High-Confidence Cyber-Physical Systems
	Applications of CPSs
	Industrial Control Systems
	Critical Infrastructure Networks

	Distinctive Features of CPSs
	Diversity and Heterogeneity
	Large-Scale and Complex Interdependence
	Human-In-The-Loop
	Openness and Dynamic Property

	High-Confidence CPSs
	Meaning and Motivation
	Threats to High-Confidence CPSs
	Cascading Failures
	Human Errors: Phishing and Insider Threats
	Advanced Persistent Threats

	Status Quo and Related Works
	Cascading Failures and Risk Management
	Human-Induced Vulnerability and Assistive Technologies
	APTs: Prevent, Detect, Response, and Recovery


	AI-Powered System-Scientific Defense
	Five Generations of Defense Mechanisms
	1G-SP: Laissez-Faire Security
	2G-SP: Perimeter Security
	3G-SP: Reactive Security
	4G-SP: Proactive Security
	5G-SP: Federated Security

	Six Dimensions of DAISY to Achieve 5G-SP
	From Empirical to Theoretical
	From Technical to Socio-Technical
	From Single-Agent to Multi-Agent
	From Secure to Resilient
	From Add-On to Built-In
	From Reactive to Proactive


	Contributions
	Models and Frameworks
	Theoretical Advances
	Computationally Efficient Algorithms
	Applications

	Outline and Organization
	Mitigation of Posture-Related Vulnerabilities
	Mitigation of Information-Related Vulnerabilities
	Mitigation of Human-Related Vulnerabilities


	Modeling, Design, and Learning Theories for High-Confidence CPSs
	Security Games
	Components of Security Games
	Players
	Actions and Policies
	Uncertainty
	Utilities
	Information and Rationality
	Dynamic and Timing
	Objective Functions

	Classes of Security Games
	Static Models with Complete Information
	Dynamic Models with Complete Information
	Dynamic Models with Incomplete Information


	Information Design
	Reinforcement Learning
	Feedback Structure
	MDP and Q-learning

	Extensions and Applications


	II Dynamic Protection of Critical Infrastructures
	Prevention and Response of Cascading Failures in Large-Scale Interdependent CINs
	Mathematical Model
	Network Game Model
	Zero-Sum Markov Games
	Mathematical Programming Perspective
	Single-Controller Markov Game

	Factored Markov Game
	Factored Structure
	Linear Function Approximation
	Term Reorganization
	Restricted Information Structure
	Variable Elimination
	Distributed Policy of Attacker
	Approximate Dual LP

	Numerical Experiments
	Transition Probability and Cost
	Approximation Accuracy
	Various Information Structure
	Network Effect 
	Optimal Policy


	Time-Sensitive Attack Response in Nuclear Power Plants
	Modeling of Defender-Attacker Interactions
	Finite-Horizon General-Sum Semi-Markov Game
	Identification of System States and State Transitions
	Using PRA to Determine Transition Probabilities

	Solution Concept and Technique
	Nash Equilibrium
	Dynamic Programming

	Risk Assessment
	Risk Metrics
	Exact Analytical Method
	Monte Carlo Simulation-Based Method

	Case Study
	State Space and Action Space
	State Transition Function and Payoffs

	Results and Discussion
	Nash Equilibrium and State Value
	Risk Metrics
	Comparison between the Equilibrium Strategy and a Baseline Strategy



	III Counter-Deception Technologies
	Zero-Trust Defense against Advanced Persistent Threats
	Dynamic Game Modelling of APT Attacks
	Multi-Stage Transition
	Behavioral Strategy
	Belief and Bayesian Update
	Timely Observations
	Markov Belief

	Stage and Cumulative Utility

	PBNE and Dynamic Programming
	Computational Algorithms
	One-Stage Bayesian Game and SBNE
	Multi-Stage Bayesian Game and PBNE

	Case Study
	Initial Stage: Phishing Emails
	Intermediate Stage: Privilege Escalation
	Final Stage: Sensor Compromise
	Performance Metric
	Attack Model
	Utility Matrix


	Computation Results
	Final Stage and SBNE
	Sensitivity Analysis

	Multi-Stage and PBNE
	Adversarial and Defensive Deception



	Rational and Persistent Deception among Intelligent Robots
	Dynamic Game with Private Types
	Forward Belief Dynamics
	Bayesian Belief Dynamics
	Markov-Chain Belief Dynamics

	Nonzero-Sum Cost Function and Equilibrium
	Offline Evaluation of Equilibrium Cost

	Linear-Quadratic Specification 
	Extrinsic Belief Dynamics and the Extended Riccati Equations
	Intrinsic Belief Dynamics and the Receding-Horizon Control

	Dynamic Target Protection under Deception
	Deceptive Evader with Decoupled Cost Structure
	Finite-Horizon Analysis of Bayesian Update
	Comparison with Heuristic Policies

	Dynamic Game for Counter-Deception
	Pursuer with a Public Type
	Deception to Counteract Deception

	Multi-Dimensional Deception Metrics
	The Impact of the Evader's Belief Manipulation
	The Impact of the Pursuer's Maneuverability
	Deceivability, Distinguishability, and PoD




	IV Defensive Deception Technologies
	Cognitive Honeypots for Lateral Movement Mitigation
	Chronological Enterprise Network Model
	Time-Expanded Network and Random Service Links
	Attack Model of Lateral Movement
	Cognitive Honeypot
	Random Honeypot Configuration and Detection
	Interference, Stealthiness, and Cost of Roaming


	Farsighted Vulnerability Mitigation
	Imminent Vulnerability
	Long-Term Vulnerability
	Curse of Multiple Attack Paths and Sub-Optimal Honeypot Policies 
	LTV Analysis under two Heuristic Policies
	Indirect Honeypot Policies
	Direct Honeypot Policies



	Adaptive Honeypot Engagement for Threat Intelligence
	Problem Formulation
	Network Topology
	States and State-Dependent Actions
	Continuous-Time Process and Discrete Decision
	Investigation Value
	Optimal Long-Term Policy
	Cost-Effective Policy
	Engagement Safety versus Investigation Values


	Risk Assessment
	Transition Probability of Semi-Markov Process
	First Passage Time
	Mean First Passage Time

	Advanced Persistent Threats

	Reinforcement Learning of SMDP


	V Incentive Mechanisms against Insider Threats
	ZETAR: Strategic and Trustworthy Recommendations for Compliance Improvement
	System Model of ZETAR
	An Organization's Security Posture
	Zero-Trust Audit Policy
	Utilities of the Defender and Employees
	Strategic Recommendations for Customized Compliance
	Information Structure and Timeline
	Employee's Initial Compliance
	Recommendation Mechanism
	Employee's Belief Update and Best-Response Action
	Trustworthiness of the Recommendation Scheme
	Defender's Optimal Recommendation Policy


	Computational Framework of ZETAR
	Level of Recommendation Customization
	Primal Mathematical Programming
	Dual Mathematical Programming
	Interpretation of ZETAR from Employees' Perspectives

	Characterization of Trust and Compliance
	Impact of Linear Utility Transformations
	Geometric Characterization of CT Sets, ASaL, and ASeL
	Optimal ACEL under Incentive Misalignment

	Feedback Design for Unknown Incentives
	Case Study
	Model Description
	Employee's Intrinsic and Extrinsic Incentives
	Defender's Security Objective

	Graphical Illustration of Learning Algorithms
	Numerical Results
	Compliance Threshold
	Impacts of Recommendation Policies
	The Optimal ACEL



	Duplicity Game: Integrated Mechanism Design for Insider Threat Mitigation
	Duplicity Game Model
	Motivating Example of Insider Threat Mitigation
	Categorization of Insiders' Motives
	Corporate Network with Insiders and Honeypots

	Game Elements
	Basic Game
	Belief Statistics
	Information Structure
	Utility Transfer

	Timeline for the GMM Mechanism Design
	Relation to Bayesian Persuasion
	Violation of Bayesian Plausibility


	GMM Designs by Mathematical Programming
	Graphical Analysis of GMM Designs
	Generator Design under the Benchmark Case
	Cyber Attribution and Type Identification
	Characterization of the Optimal Generator

	Incentive Modulator and Trust Manipulator
	Joint Design of Generator and Modulator
	Joint Design of Generator and Manipulator
	Design of the GMM Mechanism


	Case Study
	Model Description
	Threshold Policy Analysis

	Numerical Results
	Security Posture under the Optimal Generator
	Security Posture under Various Modulators
	Security Posture under Covert and Overt Trust Manipulators




	VI Hodatology for Cognitive Security
	ADVERT: An Attention Enhancement Mechanism for Phishing Prevention
	Attention Enhancement Mechanism
	Visual State Transition Model
	Feedback Visual-Aid Design
	Evaluation of Attention Status
	Concentration Scores and Decay Rates
	Cumulative Attention Level

	Q-Learning via Consolidated Data

	Phishing Prevention Mechanism
	Metrics for Phishing Recognition
	Efficient Hyperparameter Tuning

	Case Study
	Experiment Setting and Data Processing
	Estimate Concentration Scores and Decay Rates based on Pupil Sizes
	Synthetic VS Trajectory Generation under Visual Aids

	Validation of Attention Enhancement Mechanism
	Validation of Phishing Prevention Mechanism
	Neural Network
	Bayesian Optimization Results



	RADAMS: Alert and Attention Management Strategies against Information-DoS Attacks
	High-Level Abstraction and Motivating Example
	IDoS Attacks and Sequential Alert Arrivals
	Feint and Real Attacks of Heterogeneous Targets
	Alert Triage Process and System-Level Metrics

	Attention Model under IDoS Attacks
	Alert Responses
	Probabilistic Switches within Allowable Delay
	Attentional Factors
	Alert Responses under Time and Capacity Limitations

	Human-Assistive Security Technology
	Adaptive AM Strategy
	Stage Cost and Expected Cumulative Cost
	Reinforcement Learning

	Theoretical Analysis
	Security Metrics
	Closed-Form Computations
	Fundamental Limits under AM strategies

	Case Study
	Experiment Setup
	Analysis of Numerical Results
	Learning during the Real-Time Monitoring and Inspection
	Optimal AM Strategy and Resilience Margin under Different Stage Costs
	Arrival Frequency of IDoS Attacks
	Percentage of Feint and Real Attacks
	The Operator's Attention Capacity




	VII Discussions
	Insights and Future Directions
	Conclusions and Future Works
	Posture-Related Vulnerability
	Information-Related Vulnerability: Adversarial Deception
	Information-Related Vulnerability: Defensive Deception
	Non-cooperative and Adversarial Learning Environment
	Risk Reduction during the Learning Period
	Asymptotic versus Finite-Step Convergence
	Transfer Learning

	Human-Related Vulnerability: Incentive Design
	Human-Related Vulnerability: Bounded Attention

	Visions and Broader Insights
	Insights Related to Humans
	Insights Related to Security Games
	Security by Design vs. Security by Defense
	Absolute Security vs. Best-Effort Security

	Insights Related to System-Scientific Approaches
	Holistic Modeling and Modular Design
	Model-Guided AI
	System Science-Supported Technology
	System-Thinking beyond CPS







